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Supplementary Material 

Supplemental methods 

Dot-motion direction discrimination 

All participants completed their blocks alone in a dimly-lit sound-attenuated room in the 

psychology lab of C.S.G. Instructions were provided in the form of a piece of paper with a schematic 

explanation of the task. This visual explanation was accompanied by a verbal explanation by an 

experimenter.  

On each day 4 blocks of 200 trials were run, with short breaks between each block. Each block 

took between 12 and 15 minutes to complete. Stimulus order was fully randomized within blocks. 

Auditory feedback was provided after each trial in the form of a high-pitched beep for a “correct” 

response and a low-pitched beep for an “incorrect” response. The first 6 blocks used a reference angle of 

40 degrees, with the last 2 blocks utilizing a reference angle of 130 degrees. Before the first and seventh 

blocks the participant completed 8 very easy trials (12 degree offset between the reference angle and the 

stimulus angle) in order to ensure understanding of the task. 

All stimuli were presented centrally, with free fixation. The difficulty manipulation used offsets 

of 4 (easy) or 8 (hard) degrees, following Wang et al. (2013). This meant that each stimulus was offset 

either 2 degrees (easy) or 4 degrees (difficulty) either clockwise or counterclockwise from the reference 

angle. 

Texture oddball detection 

All participants completed their blocks alone in a dimly-lit sound-attenuated room in the 

psychology lab of C.S.G. Instructions were provided in the form of a piece of paper with a schematic 

explanation of the task. This visual explanation was accompanied by a verbal explanation by an 

experimenter.  

On each day 4 blocks of 210 trials were run, with short breaks between each block. Each block 

took between 12 and 15 minutes to complete. Stimulus order was fully randomized within blocks. 

Auditory feedback was provided after each trial in the form of a high-pitched beep for a “correct” 

response and a low-pitched beep for an “incorrect” response. The first 6 blocks used a reference angle of 

16 degrees, with the last 2 blocks utilizing a reference angle of 106 degrees. Before the first and seventh 

blocks the participant completed 8 very easy trials (SOA of .24 and .48) in order to ensure understanding 

of the task. 
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All stimuli were presented centrally, with free fixation. The difficulty manipulation used oddball 

offsets of 16 (easy) or 30 (hard) degrees, following Ahissar & Hochstein, (1993). 

Functional Forms 

This work used TEfits version 00.77.12 (Cochrane, 2020). The formulas, from TEfits as well as 

in simplified formats, for the functional forms were as follows: 

 

3-parameter power 

(formula) 

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡) × 𝑡𝑖𝑚𝑒𝑟𝑎𝑡𝑒  

3-parameter power 

(model 

implementation) 

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * (totalTrial

Num - 0)^(log(0.25)/log(2^pRate_0 + pRate_isTransfer * isTransfer))) 

4-parameter power 

(formula) 

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡) × (𝑡𝑖𝑚𝑒 + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑖𝑚𝑒)𝑟𝑎𝑡𝑒  

×
1

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇𝑖𝑚𝑒𝑟𝑎𝑡𝑒
 

4-parameter power 

(model 

implementation) 

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * (((totalTria

lNum - 0) + pPrevTime)^(log(0.25)/log(2^(pRate_0 + pRate_isTransfer * isTransf

er)))) * (1/((pPrevTime + 1)^(log(0.25)/log(2^(pRate_0 + pRate_isTransfer * isTran

sfer)))))) 

3-parameter 

exponential (formula) 

𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒 

3-parameter 

exponential (model 

implementation) 

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 2^((1 - tota

lTrialNum)/(2^(pRate_0 + pRate_isTransfer * isTransfer)))) 

4-parameter 

exponential (formula) 

𝑠𝑡𝑎𝑟𝑡 +. 5 × (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒1 + .5 × (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒

− 𝑠𝑡𝑎𝑟𝑡)𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒2  

4-parameter 

exponential (model 

implementation) 

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 0.5 * 2^((1 

- totalTrialNum)/(2^(pRateA_0 + pRateA_isTransfer * isTransfer))) + ((pStart_0 + 

pStart_isTransfer * isTransfer) - (pAsym)) * 0.5 * 2^((1 - totalTrialNum)/(2^(pRat

eB)))) 

Weibull (formula) 𝑠𝑡𝑎𝑟𝑡 + (𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑠𝑡𝑎𝑟𝑡)(𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒)𝑠ℎ𝑎𝑝𝑒
 

Weibull (model 

implementation) 

~ ((pAsym) + ((pStart_0 + pStart_isTransfer * isTransfer) - (pAsym)) * 2^(-((total

TrialNum - 1)/(2^(pRate_0 + pRate_isTransfer * isTransfer)))^(2^pShape))) 



Cochrane & Green -- Assessing the functions underlying learning 

These formulas predicted either d-prime (in the case of dot-motion discrimination) or 75% 

accuracy threshold (in the case of texture oddball detection). Note that constants (e.g., 2 as the base of the 

exponents or the log(.25) present in the power functions) exist to make parameter values themselves 

more interpretable, and have no influence on the overall models’ goodness-of-fit. The same can be said 

for most aspects of the parameterizations; TEfits prioritizes interpretability of parameters, with some 

sacrifice to the clarity of model formulas. The generalization parameters, pStart_isTransfer and 

pStart_isTransfer, were associated with the binary (0 or 1) variable isTransfer. 

Model code 

Dot-motion direction discrimination model code (TEfits package) 

nTries <- 2E3 

nBoot <- 50 

 

  m_tef_exp3 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")], 

                      errFun='ols',changeFun='expo', covarTerms=list(pAsym=F), 

                      bootPars=list(nBoots=nBoot,bootPercent=.8), 

                      control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)), 

                      groupingVar=motDat$subID,groupingVarName = 'subID') 

   

  m_tef_exp4 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")], 

                      errFun='ols',changeFun='expo_double', covarTerms=list(pAsym=F), 

                      bootPars=list(nBoots=nBoot,bootPercent=.8), 

                      control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)), 

                      groupingVar=motDat$subID,groupingVarName = 'subID') 

   

  m_tef_pow3 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")], 

                      errFun='ols',changeFun='power', covarTerms=list(pAsym=F), 

                      bootPars=list(nBoots=nBoot,bootPercent=.8), 

                      control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)), 

                      groupingVar=motDat$subID,groupingVarName = 'subID') 

   

  m_tef_pow4 <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")], 
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                      errFun='ols',changeFun='power4', covarTerms=list(pAsym=F,pPrevTime=F), 

                      bootPars=list(nBoots=nBoot,bootPercent=.8), 

                      control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5)), 

                      groupingVar=motDat$subID,groupingVarName = 'subID') 

   

  m_tef_weib <- TEfitAll(motDat[,c('dPrime',"totalTrialNum","isTransfer")], 

                      errFun='ols',changeFun='weibull', covarTerms=list(pAsym=F), 

                      bootPars=list(nBoots=nBoot,bootPercent=.8), 

                      control = tef_control(suppressWarnings=T,nTries=nTries,y_lim=c(0,5), 

                                     shape_lim=c(-2,2)), 

                      groupingVar=motDat$subID,groupingVarName = 'subID') 

Notes: 

-  nTries indicates the number of attempted optimization runs, to minimize error with the 

optim() function in R initialized at random starting points. 

- Due to the superior performance of the Weibull function in preliminary analyses, there was 

some concern that extreme flexibility may have allowed it to take the fit trajectory to 

implausible values. As such, we restricted the Weibull shape parameter to [-2,2]; the Weibull 

function still was the best fit in many cases.  

- As explained in the main text, d-prime was bounded at [0,5] due to this being the entire range 

of plausible performance. 

 

Texture oddball detection model code (TEfits package) 

nTries <- 2E3 

nBoot <- 50 

 

  m_tef_exp3 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")], 

                     errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'), 

                   changeFun='expo',  

                    covarTerms=list(threshAsym=F), 

                   bootPars=list(nBoots=nBoot,bootPercent=.8), 

                   control = tef_control(suppressWarnings=T,nTries=nTries), 
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                   groupingVar = texDat$subID,groupingVarName = 'subID') 

 

m_tef_exp4 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")], 

                     errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'), 

                  changeFun='expo_double',  

                  covarTerms=list(threshAsym=F), 

                   bootPars=list(nBoots=nBoot,bootPercent=.8), 

                  control = tef_control(suppressWarnings=T,nTries=nTries), 

                  groupingVar = texDat$subID,groupingVarName = 'subID') 

 

m_tef_pow3 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")], 

                     errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'), 

                  changeFun='power',   

                  covarTerms=list(threshAsym=F), 

                  bootPars=list(nBoots=nBoot,bootPercent=.8), 

                  control = tef_control(suppressWarnings=T,nTries=nTries), 

                  groupingVar = texDat$subID,groupingVarName = 'subID') 

 

m_tef_pow4 <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")], 

                       errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'), 

                       changeFun='power4',   

                       covarTerms=list(threshAsym=F,pPrevTime=F), 

                       bootPars=list(nBoots=nBoot,bootPercent=.8), 

                       control = tef_control(suppressWarnings=T,nTries=nTries), 

                       groupingVar = texDat$subID,groupingVarName = 'subID') 

 

m_tef_weib <- TEfitAll(texDat[,c('Corr',"totalTrialNum","SOA","isTransfer")], 

                       errFun='bernoulli',linkFun = list(link='weibull',weibullX='SOA'), 

                       changeFun='weibull',   

                       covarTerms=list(threshAsym=F), 

                       bootPars=list(nBoots=nBoot,bootPercent=.8), 

                       control = tef_control(suppressWarnings=T,nTries=nTries), 
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                       groupingVar = texDat$subID,groupingVarName = 'subID') 

Notes: 

-  nTries indicates the number of attempted optimization runs, to minimize error with the 

optim() function in R initialized at random starting points. 

Generalization measured as a time equivalent 

An alternative measure of initial generalization magnitude was tested. By considering starting 

performance on the generalization trials, the threshold or d-prime could be mapped onto the learning 

trajectory from the initial training trials. We note, however, that this analysis discards any differences in 

learning rate between initial training and subsequent generalization. Additionally, we note that many 

participants have a “time equivalent” that would be negative, as many of participants did not demonstrate 

generalization (see Figure 7 for distributions of participants; the density of the distributions on the non-

green side of zero would all have negative time equivalents). Rather than calculating negative time 

equivalents we treated all such cases as having time equivalents of 1 (i.e., starting generalization at the 

same place as starting initial training). However, given these very non-normal distributions, we chose to 

compare difficulty-related differences using non-parametric Wilcoxon tests. Using this method, in texture 

oddball detection, the easy-condition time equivalents (median = 348) were not significantly different 

than the difficult-condition time equivalents (median = 94; Wilcoxon Z = -1.69, p = .09). Likewise, in 

dot-motion direction discrimination, the easy-condition time equivalents (median = 63) were not 

significantly different than the difficult-condition time equivalents (median = 3; Wilcoxon Z = 1.10, p = 

.271). 

Recovery Analyses 

As explained in the main text, recovery analyses can be ambiguous when simulating and 

comparing parameters from nested models. Specifically, because several of our 4-parameter models can 

take exactly the same shapes as simpler 3-parameter models, it may be impossible to recover the more 

complex models when compared against the fits from simpler models.  

With this caveat, we next report several measures of parameter recovery. Using the methods 

reported in the main text, we used 40 simulations from each model’s parameters from each participant to 

compare models. The first measure we use is mean within-simulation d-prime. That is, within each 

simulation, and when comparing two models, each participant was either correctly categorized using a 

BIC criterion (a “hit” or “correct rejection”) or incorrectly categorized (a “miss” or “false alarm”). The 

distinction between “hit” and “correct rejection” was arbitrarily assigned to one or the other of the 
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compared models. Given the vector of correct or incorrect categorizations we calculated a sensitivity 

measure for each simulation (d-prime) and a second measure, a bias term (c). We present each of these in 

tables below. Note that d-prime is symmetric across the diagonal, while c refers to the bias for the row-

model and against the column-model (with c being sign-reversed across the diagonal). The last measure 

we present maintains more proximity to our primary analyses, in that we do not dichotomize “winning” 

and “losing” models. Instead, we used the BIC from every model fit as a predicted variable in linear 

mixed-effects models in which a dichotomous model type variable (e.g., 3-parameter power function vs. 

Weibull function) was a fixed effect and by-participant random intercepts and model type slopes were 

included (e.g., BIC~modelType+(modelType|participantID)). The by-participant random effects were 

appropriate because we included all simulations’ BICs in these analyses. We then used the T values of the 

model type fixed effect as a measure of the reliability of our recovery. We recognize that with an 

arbitrarily large number of simulations these T values would likewise become arbitrarily large (positively 

or negatively), however, we believe that the relative magnitudes of these different T values with the 

present number of simulations was very instructive regarding the robustness of our model recovery. The 

tables with these T values, unlike the d-prime and c tables, are not symmetric. Instead, the row indicates 

the true generative model for the simulation, and the column indicates the T value of the BIC coefficient 

for that model. Positive values indicate that the true generative model tended to have lower BIC (i.e., 

“win”), whereas negative values indicate that the incorrect model tended to have the lower BIC. 

In summary, these analyses corroborate the brief recovery analyses reported in the main text. 

While the recovery of functional forms in texture oddball detection learning was highly inconsistent, the 

recovery of dot-motion direction discrimination functional forms were somewhat more consistent. 

 
exp3 exp4 pow3 pow4 weib 

exp3  0.047 0.37 0.055 -0.01 

exp4 0.047  0.129 -0.047 -0.018 

pow3 0.37 0.129  0.071 0.07 

pow4 0.055 -0.047 0.071  -0.021 

weib -0.01 -0.018 0.07 -0.021  
 

Table A1. Texture oddball detection recovery d-primes for all models. D-primes were calculated from the 

pairwise model recovery across participants and within each simulation, and the average values are 

presented here. 

 

 
exp3 exp4 pow3 pow4 weib 
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exp3  0.158 0.03 0.326 0.155 

exp4 -0.158  -0.142 0.173 -0.024 

pow3 -0.03 0.142  0.303 0.15 

pow4 -0.326 -0.173 -0.303  -0.208 

weib -0.155 0.024 -0.15 0.208  
 

Table A2. Texture oddball detection recovery bias (c) for all models. Numbers refer to the bias for the 

row-model and against the column-model (with c being sign-reversed across the diagonal). 

 

 exp3 exp4 pow3 pow4 weib 

exp3  1.229 1.011 2.124 0.878 

exp4 -0.682  -0.315 1.01 -0.251 

pow3 0.572 1.13  2.046 1.092 

pow4 -1.966 -1.319 -1.572  -1.118 

weib -0.873 0.101 -0.3 1.339  

 

Table A3. Texture oddball detection recovery T values for all models  

 

 exp3 exp4 pow3 pow4 weib 

exp3  0.097 0.517 0.415 0.117 

exp4 0.097  0.266 0.37 0.066 

pow3 0.517 0.266  0.074 0.428 

pow4 0.415 0.37 0.074  0.484 

weib 0.117 0.066 0.428 0.484  

 

Table A4. Dot-motion direction discrimination recovery d-primes for all models. D-primes were 

calculated from the pairwise model recovery across participants and within each simulation, and the 

average values are presented here. 
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 exp3 exp4 pow3 pow4 weib 

exp3  0.051 0.223 0.47 -0.026 

exp4 -0.051  0.161 0.403 -0.065 

pow3 -0.223 -0.161  0.236 -0.27 

pow4 -0.47 -0.403 -0.236  -0.544 

weib 0.026 0.065 0.27 0.544  

 

Table A5. Dot-motion direction discrimination recovery bias (c) for all models . Numbers refer to the bias 

for the row-model and against the column-model (with c being sign-reversed across the diagonal). 

 

 exp3 exp4 pow3 pow4 weib 

exp3  0.529 2.386 4.406 0.226 

exp4 -0.103  1.706 3.883 -0.256 

pow3 0.147 -0.121  2.161 -0.2 

pow4 -1.91 -1.86 -1.737  -2.065 

weib 0.259 0.441 2.07 4.592  

 

Table A6. Dot-motion direction discrimination recovery T values for all models  

 

 

 

 


