
Cochrane & Green -- Assessing the functions underlying learning

Supplementary Material

Supplemental methods

Dot-motion direction discrimination

All participants completed their blocks alone in a dimly-lit sound-attenuated room in the

psychology lab of C.S.G. Instructions were provided in the form of a piece of paper with a schematic

explanation of the task. This visual explanation was accompanied by a verbal explanation by an

experimenter.

On each day 4 blocks of 200 trials were run, with short breaks between each block. Each block

took between 12 and 15 minutes to complete. Stimulus order was fully randomized within blocks.

Auditory feedback was provided after each trial in the form of a high-pitched beep for a “correct”

response and a low-pitched beep for an “incorrect” response. The first 6 blocks used a reference angle of

40 degrees, with the last 2 blocks utilizing a reference angle of 130 degrees. Before the first and seventh

blocks the participant completed 8 very easy trials (12 degree offset between the reference angle and the

stimulus angle) in order to ensure understanding of the task.

All stimuli were presented centrally, with free fixation. The difficulty manipulation used offsets

of 4 (easy) or 8 (hard) degrees, following Wang et al. (2013). This meant that each stimulus was offset

either 2 degrees (easy) or 4 degrees (difficulty) either clockwise or counterclockwise from the reference

angle.

Texture oddball detection

All participants completed their blocks alone in a dimly-lit sound-attenuated room in the

psychology lab of C.S.G. Instructions were provided in the form of a piece of paper with a schematic

explanation of the task. This visual explanation was accompanied by a verbal explanation by an

experimenter.

On each day 4 blocks of 210 trials were run, with short breaks between each block. Each block

took between 12 and 15 minutes to complete. Stimulus order was fully randomized within blocks.

Auditory feedback was provided after each trial in the form of a high-pitched beep for a “correct”

response and a low-pitched beep for an “incorrect” response. The first 6 blocks used a reference angle of

16 degrees, with the last 2 blocks utilizing a reference angle of 106 degrees. Before the first and seventh

blocks the participant completed 8 very easy trials (SOA of .24 and .48) in order to ensure understanding

of the task.

Cochrane & Green -- Assessing the functions underlying learning

All stimuli were presented centrally, with free fixation. The difficulty manipulation used oddball

offsets of 16 (easy) or 30 (hard) degrees, following Ahissar & Hochstein, (1993).

Functional Forms

This work used TEfits version 00.77.12 (Cochrane, 2020). The formulas, from TEfits as well as

in simplified formats, for the functional forms were as follows:

3-parameter power

(formula)

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡) × 𝑡𝑖𝑚𝑒𝑟𝑎𝑡𝑒

3-parameter power

(model

implementation)

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * (totalTrial

Num - 0)^(log(0.25)/log(2^pRate_0 + pRate_isTransfer * isTransfer)))

4-parameter power

(formula)

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡) × (𝑡𝑖𝑚𝑒 + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑖𝑚𝑒)𝑟𝑎𝑡𝑒

×
1

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑖𝑚𝑒𝑟𝑎𝑡𝑒

4-parameter power

(model

implementation)

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * (((totalTria

lNum - 0) + pPrevTime)^(log(0.25)/log(2^(pRate_0 + pRate_isTransfer * isTransf

er)))) * (1/((pPrevTime + 1)^(log(0.25)/log(2^(pRate_0 + pRate_isTransfer * isTran

sfer))))))

3-parameter

exponential (formula)

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒

3-parameter

exponential (model

implementation)

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 2^((1 - tota

lTrialNum)/(2^(pRate_0 + pRate_isTransfer * isTransfer))))

4-parameter

exponential (formula)

𝑠𝑡𝑎𝑟𝑡 +. 5 × (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒1 + .5 × (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒

− 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒2

4-parameter

exponential (model

implementation)

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 0.5 * 2^((1

- totalTrialNum)/(2^(pRateA_0 + pRateA_isTransfer * isTransfer))) + ((pStart_0 +

pStart_isTransfer * isTransfer) - (pAsym)) * 0.5 * 2^((1 - totalTrialNum)/(2^(pRat

eB))))

Weibull (formula) 𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)(𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒)𝑠ℎ𝑎𝑝𝑒

Weibull (model

implementation)

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 2^(-((total

TrialNum - 1)/(2^(pRate_0 + pRate_isTransfer * isTransfer)))^(2^pShape)))

Cochrane & Green -- Assessing the functions underlying learning

These formulas predicted either d-prime (in the case of dot-motion discrimination) or 75%

accuracy threshold (in the case of texture oddball detection). Note that constants (e.g., 2 as the base of the

exponents or the log(.25) present in the power functions) exist to make parameter values themselves

more interpretable, and have no influence on the overall models’ goodness-of-fit. The same can be said

for most aspects of the parameterizations; TEfits prioritizes interpretability of parameters, with some

sacrifice to the clarity of model formulas. The generalization parameters, pStart_isTransfer and

pStart_isTransfer, were associated with the binary (0 or 1) variable isTransfer.

Model code

Dot-motion direction discrimination model code (TEfits package)

nTries <- 2E3

nBoot <- 50

 m_tef_exp3 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")],

 errFun='ols',changeFun='expo', covarTerms=list(pAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)),

 groupingVar=motDat$subID,groupingVarName = 'subID')

 m_tef_exp4 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")],

 errFun='ols',changeFun='expo_double', covarTerms=list(pAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)),

 groupingVar=motDat$subID,groupingVarName = 'subID')

 m_tef_pow3 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")],

 errFun='ols',changeFun='power', covarTerms=list(pAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)),

 groupingVar=motDat$subID,groupingVarName = 'subID')

 m_tef_pow4 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")],

Cochrane & Green -- Assessing the functions underlying learning

 errFun='ols',changeFun='power4', covarTerms=list(pAsym=F,pPrevTime=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)),

 groupingVar=motDat$subID,groupingVarName = 'subID')

 m_tef_weib <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")],

 errFun='ols',changeFun='weibull', covarTerms=list(pAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5),

 shape_lim=c(-2,2)),

 groupingVar=motDat$subID,groupingVarName = 'subID')

Notes:

- nTries indicates the number of attempted optimization runs, to minimize error with the

optim() function in R initialized at random starting points.

- Due to the superior performance of the Weibull function in preliminary analyses, there was

some concern that extreme flexibility may have allowed it to take the fit trajectory to

implausible values. As such, we restricted the Weibull shape parameter to [-2,2]; the Weibull

function still was the best fit in many cases.

- As explained in the main text, d-prime was bounded at [0,5] due to this being the entire range

of plausible performance.

Texture oddball detection model code (TEfits package)

nTries <- 2E3

nBoot <- 50

 m_tef_exp3 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")],

 errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'),

 changeFun='expo',

 covarTerms=list(threshAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries),

Cochrane & Green -- Assessing the functions underlying learning

 groupingVar = texDat$subID,groupingVarName = 'subID')

m_tef_exp4 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")],

 errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'),

 changeFun='expo_double',

 covarTerms=list(threshAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries),

 groupingVar = texDat$subID,groupingVarName = 'subID')

m_tef_pow3 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")],

 errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'),

 changeFun='power',

 covarTerms=list(threshAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries),

 groupingVar = texDat$subID,groupingVarName = 'subID')

m_tef_pow4 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")],

 errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'),

 changeFun='power4',

 covarTerms=list(threshAsym=F,pPrevTime=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries),

 groupingVar = texDat$subID,groupingVarName = 'subID')

m_tef_weib <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")],

 errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'),

 changeFun='weibull',

 covarTerms=list(threshAsym=F),

 bootPars=list(nBoots=nBoot,bootPercent=.8),

 control = tef_control(suppressWarnings=T,nTries=nTries),

Cochrane & Green -- Assessing the functions underlying learning

 groupingVar = texDat$subID,groupingVarName = 'subID')

Notes:

- nTries indicates the number of attempted optimization runs, to minimize error with the

optim() function in R initialized at random starting points.

Generalization measured as a time equivalent

An alternative measure of initial generalization magnitude was tested. By considering starting

performance on the generalization trials, the threshold or d-prime could be mapped onto the learning

trajectory from the initial training trials. We note, however, that this analysis discards any differences in

learning rate between initial training and subsequent generalization. Additionally, we note that many

participants have a “time equivalent” that would be negative, as many of participants did not demonstrate

generalization (see Figure 7 for distributions of participants; the density of the distributions on the non-

green side of zero would all have negative time equivalents). Rather than calculating negative time

equivalents we treated all such cases as having time equivalents of 1 (i.e., starting generalization at the

same place as starting initial training). However, given these very non-normal distributions, we chose to

compare difficulty-related differences using non-parametric Wilcoxon tests. Using this method, in texture

oddball detection, the easy-condition time equivalents (median = 348) were not significantly different

than the difficult-condition time equivalents (median = 94; Wilcoxon Z = -1.69, p = .09). Likewise, in

dot-motion direction discrimination, the easy-condition time equivalents (median = 63) were not

significantly different than the difficult-condition time equivalents (median = 3; Wilcoxon Z = 1.10, p =

.271).

Recovery Analyses

As explained in the main text, recovery analyses can be ambiguous when simulating and

comparing parameters from nested models. Specifically, because several of our 4-parameter models can

take exactly the same shapes as simpler 3-parameter models, it may be impossible to recover the more

complex models when compared against the fits from simpler models.

With this caveat, we next report several measures of parameter recovery. Using the methods

reported in the main text, we used 40 simulations from each model’s parameters from each participant to

compare models. The first measure we use is mean within-simulation d-prime. That is, within each

simulation, and when comparing two models, each participant was either correctly categorized using a

BIC criterion (a “hit” or “correct rejection”) or incorrectly categorized (a “miss” or “false alarm”). The

distinction between “hit” and “correct rejection” was arbitrarily assigned to one or the other of the

Cochrane & Green -- Assessing the functions underlying learning

compared models. Given the vector of correct or incorrect categorizations we calculated a sensitivity

measure for each simulation (d-prime) and a second measure, a bias term (c). We present each of these in

tables below. Note that d-prime is symmetric across the diagonal, while c refers to the bias for the row-

model and against the column-model (with c being sign-reversed across the diagonal). The last measure

we present maintains more proximity to our primary analyses, in that we do not dichotomize “winning”

and “losing” models. Instead, we used the BIC from every model fit as a predicted variable in linear

mixed-effects models in which a dichotomous model type variable (e.g., 3-parameter power function vs.

Weibull function) was a fixed effect and by-participant random intercepts and model type slopes were

included (e.g., BIC~modelType+(modelType|participantID)). The by-participant random effects were

appropriate because we included all simulations’ BICs in these analyses. We then used the T values of the

model type fixed effect as a measure of the reliability of our recovery. We recognize that with an

arbitrarily large number of simulations these T values would likewise become arbitrarily large (positively

or negatively), however, we believe that the relative magnitudes of these different T values with the

present number of simulations was very instructive regarding the robustness of our model recovery. The

tables with these T values, unlike the d-prime and c tables, are not symmetric. Instead, the row indicates

the true generative model for the simulation, and the column indicates the T value of the BIC coefficient

for that model. Positive values indicate that the true generative model tended to have lower BIC (i.e.,

“win”), whereas negative values indicate that the incorrect model tended to have the lower BIC.

In summary, these analyses corroborate the brief recovery analyses reported in the main text.

While the recovery of functional forms in texture oddball detection learning was highly inconsistent, the

recovery of dot-motion direction discrimination functional forms were somewhat more consistent.

exp3 exp4 pow3 pow4 weib

exp3 0.047 0.37 0.055 -0.01

exp4 0.047 0.129 -0.047 -0.018

pow3 0.37 0.129 0.071 0.07

pow4 0.055 -0.047 0.071 -0.021

weib -0.01 -0.018 0.07 -0.021

Table A1. Texture oddball detection recovery d-primes for all models. D-primes were calculated from the

pairwise model recovery across participants and within each simulation, and the average values are

presented here.

exp3 exp4 pow3 pow4 weib

Cochrane & Green -- Assessing the functions underlying learning

exp3 0.158 0.03 0.326 0.155

exp4 -0.158 -0.142 0.173 -0.024

pow3 -0.03 0.142 0.303 0.15

pow4 -0.326 -0.173 -0.303 -0.208

weib -0.155 0.024 -0.15 0.208

Table A2. Texture oddball detection recovery bias (c) for all models. Numbers refer to the bias for the

row-model and against the column-model (with c being sign-reversed across the diagonal).

 exp3 exp4 pow3 pow4 weib

exp3 1.229 1.011 2.124 0.878

exp4 -0.682 -0.315 1.01 -0.251

pow3 0.572 1.13 2.046 1.092

pow4 -1.966 -1.319 -1.572 -1.118

weib -0.873 0.101 -0.3 1.339

Table A3. Texture oddball detection recovery T values for all models

 exp3 exp4 pow3 pow4 weib

exp3 0.097 0.517 0.415 0.117

exp4 0.097 0.266 0.37 0.066

pow3 0.517 0.266 0.074 0.428

pow4 0.415 0.37 0.074 0.484

weib 0.117 0.066 0.428 0.484

Table A4. Dot-motion direction discrimination recovery d-primes for all models. D-primes were

calculated from the pairwise model recovery across participants and within each simulation, and the

average values are presented here.

Cochrane & Green -- Assessing the functions underlying learning

 exp3 exp4 pow3 pow4 weib

exp3 0.051 0.223 0.47 -0.026

exp4 -0.051 0.161 0.403 -0.065

pow3 -0.223 -0.161 0.236 -0.27

pow4 -0.47 -0.403 -0.236 -0.544

weib 0.026 0.065 0.27 0.544

Table A5. Dot-motion direction discrimination recovery bias (c) for all models . Numbers refer to the bias

for the row-model and against the column-model (with c being sign-reversed across the diagonal).

 exp3 exp4 pow3 pow4 weib

exp3 0.529 2.386 4.406 0.226

exp4 -0.103 1.706 3.883 -0.256

pow3 0.147 -0.121 2.161 -0.2

pow4 -1.91 -1.86 -1.737 -2.065

weib 0.259 0.441 2.07 4.592

Table A6. Dot-motion direction discrimination recovery T values for all models

