
Supplementary Information for

Local dendritic balance enables learning of efficient representations in networks of spiking
neurons

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Viola Priesemann.
E-mail: viola.priesemann@ds.mpg.de

This PDF file includes:

Supplementary text
Figs. S1 to S11 (not allowed for Brief Reports)
Table S1 (not allowed for Brief Reports)
SI References

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 1 of 24

Supporting Information Text

Symbols.
• X0,T = {x(t)|t ∈ {0, ..., T}}: Input signal over time to be encoded
• S0,T = {s(t)|t ∈ {0, ..., T}}: Spikes of coding neurons
• z(t): ‘Outputs’ of coding neurons, proportional to evoked post-synaptic potentials
• x̂(t) = Dz(t): Input signal reconstructed from network activity
• D: Decoder matrix of the decoder model
• σ: Variance of the decoder model
• b: Spiking probability prior of decoder model
• θ: Decoder model parameters {D, σ,b}
• F : Feedforward weights (mostly excitatory)
• W : Recurrent weights connecting to the soma (mostly inhibitory)

• W i: Recurrent weights, connecting to the dendrites to input i (mostly inhibitory)
• Tj : Soft threshold of neuron j
• ∆u: Stochasticity of neural spiking
• τ : Membrane time constant of leak
• η(·): learning rate of parameter (·)
• ρ: Target firing rate of neurons
• 1/Z(·): Normalization of probability function

A. Stochastic neural dynamics

We simulated stochastic leaky integrate and fire neurons in discrete timesteps. The model can be seen as a special case of the
spike response model with escape noise (1). In timestep t ∈ {0, 1, ..., T} with length δ neuron j spikes with a probability

pdyn (sj(t) = 1|x(t), z(t)) = pspike(uj(t)) = sig
(
uj(t)− Tj

∆u

)
, [1]

where sig(x) = [1 + exp(−x)]−1, uj(t) is the membrane potential of the neuron, Tj the firing threshold, ∆u defines how
stochastic the spiking is and sj(t) is a spike indicator, which is 1 if neuron j spiked in time step t, otherwise sj = 0. Emitted
spikes are then transmitted to other neurons and elicit post synaptic potentials (PSPs) z(t) with

zj(t) =
∑
t

j
s<t

exp
(
− t− 1− tjs

τ

)
,

which account for the leaky integration at the membrane. Here, tjs are the spike times of neuron j and τ the membrane time
constant, which was chosen the same for all neurons. Please note that, in order to ease the upcoming derivations, we changed
notation such that t is the index of the discrete timestep and τ has the unit of timesteps. The time delay of PSP arrival of the
length of one time step δ is interpreted as a finite traveling time of neural impulses over axons. The PSPs together with input
signal x(t) are then summed up linearly at the soma to give the membrane potential

uj(t) =
∑
i

Fjixi(t) +
∑
k

Wjkzk(t).

In order to model neurons that make use of dendritic balance we subdivided the somatic potentials such that they are sums of
dendritic potentials: uj(t) =

∑
i
uji (t), where the dendritic potentials u

j
i (t) = Fjixi(t)+

∑
k
W i
jkzk(t). To summarize, stochastic

neural dynamics are modeled through the spike probability pdyn (s(t)|x(t), z(t)) with neural parameters {F,W,T,∆u}.

B. Learning an efficient code with expectation maximization

With the following derivations we provide a link between learned balanced state inhibition (2) and neural sampling in graphical
models (3). Hence we provide new derivations for the network dynamics and learning rules used in (2), showing how they
implement unsupervised learning in a graphical model. Furthermore, with the dendritic balance learning scheme we will address
the linear case of the quite general problem that arises through explaining away effects, i.e. converging arrows in graphical
models: Converging arrows imply that neurons should cooperate to encode the input and lead to non-localities in update rules
when the neural dynamics are based on point neurons. In related studies this problem so far has been avoided in various ways,
which all prevent the network from explaining the input through possibly correlated neurons simultaneously and thus limit
coding versatility (3–7).

The goal of neural spiking dynamics and plasticity throughout this paper is to find an efficient spike encoding, i.e. representing
an input signal X0,T = {x(t)|t ∈ {0, ..., T}} through a collection of spikes S0,T = {s(t)|t ∈ {0, ..., T}}. X0,T can be seen here
as an episode in an organisms life, which we will assume to be distributed according to p∗(X0,T). We say that S0,T efficiently
encodes X0,T if the following two conditions are met:

2 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

A B

Fig. S1. Graphical representation of the decoder model. A We consider a decoding model where readouts of inputs x(t) (denoted here as xt) are conditioned on preceding
spikes s(t) (denoted as st). B By introducing the spike traces z(t) into the model, the model factorizes over timesteps, which is equivalent to viewing it as a hidden Markov
model (HMM) with hidden states {z(t), s(t)}.

a) X0,T can be accurately estimated from S0,T via a decoding model pθ(X0,T |S0,T).

b) The number of spikes emitted is small.

Hence we want to maximize the likelihood pθ(X0,T |S0,T) over both the decoding model parameters θ and the latent variables
S0,T sampled by the (constrained) network dynamics pdyn (s(t)|x(t), z(t)).

To show how a stochastic spiking neural network can unsupervisedly learn such an encoding, we make use of the framework
of online expectation-maximization (EM) learning (8). EM-learning can find maximum-likelihood estimates for parameters of
latent variable models (here pθ(X0,T ,S0,T)) for observed data (X0,T). For these models it typically is intractable to marginalize
out the latent variables (S0,T). In order to solve this problem one defines the log-likelihood lower bound

F∗(p̃, θ) = 〈log pθ(X0,T)−DKL(p̃(S0,T |X0,T)|pθ(S0,T |X0,T))〉p∗(X0,T)

= 〈log pθ(X0,T ,S0,T)− log p̃(S0,T |X0,T)〉p̃(S0,T |X0,T)p∗(X0,T)
, [2]

where p̃(S0,T |X0,T) can be any (tractable) probability distribution, which in our case will be given through pdyn. Finding
maximum-likelihood parameters θ can then be done by iteratively maximizing F∗(p̃, θ) with respect to p̃ (E-step) and θ
(M-step). In the E-step pθ is approximated by p̃ in order to estimate 〈log pθ(X0,T ,S0,T)〉p̃(S0,T |X0,T)p∗(X0,T) and in the M-step
this approximation is used to improve the model. This algorithm is guaranteed to converge to a local minimum, also if F∗ is
maximized only partially in every iteration, which makes it applicable to online learning.

Appealing to this theory in the following we show that: (i) Given a linear decoding model, a stochastic spiking neural
network can be connected such that it can sample an efficient encoding online. This relates model- and network-parameters.
(ii) The decoding model can be optimized online in respect to the sampled dynamics of the network. (iii) Combining (i) (the
E-step) and (ii) (the M-step) yields update rules that can be applied by a stochastic spiking neural network to optimize its
parameters in order to encode its inputs.

B.1. Online encoding by spiking neural network. Let us consider the following decoding model and prior on the spiking
probability (Fig S1)

pθ(X0,T |S0,T) =
∏
t

pθ(x(t)|z(t)) =
∏
t

Nx(t)(Dz(t),Σ)

pθ(S0,T) =
∏
t

pθ(s(t)|z(t)) =
∏
t

1
Z(b) exp

(
s(t)>b

)
with Σ = σ2I and parameters θ = {D,σ,b}. Notably this model asserts that at every time t, x(t) can be linearly decoded
from spike traces z(t) with variance σ2, where the spike traces are defined as before. Observe that the spike traces z(t) are
deterministically defined given the preceding spikes S0,t−1. Also note that with the diagonal correlation matrix Σ, the decoder
model assumes zero correlations between decoding errors. Input signals for which this assumption likely holds are for example
signals with zero pairwise correlations between dimension, e.g. signals that have been whitened.

Since the model factorizes over time given the spike traces z(t), the log-likelihood lower bound (Eq 2) can be rewritten as

F∗(pdyn, θ) =

〈∑
t

log pθ(x(t), s(t)|z(t))− log pdyn(s(t)|x(t), z(t))

〉
pdyn(S0,T |X0,T)p∗(X0,T)

= 〈log pθ(X0,T)〉p∗(X0,T)−〈∑
t

log pdyn(s(t)|x(t), z(t))− log pθ(s(t)|Xt+1,T , z(t))

〉
pdyn(S0,T |X0,T)p∗(X0,T)

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 3 of 24

Here we substituted p̃(S0,T |X0,T) =
∏
t
pdyn(s(t)|x(t), z(t)) and made use of the facts that spikes alter only the future decoding

and that they are independent of the past given z(t), i.e. pθ(s(t)|X0,T ,S0,t−1) = pθ(s(t)|Xt+1,T , z(t)).
We now perform the E-step. F∗ is approximately maximized over pdyn if pdyn(s(t)|x(t), z(t)) ≈ pθ(s(t)|Xt+1,T , z(t)) at

every time t. However, this poses two problems:
(i) pdyn depends only on x(t) while the spike probability in the model is based on future values Xt+1,T , which are not

available to the network.
(ii) In order to compute pθ(s(t)|Xt+1,T , z(t)) =

∑
St+1,T

pθ(St,T |Xt+1,T , z(t)) future spikes have to be marginalized out,
which is intractable.

For the purpose of this paper we introduced simple approximations that solve these problems and work well in practice for
our inputs. Specifically we assumed input- and network activity to be approximately constant over time. Hence all future
inputs x(t′) ∈ Xt+1,T were assumed to be known to be x(t′) = x(t). Future network activity (independent of the current spike
s(t)) was assumed to be well approximated by a single trajectory, where neural outputs z(t) were constant. With this we can
compute

∑
St+1,T

pθ(s(t)|Xt+1,T , z(t),St+1,T)pθ(St+1,T |Xt+1,T , z(t))

≈
T∏
t′=t

pθ

(
s(t)|x(t′) = x(t), z(t′) = z(t) + s(t) exp

(
− t
′ − 1− t

τ

))

= 1
Z(θ,x) exp

(
s(t)>b

) T∏
t′=t+1

exp
(

z(t′)>

σ2 [D>x(t′)− 1
2D
>Dz(t′)]

)

= 1
Z(θ,x) exp

(
s(t)>b

) T∏
t′=t+1

exp

((
z(t) + s(t) exp

(
− t
′−1−t
τ

))>
σ2

[
D>x(t)−

− 1
2D
>D

(
z(t) + s(t) exp

(
− t
′ − 1− t

τ

))])
= 1
Z(θ,x, z) exp

(
s(t)>

[
b + τ

σ2D
>x(t)− τ

σ2D
>D
(

z(t) + 1
4s(t)

)])
= 1
Z(θ,x, z) exp

(
s(t)>

[
b + τ

σ2D
>x(t)− τ

σ2D
>Dz(t)− 1

4
τ

σ2 diag(D>D)
])

where we approximated
∑T

t′=t+1 exp(− t
′−1−t
τ

) ≈ τ (that is τ and T large) and the last equality follows if timesteps are
sufficiently small such that only one neuron spikes per timestep. Comparing with the network dynamics (Eq 1) from this we
can conclude that a network that performs approximate online sampling from pθ(S0,T |X0,T) has parameters

F = D>

W = −D>D

Tj = 1
4Wjj −

σ2

τ
bj

∆u = σ2

τ

[3]

These results are similar to those yielded by a greedy spike encoding scheme (2). Please note that the sampling could be
improved by using advanced sampling schemes, such as rejection sampling (6).

B.2. Online learning of an optimal decoder. As we have shown, the network dynamics implement an approximation of the
E-step if the network parameters are chosen correctly. We will now use these samples produced by the network to incrementally
improve the parameters of the decoding model in the M-step.

Recall that in the M-step we want to maximize under θ〈∑
t

log pθ(x(t), s(t)|z(t))

〉
pdyn(S0,T |X0,T)p∗(X0,T)

.

Updates of the decoder model parameters should thus follow the gradient

∆θ = η̃θ
∂F∗

∂θ
= η̃θ

〈∑
t

∂

∂θ
log pθ(x(t), s(t)|z(t))

〉
pdyn(S0,T |X0,T)p∗(X0,T)

4 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

In this paper we’re only interested in the decoder weights Dij from neuron j to input i, where the derivation yields

∆Dij = η̃D

〈∑
t

σ−2zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉
pdyn(S0,T |X0,T)p∗(X0,T)

Here, η̃D is the update step size and σ2 the variance of the decoder model. Note that in the following we will drop the
dependence of the learning rate on σ2, which has its motivation in covariant optimization (9). In covariant optimization, the
gradient is multiplied by the inverse curvature of the loss function, because step size should be decreased when the curvature of
the loss function is high. Since the curvature of the likelihood is proportional to the inverse variance, the variance drops out to
yield a covariant gradient. This yields the update rule

∆Dij = η̃D

〈∑
t

zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉
pdyn(S0,T |X0,T)p∗(X0,T)

B.2.1. Online approximation. If many episodes X0,T as sampled from p∗(X0,T) are presented in succession and spikes are sampled
as outlined above, the average over samples from pdyn can be replaced by an average over time〈∑

t

·

〉
pdyn(S0,T |X0,T)p∗(X0,T)

≈
∑
t

〈·〉t .

If the update rules are performed every timestep this lets us rewrite them as

δDij = ηDzj(t)

(
xi(t)−

∑
k

Dikzk(t)

)
[4]

This requires, however, that the learning rate ηD is sufficiently small such that changes in Dij are negligible in a sufficiently
long time window T ′. In that case, summing the equation over time window T ′ yields

T ′∑
t=0

δDij = ηDT
′

〈
zj(t)

(
xi(t)−

∑
k

Dikzk(t)

)〉T ′
t=0

T ′→T
≈ ∆Dij ,

where the learning rates are related via η̃D = ηDT
′. A more refined statement can be made by rewriting the update equation as

∆Dij = η̃D

(
〈zj(t)xi(t)〉pdyn(S0,T |X0,T)p∗(X0,T) −

∑
k

Dik 〈zj(t)zk(t)〉pdyn(S0,T |X0,T)p∗(X0,T)

)
This makes explicit that the only information required to compute the gradient of the decoder weights are the correlations
between neural outputs and inputs and in between neural outputs over the input sequences. Thus in practice, the learning
rate ηD is ideally chosen as large as possible to allow fast learning, but also sufficiently small such that weight updates are
performed with respect to a time window that provides a good estimate of correlations under the whole sampled spike trains.

B.3. Online learning of network parameters. So far we showed that the parameters of a network that samples from a decoder
model are directly connected to the parameters of the model. We also showed how the decoder weights have to be updated
such that they maximize the model likelihood over the generated samples. We will now combine these two results to find
update rules for neural parameters directly, that can be used by neurons to learn an efficient encoding without supervision
online. To this end we will first show how an approximation to the previously derived gradients can be implemented by regular
stochastic LIF neurons. In a second step we will show how a better approximation can be realized by neurons with dendritic
compartments. The central insight for all derivations will be that learning an E-I balance on membrane potentials corresponds
to the learning of a decoder to the excitatory inputs times a transformation matrix that brings them into the space of the
membrane potentials.

B.3.1. Somatic balance approximation.

Feedforward weights From the equality F = D> (Eq 3) derived earlier and the update rule for D (Eq 4) we directly arive at

δFji = ηF zj(t)

(
xi(t)−

∑
k

Fkizk(t)

)
We follow previous approaches (2) and omit contributions to the decoding

∑
k
Fkizk(t) that are not available for the neuron,

which is equivalent to assuming that neural spiking in the population is uncorrelated ∀j 6= k : 〈zj(t)zk(t)〉t ≈ 0. This yields the
regularized Hebbian rule

δFji = ηF zj(t) (xi(t)− Fjizj(t)) [5]

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 5 of 24

Recurrent weights This rule will follow the optimal decoder gradient if spikes are indeed uncorrelated. However, if this is not
the case the solution will be suboptimal and furthermore the previously derived recurrent weights W = −D>D together with
the suboptimal weights F does not enable a reasonable encoding anymore. Both problems can be addressed by observing that
for the optimal membrane potential we derived

uopt(t) = D>x(t)−D>Dz(t) = D>(x(t)−Dz(t)),

i.e. the potentials are proportional to the decoding error. This can be approximately guaranteed even if the feedforward weights
are suboptimal (but not zero) by setting W = −FD, since then

u(t) = Fx(t)− FDz(t) = F (x(t)−Dz(t)) ≈∝ uopt(t).

To make sure that neurons adapt their encoding for an optimal decoder, recurrent weights will adapt along the gradient of
decoder weights. For fixed encoder weights F this yields

δWjk = −
∑
i

FjiδDik

= −ηW zk(t)

(∑
i

Fjixi(t)−
∑
i,l

FjiDilzl(t)

)

= −ηW zk(t)

(∑
i

Fjixi(t) +
∑
l

Wjlzl(t)

)
= −ηW zk(t)uj(t)

[6]

This shows that through an E-I balance, this rule for W self-consistently finds the correct decoder ‘inside’ of the recurrent
weights, and hence allows the projection of the right decoding error x−Dz. Thereby recurrent connections ensure a reason-
able encoding even if feedforward weights are not learned optimally. Since in the equation above Fji is assumed constant,
we chose the learning rate ηW 2-4 times larger than ηF . In simulations we found that recurrent weights that evolve un-
der Eq 6 indeed converged toW = −FD, where D is the optimal decoder weights obtained under the non-local update rule Eq 4 .

B.3.2. Learning encoder weights with dendritic balance . In the following we devise examples for local plasticity rules for feedforward
inputs that follow the correct gradient of the likelihood lower bound. Locality requires that the decoding of other neurons is
made available at the synapse, which can then be used to find the correct gradient. We argue that this can be mediated by
dendritic recurrent connections W i that target dendrites where the feedforward input i has formed a synapse. Due to strong
attenuation between dendritic compartments, the membrane potential uij in the vicinity of synapse i on that dendrite only
integrates inputs that are present locally, i.e.

uij(t) = Fjixi(t)︸ ︷︷ ︸
feedforward input

+
∑

k
W i
jkzk(t)︸ ︷︷ ︸

recurrent input

.
[7]

We then assume a regime where currents from the dendrites are summed linearly, such that the total membrane potential
at the soma is given by uj(t) =

∑
i
uij(t). Similar to recurrent somatic connections, we will show that recurrent dendritic

connections can locally learn an optimal decoding of neural PSPs z by enforcing dendritic balance of feedforward and recurrent
inputs. The central feature of this approach is that feedforward and recurrent connections both use the dendritic potential for
learning, which requires their cooperation. We here show three possible mechanisms that realize this and yield very similar
behaviour to the analytical solution (Fig S2, S3).

Slow feedforward adaptation One possibility to ensure the cooperation of feedforward and recurrent weights is to separate
the timescales on which they are adapting. To that end we make the optimal ansatz for recurrent weights similar to before
W i
jk = −FjiDik. Then, changing recurrent weights in the direction of the decoder gradient of Eq 4 yields

δW i
jk =− FjiδDik

=− ηW zk(t)(Fjixi(t)−
∑

l
FjiDilzl(t))

=− ηW zk(t)(Fjixi(t) +
∑

l
W i
jlzl(t))

=− ηW zk(t)uij(t).

where we again assumed that changes in feedforward weights are slow and can be neglected, and ηW = ηD. We conclude that
enforcing dendritic balance by recurrent plasticity is equivalent to locally optimizing a decoder Dik = −W i

jk/Fji.
The correct gradient of the decoder weights can also be calculated locally, but it can’t be applied to the feedforward weights

directly since this would contradict the previously made assumption of slow changes in feedforward weights. However, it is

6 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

possible to locally integrate the correct gradient and use this to adapt feedforward weights slowly, with a delay. To this end we
introduce the local integration variable Iji = FjiDij , which adapts according to the decoder gradient times Fji

δIji =ηIFjizj(t)
(
xi(t)−

∑
k
Dikzk(t)

)
=ηIzj(t)uij(t),

[8]

with ηI = ηD. Fji then can slowly follow Dij via

δFji =ηF (Iji/Fji − Fji),

with ηF � ηD. Note that for Fji = 0 the gradient for Fji is not defined. In this case the learning process could be kickstarted
via simple Hebbian learning on Fji. Note also that the equation W i

jk = −FjiDik has to hold at the start of learning, which can
be guaranteed by simply choosing W i

jk = Fji = 0. To summarize, slow feedforward adaptation leads to neural parameters
W i
jk = −FjiDik and Fji = Dij . This shows that feedforward synapses slowly can evolve to minimize the decoder error along

its gradient using only local information.

Simultaneous adaptation of feedforward and recurrent weights In principle it would also be possible to adapt feedforward and
recurrent weights simultaneously without a separation of timescales. However, calculating the gradient for the derived recurrent
weights is locally not feasible, since we find

δW i
jk =−DjiδDik − δDjiDik

=− ηD(zk(t)uij(t) + zj(t)uik(t)).

Empirically we found that the contralateral contributions zj(t)uik(t) to the gradient can be approximated by the accessible
contributions zk(t)uij(t). We thus approximate 〈zj(t)uik(t)〉t ≈ 〈zk(t)uij(t)〉t. While this equation does not hold for all i, j, k,
we still find that the resulting learned contributions to the dendritic potentials have the correct magnitude, hence enabling
feedforward learning. The gradient for the recurrent weights now are

δW i
jk =− ηW zk(t)uij(t),

where ηW = 2ηD.
Assuming the correct recurrent weights W i

jk = −DjiDki we can find the decoded population encoding locally at the dendrite.
From the self-consistency Fji = Dij and Eq 7 we have the relation∑

k

Djkzk(t) =
Fjixi(t)− uij(t)

Fji
.

With this we can implement the learning of feedforward weights in way that highlights its similarity to previous approaches
(Eq 5)

δFji = ηF zj(t)
(
xi(t)−

Fjixi(t)− uij(t)
Fji

)
,

i.e. the rule is a regularized Hebbian plasticity rule. Again, for very small Fji the regularization becomes unstable, but can be
left away (since it should go to zero) leaving a purely Hebbian rule. For the derivation we used ηF = ηD, which implies that we
should choose ηW ≈ 2ηF .

In simulations we verified that the approximations we made for this learning scheme are adequate and yield feed forward
weights for which Fji = Dij holds with high accuracy. Note that the network found by the presented learning scheme only
corresponds to the decoding model if ηW ≈ 2ηF . However, if the recurrent learning is faster this only results in a rescaling of
feedforward weights by a factor of 2ηF /ηW , since their adaptation is too slow by this factor. This means that in this case the
“correct” dynamics of the network can be recovered via a rescaling of all weights, or equivalently, with firing rate adaptation a
change in the stochasticity of spiking ∆u by a factor of 2ηF /ηW .

Learning of feedforward and recurrent weights via the weight decay trick For both learning schemes we have presented so far, the
relation of feedforward and recurrent weights and their learning rates η(·) are critical for learning, as changes in recurrent
weights directly impact how feedforward weights are learned and vice versa. This can become problematic, if the recurrent
weights are not initialized as W i

jk = −FjiFki or if for some reason the match of feedforward and recurrent weights is disturbed
during learning. This problematic co-dependence of the learning rules can be avoided via a simple trick, which we will call the
weight decay trick. To this end we introduce a small weight decay with rate λj on the decoder weights

δDij = ηDzj(t)

(
xi(t)−

∑
k

Dikzk(t)

)
− λjDij . [9]

By doing so, we can readily derive an implicit equation for the fixed point of this update rule, which is

D∗ij =

〈
λ−1
j zj(t)

(
xi(t)−

∑
k

D∗ikzk(t)

)〉
t

=
〈
λ−1
j F−1

ji zj(t)u
i
j(t)
〉
t
.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 7 of 24

This equation holds if recurrent weights were learned to approximately equalW i
jk = −FjiD∗ik. This can be achieved by updating

recurrent weights until convergence with

δW i
jk = −FjiδDik

= −ηW
(
zk(t)uij(t)− λkW i

jk

)
.

Now the optimal feedforward weights can be learned by slowly tracking the fixed point D∗ij , which can be computed locally

δFji = ηFλj
(
D∗ij − Fji

)
≈ ηF

(
F−1
ji zj(t)u

i
j(t)− λjFji

)
.

Here the pre-factor λj normalizes the learning speed. Interestingly, this learning rule is simply the gradient for feedforward
weights, as calculated before, with additional weight-decay similar to the recurrent learning rule. The difference of this learning
scheme to the previous two learning schemes is that inhibition will not perfectly balance excitation, but the balance will be
offset by a small amount. Feedforward learning then relies on this small mismatch between excitation and inhibition to find a
good encoding and thereby avoids the problematic co-dependence of feedforward and recurrent learning.

How does this learning scheme, which evidently relies on a different decoder update, relate to the previously derived network
dynamics corresponding to the optimal decoder? A valid concern would be that an offset in the E-I balance could lead to
elevated or reduced spiking rates. The answer is that there exists a close relation between the weight decay λj and the spiking
prior bj , which helps to ensure optimal spiking. More technically, the weight decay of the decoder can be seen as a constraint
on the L2-norm of decoder weights, to compensate for a fixed, sub-optimal threshold. To understand this, we start with the
equation for the optimal threshold Tj (Eq 3). If the threshold Tj is fixed to an arbitrary value, this equation directly implies a
length constraint on the decoder

Tj = −1
4
∑
i

D2
ij −

σ2

τ
bj

⇔
∑
i

D2
ij = −4Tj −

4σ2

τ
bj

def= aj .

This means that neurons can not only fire optimally for a given prior bj by changing their thresholds in accordance with the
strength of incoming connections, but also by changing the overall connection strength while keeping the threshold fixed. This
constraint can be included into the optimization by augmenting the decoder loss (containing all relevant contributions of the
likelihood, Eq 2) via Lagrangian optimization

L(D) = 1
2
〈
||x(t)−Dz(t)||2

〉
t

+
∑
j

λj
1
2
(
||Dj ||2 − aj

)
.

From this loss the decoder update with weight decay (Eq 9) directly arises via gradient descent. Here, the Lagrangian multipliers
λj correspond to specific firing priors of neurons bj for some fixed threshold Tj . It is therefore possible to obtain correct network
dynamics by either adapting λj according to δλj ∝ − ∂L

∂λj
, or by simply treating λj as a parameter of the model instead of bj .

It is therefore also evident that changes in network dynamics in comparison to the analytical network (Eq 3) are minimal as
long as the λj are small. Especially with additional rapid firing rate adaptation, which we are using in our simulations, the
difference to the analytical solution is negligible for small λj , as here the impact of λj on the firing rate is ‘overwritten’ by the
rapidly adapting threshold.

B.3.3. Rapid firing rate adaptation. In the Bayesian framework Habenschuss and colleagues have shown that a rapid rate adaptation
can be interpreted as a constraint on the variational approximation in the E-step (10). For the resulting constrained optimization
formally a Lagrange multiplier is introduced which ‘overwrites’ the analytic threshold Tj = 1

4Wjj − σ2τ−1bj . We will not make
a notational difference between the two thresholds here. The fixed firing rate is enforced by adapting the threshold Tj such
that neurons are firing with a target firing rate ρ.

δTj = ηT (sj − ρ δ)

Here, ρ δ is the mean number of spikes in a time window of size δ if a neuron would spike with rate ρ and sj is a spike indicator
which is 1 if zj spiked in the last time δ, otherwise sj = 0. Since this is a constraint that is applied in the E-step, the learning
rate ηT should be large.

8 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

B.3.4. Pruning recurrent weights. In the proposed learning schemes the number of recurrent connections grows very fast with
network and input size (# of inh. conn. = Nx ×N2

z). We here propose a principle by which recurrent connections that provide
little contribution to neural learning can be pruned away (Please note that the following principle only considers learning; for
correct dynamics it might be necessary to keep additional somatic weights that ensure efficient spiking). To identify these
weights we again look at the learning rule of the proposed slow feedforward weight adaptation scheme (Eq 8)

δIji =ηIzj(t)uij(t)

=ηIzj(t)
(
Fjixi(t) +

∑
k
W i
jkzk(t)

)
.

Here, recurrent connections that provide no systematic contribution to the gradient can be left away. In particular, those
are connections W i

jk for which 〈zj(t)W i
jkzk(t)〉t ≈ 0. In other words, only large weights matter that connect neurons with

correlated activities. Hence, the number of required weights for learning depends primarily on the sizes of neural receptive
fields (as W i

jk ≈ −FjiFki) and the number of correlated coding neurons and not the size of the network and input.
Based on this observation, one possibility to prune weights is for example to remove a certain fraction of the weights and

leaving only the weights with the largest |〈zj(t)W i
jkzk(t)〉t|. In biological neurons potential connections W i

jk could continuously
be probed and only be stably formed if their contribution is sizeable. For the bar task, we demonstrated that this allows us to
prune a very large fraction of recurrent weights without compromising performance (Fig S9).

It is important to note that in no case feedforward weights should remain un-regularized, that is, the learning rule is
purely Hebbian, as this would lead to unbounded growth of weights. The best solution to this problem is to always keep
self-contributions to the gradient W i

jjzj ≈ −FijFijzj . This results in the same regularization as it is used in the somatic
balance model and can arguably be always computed locally.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 9 of 24

C. Relation to previous studies of representation learning

C.1. Comparison to other Hebbian-like learning rules. The Hebbian-like learning rule used in the somatic balance model is
part of a group of Hebbian-like learning rules that have been used in the past to model representation learning in recurrent
populations of neurons. We here present a (non-exhaustive) overview over such rules that learn feedforward weights Fji (Table
S1). All these rules can be seen as successors of the well known Oja’s rule (11), which can be written in the form

∆Fji ∝ zj(xi − Fjizj),

where xi is some input and zj =
∑

i
Fjixi is the activity of a (linear) neuron. Specifically, all rules we will present can be

written in the more general form
∆Fji ∝ post× (pre− f(Fji)× post),

where "post" and "pre" denote aspects of post- and presynaptic activity, respectively, and f(·) is some function of the weight.
We will write sj ∈ {0, 1} to denote a binary spike indicator and zj to denote some form of analog postsynaptic activity.

Note that by itself Oja’s rule always extracts the largest principal component of the input data xi. This means that in order
to learn non-redundant representations in a network, some form of recurrent inhibitory coupling is required. Importantly, as we
have argued, in order to be generally applicable it requires inhibition that is nearly instantaneous and therefore biologically
implausible. Consequently, most models we present here make use of some form of instantaneous (or implausible) inhibition.
Some of the models get around this constraint by other means, e.g. by forcing zero correlations in an extremely slow-firing
regime (12), or have only been tested for very simple scenarios (13).

Table S1. List of related papers modeling representation learning with Hebbian-like plasticity.

Reference Rule Comment
Foeldiak (1990) (14) ∆Fji ∝ sj(xi − Fjisj) This paper uses binary neurons, where outputs sj are

determined by an optimization scheme.
Kung et al (1990) (15) ∆Fji ∝ zj(xi − Fjizj) This paper uses linear neurons, where outputs zj are

determined in a strictly sequential manner.
Zylberg et al (2011) (12) ∆Fji ∝ zj(xi − Fjizj) zj is a spike-counter over a certain time window. This

paper uses LIF neurons with recurrent inhibition in a
slow-firing regime.

Kappel et al (2014) (6) (similarly
(5))

∆Fji ∝ sj(xi − eFjisj) To achieve "canonical" form we multiplied the rule with
eFji , changing the learning speed, but not the fixed
point. This paper uses stochastic spiking neurons in a
winner-take-all circuit.

Bill et al (2015) (4) ∆Fji ∝ sj(xi − sig(Fji + F0i)sj) sig(·) is the logistic function and F0i is a baseline con-
stant. This paper uses stochastic spiking neurons in a
winner-take-all circuit.

Bahroun et al (2017) (16) ∆Fji ∝ [
∑t

t′
zj(t′)2]−1zj(xi − Fjizj) Learning speed is regulated with a pre-factor. This pa-

per uses analog neurons, where outputs zj are the re-
sults of an optimization scheme.

Pehlevan et al (2017) (17) ∆Fji ∝ [
∑t

t′
zj(t′)2]−1zj(xi − Fjizj) This paper proposes a network with very similar be-

havior to (16), but performs non-negative source sepa-
ration.

Jonke et al (2017) (13) ∆Fji ∝ sj(xi − sig(γFji)sj) sig(·) is the logistic function and γ is a scaling param-
eter. This paper uses stochastic spiking neurons in a
k-winner-take-all circuit.

Tavanei et al (2018) (18) ∆Fji ∝ sj(xi − (1− λ)Fjisj) λ is a sparsity factor. This paper uses spiking neurons
in a winner-take-all circuit.

Brendel et al (2020) (2) ∆Fji ∝ sj(xi − αFjisj) α is some regularization factor. This paper uses LIF
neurons with recurrent inhibition and noisy potentials,
resulting in a model that is practically identical to ours.
Additionally, only one neuron is allowed to spike per
time-bin.

This paper ∆Fji ∝ zj(xi − Fjizj) This paper uses stochastic LIF neurons with recurrent
inhibition and spike traces zj .

10 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

C.2. Comparison to Brendel et al (2020). Our neural model and the model used by Brendel et al (2) are practically identical.
Both models employ stochastic leaky integrate-and-fire neurons, which can be seen as instances of the spike response model
with escape noise (19). Brendel et al employ a formulation with partial differential equations, while we use a formulation
where the shape of PSP’s is solved. Brendel et al add stochasticity to neural firing by adding Gaussian noise to the membrane
potential, while we directly write down a probability function for spiking. Overall, this results in a stochastic neuron that is
approximately equal to our probabilistic formulation (see e.g. (19), chapter 9.4).

The goal of coding is the same in both models. Hence, the feedforward learning rule of the somatic balance model is also,
for all practical purposes in this paper, the same as it has been used by Brendel et al, which reads

δFji ∝ sj(t) (xi(t)− αFjisj(t)) , [10]

where α is some regularization factor. Notably, this rule only updates weights on spike-times, whereas our Hebbian-like rule
(Eq 5) also incorporates non-spike-times into the update (the non-spike-times are an essential contribution in the dendritic
balance learning scheme). For constant xi(t), which we use in our simulations, our rule can be integrated over time for a single
spike zj(t) = sj(ts) exp

(
− t−ts

τ

)
at time ts:

ηF

∫ ∞
t=ts

sj(ts) exp
(
− t− ts

τ

)(
xi(t)− Fjisj(ts) exp

(
− t− ts

τ

))
dt

= ηF τsj(ts) (xi(t)− 0.5Fjisj(ts)) .
[11]

Hence, when spikes are rare events our rule is the same as the rule by Brendel et al, with α = 0.5 and the learning rate ηF
chosen appropriately. For fast spiking neurons the regularization is slightly different, since past spikes are taken into account
when regularizing the weight. However, the overall learning outcome will be very similar since this only slightly changes the
magnitude of the weight-vector. To verify this we adapted their implementation of the network (20), and found that the major
effects we report in Fig 5F-H (SB) are preserved.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 11 of 24

D. Datasets

MNIST The standard MNIST database of handwritten digits was used (21). Images were scaled down from 28× 28 to 16× 16
pixels. No further preprocessing was applied.

Correlated bars See description in Fig 4A. Pixels where bars are displayed (also in the case of overlap) were set to the value
1.0, pixels without bars were set to 0.0.

Natural scenes Images for natural scenes were taken from (22). A simple preprocessing was applied to ensure that they
can be modeled by spiking neurons. Importantly we required that input is always positive. Every image χ in the database
was whitened. This can be seen as an approximation of retinal on/off-cell preprocessing, where one on-cell and one off-cell
with overlapping fields are lumped together in a single value χi, which can be positive or negative. We separated every
value χi into two values x′2i = χi and x′2i+1 = −χi. We then applied a continuous nonlinear activation function to ensure
that activations are positive and bimodally distributed (i.e. mostly close to either 0.0 or 1.0): xi = sig(3.2(x′i − 0.8)), where
sig(x) = 1/(1 + exp (−x)). For the display of learned weights we merge corresponding values again and display x2i − x2i+1.

Speech The speech data-set is the same as used in (2) and was taken from (20). The speech signal was presented in a spectral
decomposition with 25 frequency channels, sampled at 200Hz with linear interpolation between data-points. The signal was
spatially whitened using Cholesky whitening. After whitening we applied the same splitting and rectification procedure as for
the natural scenes input signals.

In contrast to our results in Fig 5F-H, the original task in (2) uses the unwhitened signal directly as input. For this
unwhitened input, (2) show that the somatic balance model requires a learning rule that - additionally to the Hebbian-like
learning - performs spatial whitening to remove pairwise correlations in the signal. To check that our pre-processing does not
significantly alter the results, we also performed simulations without whitening and using this alternative learning rule as used
by (2) (Fig S11), and observed similar behavior as in Fig 5F-H.

E. Parameters

For all tasks parameters were tuned to ensure that networks operate well. DB denotes networks where the analytic so-
lution given the decoder was used for network dynamics. DB slow are networks with slow feedforward adaptation, DB
simultaneous are networks with parallel adaptation of feedforward and recurrent weights. SB are networks learning with
somatic balance. When the parameter η∆u is present the stochasticity of spiking was annealed starting from 1.0 with rate
η∆u. Learning rates ηθ are given in units of ms−1. Networks in all simulations were initialized with zero initial weights,
except for Figs 3 and 5C-E, where feedforward weights were initialized as Fji = exp(max(0, 0.3 ·rji−0.2))−1 with rji ∼ N (0, 1).

MNIST (Fig 3, 5)

Parameter DB decay SB
δ 0.1ms / 0.3ms 0.1ms / 0.3ms
τ 10ms 10ms
∆u 0.1 0.1
ρ 15s−1 15s−1

λ 0.03 -
ηT 7.0 · 10−3 7.0 · 10−3

ηF 1.5 · 10−5 4.0 · 10−6

ηW 3.0 · 10−5 3.0 · 10−5

ηD 1.0 · 10−6 1.0 · 10−6

MNIST (Fig S2)

Parameter DB DB simultaneous DB slow DB decay SB
δ 0.1ms 0.1ms 0.1ms 0.1ms 0.1ms
τ 10ms 10ms 10ms 10ms 10ms
∆u 0.1 0.1 0.1 0.1 0.1
ρ 20s−1 20s−1 20s−1 20s−1 20s−1

λ - - - 0.005 -
ηT 5.0 · 10−3 3.0 · 10−3 5.0 · 10−4 5.0 · 10−4 5.0 · 10−3

ηF 5.0 · 10−6 3.0 · 10−6 4.0 · 10−7 2.0 · 10−6 5.0 · 10−6

ηI - - 4.0 · 10−5 -
ηW - 6.0 · 10−6 4.0 · 10−5 6.0 · 10−5 1.0 · 10−5

ηD 5.0 · 10−6 3.0 · 10−6 5.0 · 10−6 5.0 · 10−6 5.0 · 10−6

12 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Correlated bars (Fig 4, S3, S9)

Parameter DB DB simultaneous DB slow DB decay SB
δ 1.0ms 1.0ms 1.0ms 1.0ms 1.0ms
τ 10ms 10ms 10ms 10ms 10ms
∆u∗ 0.1 0.1 0.1 0.1 0.1
η∆u 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8 7.0 · 10−8

ρ 15s−1 15s−1 15s−1 15s−1 15s−1

λ - - - 0.005 -
ηT 1.0 · 10−2 1.0 · 10−2 5.0 · 10−2 5.0 · 10−2 1.0 · 10−2

ηF 5.0 · 10−5 5.0 · 10−5 1.0 · 10−7 2.0 · 10−5 5.0 · 10−5

ηI - - 5.0 · 10−5 - -
ηW - 1.0 · 10−4 5.0 · 10−5 1.0 · 10−4 1.0 · 10−4

ηD 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5 5.0 · 10−5

Natural scenes (Fig 4, 5, S4, S5, S6, S7, S8, S10)

Parameter DB SB
δ 0.2ms 0.2ms
τ 10ms 10ms
∆u∗ 0.13 0.13
η∆u 7.0 · 10−8 7.0 · 10−8

ρ · # neurons 1000s−1 1000s−1

ηT until t = 6000s 6.0 · 10−3 6.0 · 10−3

ηT until t =∞ 4.0 · 10−3 4.0 · 10−3

ηF until t = 6000s 4.0 · 10−5 4.0 · 10−5

ηF until t =∞ 4.0 · 10−5 3.0 · 10−5

ηW until t = 6000s - 10.0 · 10−5

ηW until t =∞ - 7.0 · 10−5

ηD until t = 6000s 4.0 · 10−5 4.0 · 10−5

ηD until t =∞ 3.0 · 10−5 3.0 · 10−5

Speech (Fig 5, S11)

Parameter DB SB
δ 0.05ms 0.05ms
τ 10ms 10ms
∆u 0.05 0.05
ρ 5s−1 5s−1

ηT 1.4 · 10−2 1.4 · 10−2

ηF 2.1 · 10−4 2.1 · 10−4

ηW - 5.6 · 10−4

ηD 2.1 · 10−4 2.1 · 10−4

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 13 of 24

References

1. W Gerstner, WM Kistler, Spiking neuron models: Single neurons, populations, plasticity. (Cambridge university press),
(2002).

2. W Brendel, R Bourdoukan, P Vertechi, CK Machens, S Denéve, Learning to represent signals spike by spike. PLoS
computational biology 16, e1007692 (2020).

3. B Nessler, M Pfeiffer, L Buesing, W Maass, Bayesian Computation Emerges in Generic Cortical Microcircuits through
Spike-Timing-Dependent Plasticity. PLoS Comput. Biol. 9, e1003037 (2013).

4. J Bill, et al., Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local
Lateral Inhibition. PLOS ONE 10, e0134356 (2015).

5. B Nessler, M Pfeiffer, W Maass, Stdp enables spiking neurons to detect hidden causes of their inputs in Advances in
neural information processing systems. pp. 1357–1365 (2009).

6. D Kappel, B Nessler, W Maass, STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov
Model Learning. PLoS Comput. Biol. 10, e1003511 (2014).

7. S Deneve, Bayesian Spiking Neurons II: Learning. Neural Comput. 20, 118–145 (2007).
8. RM Neal, GE Hinton, A view of the em algorithm that justifies incremental, sparse, and other variants in Learning in

graphical models. (Springer), pp. 355–368 (1998).
9. DJ MacKay, Information theory, inference and learning algorithms. (Cambridge university press), (2003).

10. S Habenschuss, J Bill, B Nessler, Homeostatic plasticity in bayesian spiking networks as expectation maximization with
posterior constraints in Advances in neural information processing systems. pp. 773–781 (2012).

11. E Oja, Simplified neuron model as a principal component analyzer. J. mathematical biology 15, 267–273 (1982).
12. J Zylberberg, JT Murphy, MR DeWeese, A sparse coding model with synaptically local plasticity and spiking neurons can

account for the diverse shapes of v1 simple cell receptive fields. PLoS Comput. Biol 7, e1002250 (2011).
13. Z Jonke, R Legenstein, S Habenschuss, W Maass, Feedback inhibition shapes emergent computational properties of cortical

microcircuit motifs. J. Neurosci. 37, 8511–8523 (2017).
14. P Földiak, Forming sparse representations by local anti-hebbian learning. Biol. cybernetics 64, 165–170 (1990).
15. SY Kung, KI Diamantaras, A neural network learning algorithm for adaptive principal component extraction (apex) in

International Conference on Acoustics, Speech, and Signal Processing. (IEEE), pp. 861–864 (1990).
16. Y Bahroun, A Soltoggio, Online representation learning with single and multi-layer hebbian networks for image classification

in International Conference on Artificial Neural Networks. (Springer), pp. 354–363 (2017).
17. C Pehlevan, S Mohan, DB Chklovskii, Blind nonnegative source separation using biological neural networks. Neural

computation 29, 2925–2954 (2017).
18. A Tavanaei, T Masquelier, A Maida, Representation learning using event-based stdp. Neural Networks 105, 294–303

(2018).
19. W Gerstner, WM Kistler, R Naud, L Paninski, Neuronal dynamics: From single neurons to networks and models of

cognition. (Cambridge University Press), (2014).
20. C Machens, Github - machenslab/spikes (https://github.com/machenslab/spikes) (2020) Online; accessed 2021-02-20.
21. Y LeCun, C Cortes, C Burges, Mnist handwritten digit database (http://yann.lecun.com/exdb/mnist) (2010) Online; accessed

2020-05-20.
22. B Olshausen, Sparse coding simulation software (http://www.rctn.org/bruno/sparsenet/) (1996) Online; accessed 2020-05-20.

14 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

https://github.com/machenslab/spikes
http://yann.lecun.com/exdb/mnist
http://www.rctn.org/bruno/sparsenet/

Fig. S2. Comparison of the different learning schemes on the MNIST task. All learning algorithms reach a very similar performance. The dendritic balance learning schemes
with slow feedforward adaptation (DB slow) and the weight decay trick (DB decay) converge somewhat slower than dendritic balance with simultaneous feedforward and
recurrent adaptation (DB simultaneous), dendritic balance with the analytical solution for recurrent weights (DB) and the somatic balance learning scheme (SB), as expected.
DB decay finds smaller weights than other learning schemes, also as expected. As we derived, this can be compensated by a change in the firing threshold, which in our case
is done via rapid firing rate adaptation. The learned feedforward weights are also very similar (bottom images).

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 15 of 24

Fig. S3. Comparison of the different learning schemes on the bars task with p = 0.7. All dendritic balance algorithms reach a good performance, again DB slow and DB decay
converge somewhat later. Learning in the SB network finds a sub-optimal solution. These results are reflected in the learned feedforward weights (bottom), where SB finds
representations that do not contain single bars, as it would be optimal, but the collapsed corresponding bars instead.

16 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Fig. S4. All learning curves for the natural scenes task (Fig 4).

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 17 of 24

Fig. S5. All learned feedforward weights for the natural scenes task (Fig 4). For a large number of coding neurons neurons in both SB and DB learn weights with Gabor-wavelet
like appearance. For smaller networks SB and DB learn qualitatively different weights: DB neurons become detectors for small blobs of activity in the images, similar to
center-surround receptive fields. SB neurons also become detectors of blobs of activity but with much less coordination and larger diameter receptive fields.

18 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Fig. S6. All learning curves for the natural scenes task for different timesteps (Fig 5A). For long timesteps (i.e. transmission delays) SB learning fails.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 19 of 24

Fig. S7. All learned feedforward weights for the natural scenes task for different timesteps (Fig 5A). For long timesteps the representations learned by SB collapse, while DB
continues to find good representations.

20 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Fig. S8. The results in Fig 5A are robust in respect to the stochasticity of firing ∆u and firing rate ρ. We tested firing rates of A ρ = 5Hz, where learning is mostly stable, and
B ρ = 1.5Hz, where learning becomes slightly unstable. For higher stochasticity (larger ∆u) neural firing becomes extremely random, for more deterministic neurons (smaller
∆u) learning often does not converge.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 21 of 24

-1

F

W 1
i
j D ji

ji

(1)

Optimal F Optimal D

F, 90 % inhibition pruned F, somatic balance

A

B C

D E

F G

H
25 % 50 % 75 % 90 %

Fig. S9. In the dendritic balance learning scheme many of the dendritic recurrent weights can be pruned while retaining learning performance. We here demonstrate this in the
correlated bars task with 4× 4 pixel images and p = 0.6. The results presented here were obtained with DB with slow feedforward adaptation. Weights were pruned based on
the principle presented above. Correlations between neurons were estimated in the first 1% of simulation-time, long before convergence, after which pruning commenced.
Several pruned dendritic connections were replaced by a somatic connection to ensure a somatic balance if necessary. A 90% of the dendritic recurrent weights can be pruned
without losing performance. If more dendritic weights are pruned performance approaches that of the SB learning scheme. B Feedforward weights learned with all dendritic
connections in place. C Decoder corresponding to the network in B. D Feedforward weights learned when 90% of dendritic connections are pruned, which are remarkably
similar to the optimal solution. E In comparison, weights learned by SB find collapsed representations containing two bars, which is a suboptimal solution. F Dendritic recurrent
weights of neuron 1 in D, after pruning. Weights for a single neuron can be displayed in image space, showing which dendrites they connect to. After pruning with the proposed
principle only weights that are important for learning remain. Self-contributions (top left) are always kept and can be computed locally. Other weights only connect to dendrites
of the neuron, which codes for the "corresponding" correlated bar (center left). Only this neuron needs the information provided by the recurrent weights for learning, in order to
prevent the collapse as we see it in E. G Since recurrent plasticity finds a "decoding" by balancing excitation with inhibition, we can find the corresponding "decoder" to the
recurrent weights of neuron 1. This decoder only contains the two relevant bars that correspond to one another, demonstrating that our pruning principle can find exactly the
relevant contributions and discard all the others. H The "decoder" as in G for progressive pruning fractions. It is clearly visible how for larger pruning fractions only the relevant
dendritic connections remain.

22 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

Fig. S10. Average pearson correlation coefficient between outputs zi(t) of pairs of neurons in DB networks coding for natural images (Fig 4D). The correlation of neural
activity increases when the number of neurons decreases. This indicates that the input patterns the neurons learn to represent are more strongly correlated for small networks.
Error-bars denote 95% bootstrapping confidence intervals.

Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann 23 of 24

400 ms

400 ms

speech signal instant inhibition delayed inhibition instant inhibition delayed inhibition

somatic balance (SB) dendritic balance (DB)A B C

Fig. S11. This figure corresponds to Fig 5F-H, but uses unwhitened input signals. We observed similar results as in Fig 5F-H, here with transmission delays of δ = 0.5 ms.
For smaller delays we did not observe a collapse of the population code, likely because whitening leads to stimulus dimensions that have faster temporal dynamics than
the original signal, making it harder for inhibition to decorrelate neural responses. For the somatic balance model (SB) the presence of pairwise correlations between inputs
requires a different learning rule, where weights are updated according to ∆Fji ∝ zj(xi − αxi(Fx)jzj) (see (2) for details). Although the dendritic balance model (DB) is
also based on a decoder model that assumes inputs with zero pairwise correlations, it still manages to find a very good encoding. A Spectrogram of the signal presented in
25 frequency channels. B As can be seen in the reconstructed signal (top), SB finds a good encoding for instant inhibition (loss=0.08), but for small delays of 0.5 ms the
learned representations collapse, leading to pathological network behavior and bad encoding performance (loss=1.25). C In contrast, DB finds a very good encoding for instant
inhibition (loss=0.04) and a reasonable encoding with inhibitory delays of 0.5 ms (loss=0.2). Note that whitening changes the scale of the signal, hence decoder losses are not
directly comparable between Fig 5 (where the loss is computed on the whitened signal) and Fig S11.

24 of 24 Fabian A. Mikulasch, Lucas Rudelt, Viola Priesemann

	Stochastic neural dynamics
	Learning an efficient code with expectation maximization
	Online encoding by spiking neural network
	Online learning of an optimal decoder
	Online approximation

	Online learning of network parameters
	Somatic balance approximation
	Learning encoder weights with dendritic balance
	Rapid firing rate adaptation
	Pruning recurrent weights

	Relation to previous studies of representation learning
	Comparison to other Hebbian-like learning rules
	Comparison to Brendel et al (2020)

	Datasets
	Parameters

