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1. Implementation
VOLTA is a Python package, containing 158 exposed functions, implemented in 7
modules (Figures 1 & 2) that can be used for different network-based analysis
studies. While VOLTA can be applied to any type of (undirected) networks (following
the given formatting requirements), it is focused on the application in multi-network
comparison. VOLTA is implemented in Python 3.6 +, supports Linux, Mac and
Windows systems and is published under a GNU GENERAL PUBLIC LICENSE
Version 3 licence (individual parts may be published under different licenses, which
can be inferred from the below mentioned packages).
VOLTA integrates many existing network libraries, which often only focus on a single
task, into a combined library while providing additional functions targeted at
differential network analysis. Following Python packages are used in VOLTA:

● NumPy >=1.17.* [1]
● Matplotlib >=3.0.* [2]
● statsmodels >= 0.11.* [3]
● Scikit-learn >=0.21.* [4]
● Brain Connectivity Toolbox for Python >= 0.5.*

https://github.com/aestrivex/bctpy
● NetworkX >=2.5 [5]
● CDLIB >= 0.1.8 [6]
● SciPy >=1.3.* [7], [8]
● leidenalg >= 0.7 [9] https://github.com/vtraag/leidenalg
● seaborn >=0.9.* [10]
● pandas >=0.25 [11], [12]
● Markov Clustering >=0.0.6.* https://github.com/GuyAllard/markov_clustering

[13]
● Cython https://cython.org/ [14]
● netneurotools >= 0.2.* https://github.com/netneurolab/netneurotools
● PyClustering == 0.9.3 [15]
● python-louvain >= 0.13 [16]
● treelib >= 1.6.* https://github.com/caesar0301/treelib
● pyintergraph https://gitlab.com/luerhard/pyintergraph
● Partition Quality == 0.0.7 https://github.com/GiulioRossetti/partition_quality
● ANGEL https://github.com/GiulioRossetti/ANGEL [17]

VOLTA has been tested on Ubuntu 18.04 with Python 3.6, Ubuntu 20.04 with Python
3.8, on Windows 10 with Python 3.7 and Python 3.8 and MAC OS 10.15.7 with
Python 3.6.10.

https://sciwheel.com/work/citation?ids=9673854&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1310480&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8795341&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10432066&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8704848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090651,8189935&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6947194&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10205097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9721578,8596935&pre=&pre=&suf=&suf=&sa=0,0
https://github.com/GuyAllard/markov_clustering
https://sciwheel.com/work/citation?ids=10432158&pre=&suf=&sa=0
https://cython.org/
https://sciwheel.com/work/citation?ids=1208781&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9863702&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10432184&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10297025&pre=&suf=&sa=0
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Figure 1: Module Structure of VOLTA
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Figure 2: The modules of VOLTA and their possible pipeline interactions. The
overlap of the pipeline wrapper modules and distance and similarity module indicates
that most of the functions contained in the wrapper module call on functionalities
from the distance and similarity module.

1.1. Network Similarity and Distance Module
Biological networks can provide insights into underlying processes in a biological
system. For instance, they have been utilized to characterize the molecular basis of
the onset of certain complex diseases, including cancer [18]–[21], type 2 diabetes
[22]–[24], psoriasis [25], [26] and many others. Protein-protein interaction networks
outline physical contacts within a system and analysing the network structure can
give insight into associated functions and highlight regulatory proteins (genes) [27],
[28]. In biological networks, the interplay between bio-molecules in a system is
depicted. Comparing multiple such networks representing different biological
conditions, can help to understand the complex underlying processes of diseases or
depict the perturbations caused by the influence of exogenous compounds onto a
biological system [29], [30].

Calculating distances between a group of networks allows to estimate which
conditions are more similar and therefore may have similar effects onto the
investigated system. Differences between networks can be calculated in a global or
local manner. Global measures take the whole network into account, while local
measures concentrate on sub-patterns. In VOLTA, different local and global
measures are provided which can be investigated individually or in a combined
manner. Since the different categories focus on different characteristics of a network,
combining them provides deep insight into the similarities and differences between
networks. A detailed example is provided in the case study (section 3).

The distance module contains 4 sub-modules (global_distances, local,
node_edge_similarities, trees), which aim at estimating distances and / or similarities

https://sciwheel.com/work/citation?ids=10533813,8185613,1592326,734665&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=10533821,2449626,8800585&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=5606110,5333771&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1359443,10289488&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1359443,10289488&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3614854,10488784&pre=&pre=&suf=&suf=&sa=0,0
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between networks (or individual parameters that can be used to numerically describe
a network [31]) as well as to estimate analysis parameters for single networks. It is a
collection of network descriptive functions on a local, global and node-edge specific
level.

The global distances submodule contains 17 exposed functions
(https://github.com/fhaive/VOLTA/blob/master/html/volta/distances/global_distances.
html), including functions to estimate a networks centrality distribution, clustering
coefficient or metrics to classify a networks size. These functions are built on top of
the NetworkX API [5]. Additionally, a similarity function based on random walks is
provided, which compares node specific neighborhoods between networks based on
their random walk patterns.

The local submodule contains 4 exposed functions
(https://github.com/fhaive/VOLTA/blob/master/html/volta/distances/local.html), mainly
classifying small subgraphs of the network known as motifs or graphlets [32], [33]. A
node specific and node unspecific version is provided. The non node specific version
allows to describe a networks topology based on its graphlet distribution, while the
node specific version investigates if the same nodes are connected in the same way
between networks.
Due to its complexity the node unspecific version can become computationally
expensive on large networks. Therefore the function contains a parameter option to
set an approximation threshold, which is the number of randomly selected nodes the
graphlet distribution is estimated on. For each randomly selected node, node
unspecific graphlets occurring in its neighborhood (node area) are counted. The
neighborhood of a node is defined as all nodes connected by node size of the
investigated graphlet steps from the randomly selected node. This method provides
an estimation of small network pattern distribution over the network and can be used
to describe a network's topology. The node specific version requires as input a list of
nodes between which all possible graphlets of a given size are looked up in the
investigated network. Graphlet based methods have previously found application in
protein-protein interaction network description [28], [34] as well as in the
classification of vascular networks [35].

The node and edge similarities submodule focuses on comparing two networks
directly based on their nodes and edges and contains 24 exposed functions.
Common and unique nodes or edges can be estimated between two networks on
which different distance and/ or similarity measures, such as the jaccard index [36],
Hamming distance [37] or SMC (Simple Matching Coefficient) [38], can be
calculated. The users can make use of individual distances or a combination of
distances. For example the jaccard index only considers shared nodes/ edges, while
the SMC also considers shared non existing edges/ nodes. Depending on the
performed analysis either only shared existing nodes/ edges may be of interest or
also shared non-existing nodes/ edges. Therefore VOLTA allows the user to choose

https://sciwheel.com/work/citation?ids=10488789&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4899471,10297016&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=204245,10289488&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10450093&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10725316&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10725331&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1218693&pre=&suf=&sa=0
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based on their needs which (combination) of distance metrics to use, as well as to
make a data driven decision based on a comparison of results of the different
metrics.
Additionally, nodes and edges can be ranked by certain attributes, such as assigned

weights or node/ edge centrality metrics, on which a correlation coefficient can be
estimated (Kendall rank correlation coefficient [39]). Nodes can be ranked by their
degree, closeness and betweenness centrality or a combination of these. For
weighted networks edges can be ranked by either their assigned edge weights or
edge weights can be estimated based on other metrics, such as their edge
betweenness. Functions where asynchronous/ parallel computation can be applied
are available to be run either in asynchronous or synchronous mode.

The tree module contains 8 exposed functions and provides functions to map a
network structure to a binary tree. This can either be achieved by selecting a root
node in the network or by hierarchically mapping loops contained in the network to a
tree structure [40], [41]. Mapping a network structure to a tree, simplifies the
computation problem and allows to investigate a network's connectivity with means
of established binary tree metrics [35], such as its depth, asymmetry or branching
ratio, which are provided in this sub-module. The functions in this sub-module are
built upon the treelib (https://github.com/caesar0301/treelib) module to construct a
tree object from the provided network.

The distances directly estimated between networks or calculated between their
descriptive vectors, when transformed into a distance matrix (see
https://github.com/fhaive/VOLTA/tree/master/jupyternotebooks), can be used as input
for the clustering module (Figure 2).

1.2. Network Clustering Module
When a large group of networks is compared, making detailed network pairwise
comparisons can be expensive. By pre-clustering the investigated networks into
classes, instead the individual classes can be compared between each other or
within each other. This is an extension of the use cases elaborated in 1.1 and an
example is shown in section 3.

The clustering module contains 9 exposed functions, which can be used to cluster
multiple networks based on distance/ similarity matrices as can be estimated from
the functions described in 1.1. The module exposes hierarchical clustering and
affinity propagation from scikit-learn [4]. The optics and k-medoids clustering
algorithm are exposed from PyClustering [15]. Additionally a multiobjective function,
whose objectives and parameters can be set by the user, is provided and can be
used to tune the provided clustering algorithms as needed. To combine the results of
different clustering algorithms or their individual runs a consensus clustering option is

https://sciwheel.com/work/citation?ids=10725325&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3327937,6785260&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10450093&pre=&suf=&sa=0
https://github.com/caesar0301/treelib
https://sciwheel.com/work/citation?ids=10432066&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9863702&pre=&suf=&sa=0
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implemented in a few variations which is built on netneurotools
(https://github.com/netneurolab/netneurotools) and the underlying Brain Connectivity
Toolbox (https://github.com/aestrivex/bctpy).

1.3. Community Module
Community detection algorithms aim at partitioning a graph into modules, based on
its topology. This allows to, for example, identify functional groups in a co-expression
network or protein-protein interaction network [29], [42], [43]. This module can be
used to analyze a single network in search of gene modules, or to compare multiple
networks based on their module similarities [44]. When comparing multiple networks,
identified modules can be compared among them based on their network similarity
(e.g. similarity of partitioning) or on a functional level (e.g. through functional
enrichment) [29], [42], [45].

The community module contains 49 exposed functions, which cover community
detection, consensus community detection and metrics to evaluate a graph
partitioning. The implemented algorithms contain node clustering algorithms for
weighted and unweighted networks as well as overlapping community detection
algorithms. Many of the community detection algorithms are exposed from NetworkX
[5], markov clustering (https://github.com/GuyAllard/markov_clustering), scikit-learn
[4] and CDLIB [6] Python packages. The consensus algorithm, which allows to
combine multiple different community detection algorithms or multiple runs of the
same one, is based on the fast consensus clustering algorithm by Tandon et al. [46].
Different community detection algorithms detect communities based on different
metrics, e.g. information flow in the network or modularity, which can yield highly
different community structures based on the investigated network. A consensus
strategy allows to combine the information from different algorithms that investigate
the network from different biological point of views. Which community structure /
detection method is the most suitable for the investigated networks and its analysis
has to be decided by the user. As a guide VOLTAprovides multiple metrics to
evaluate the network community partitioning are implemented. Some of these
metrics are built on functions implemented in the Partition Quality package
(https://github.com/GiulioRossetti/partition_quality) as well as in NetworkX [5].

Community paritionings between multiple networks can be compared (based on their
nodes, edges, etc.), with the functions implemented in the Network Similarity and
Distance Module (1.1), by converting each individual community into a subgraph as
shown in the example files.

In Table 1 there is a comparison of a subset of available community algorithms,
some evaluation metrics, as well as showing the impact of a consensus strategy.
volta.communities.infomap() [47] and volta.communities.walktrap() [48] are random
walk based community detection algorithms. This group of algorithms detects

https://sciwheel.com/work/citation?ids=10450170,3614854,6887960&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=10542769&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10450170,3614854,4827929&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://github.com/GuyAllard/markov_clustering
https://sciwheel.com/work/citation?ids=10432066&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8704848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7652036&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=86796&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5606099&pre=&suf=&sa=0


8

communities based on information flow within the network and tends to group nodes
together which share many edges / information between each other. In the context of
co-expression networks they group nodes together which have similar expression
patterns. volta.communities.label_propagation() [49] assigns labels to nodes and
propagates these through the network, and a nodes label is dependent on its
neighbors labels. volta.communities.louvain() [50] identifies community structures
based on an optimization of the modularity, which is a measure of the network
density within a community vs. outside network density.
volta.communities.fast_consensus() [46] is a consensus strategy based on the
iterative agreement of selected algorithms/ community structures.

volta.communities.average_internal_degree() [51] estimates for each community its
average internal node degree, a high internal degree indicates that the nodes within
that community are strongly connected between each other.
volta.communities.conductance() [52] measures for each community the fraction of
edges leaving it, a small score indicates a strong conversion of information within a
community. volta.communities.fraction_of_weak_members() [53] calculates the
fraction of nodes within a community that have less inward edges than outward
edges. A node with more outward than inward community edges indicates that this
node is not a strong member of the community. volta.communities.cut_ratio() [54]
measures for each community its cut ratio, which is the fraction of edges leaving the
cluster out of all possible edges. volta.communities.clustering_coefficient() calculates
for each community its clustering coefficient. A complete network has a clustering
coefficient of 1. volta.communities.get_number_of_communities() returns the number
of communities detected on a network and
volta.communities.get_number_of_nodes_communities() returns the number of
nodes contained within the communities as well as the mean community size.

Other community detection algorithms and evaluation metrics contained in VOLTA
are outlined in the documentation
(https://github.com/fhaive/VOLTA/blob/master/html/volta/communities.html).

Table 1: Four different community detection algorithms as well as a consensus (with
tresh=0.5) are run on a random network of 100 nodes and 300 edges (created with
NetworkX gnm_random_graph(seed=12345) [5]. The five communities are evaluated
by means of five evaluation metrics. For each metric that calculates community
specific scores the mean value of its communities is displayed. The different scores
are displayed and either the highest or lowest score is marked in bold (depending on
if the metric suggests low or high values). The consensus strategy returns the
smallest amount of communities, containing on average the most nodes and
achieves in three out of the five metrics the most desirable score.

communities.inf communities.w communities.la communities.lo communities.fa

https://sciwheel.com/work/citation?ids=747046&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=86797&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7652036&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=732578&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2468432&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10297036&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=197129&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
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omap() alktrap() bel_propagatio
n()

uvain() st_consensus()

communities.av
erage_internal_
degree()

2.67 2.6 2.63 3.05 3.1

communities.co
nductance()

0.54 0.54 0.55 0.49 0.46

communities.fra
ction_of_weak_
members()

0.49 0.44 0.58 0.357 0.362

communities.cu
t_ratio()

0.59 0.59 0.61 0.56 0.54

communities.cl
ustering_coeffic
ient()

0.22 0.12 0.38 0.12 0.14

communities.ge
t_number_of_c
ommunities()

10 9 8 7 6

communities.ge
t_number_of_n
odes_communit
y()

10 11.11 12.5 14.29 16.67

1.4. Identification of Common Sub-patterns Module
When comparing a group of networks (e.g. co - expression networks under different
conditions), common structures can be investigated, which could indicate
functionalities that are not affected by the different exposures. This module can be
used in combination with the clustering module, to identify (statistical) significant
features that are present in a group but not in the others. Such an example is
discussed in the case study in section 3.

This module contains 7 exposed functions, which aim to identify “common”
subgraphs in a group of networks. Common subgraphs can either be identified on a
set threshold, or statistically. The threshold method selects all edges that occur in at
least a user-defined percent of the networks, to be considered as part of the
common subgraph, and regards each edge as binary.

On the other hand, when applying the statistical method, a group of networks as well
as a background distribution of networks needs to be provided. The background
distribution informs on how many of all networks a specific edge exists, again
regarding edges as binary. Each edge existing in a certain group of networks is
evaluated against the background distribution in order to determine if it is statistically
overrepresented in the selected group. Statistical significance is estimated based on
a hypergeometric function and a Benjamini-Hochberg [55] correction is applied. Out

https://sciwheel.com/work/citation?ids=6279401&pre=&suf=&sa=0


10

of the statistically overrepresented edges a common subgraph is constructed, which
represents the statistical significant features of the selected group. Nodes that are
not contained in at least one statistical overrepresented edge are not contained in
the extracted subgraph.

The threshold based method works for any number of networks (> 1) that share at
least one edge, while the statistical method requires a group of networks to be
provided on which a background edge distribution can be calculated and a subset of
all networks need to make up the investigated network group. This function can be
used to characterize for example clusters of networks identified through the
clustering module.

Additionally this module contains functions to estimate common community
structures between a group of networks. Based on individual community paritionings
of different networks a consensus partitioning can be created that represents the
community partitioning of a group of networks, as implemented in the
get_consensus_community() function. This function calls the
clustering.consensus_clustering() function to estimate a consensus between the
individual estimated network partitions. This function requires all networks to contain
the same nodes.

1.5. Network Simplification Module
There can be different reasons why it can be helpful to simplify a given network.
Network simplification means that a large (complex) network is reduced in its edges
and/or nodes. For example, a path made of multiple nodes and edges can be
reduced to a single edge between two nodes; edges with a low edge weight can be
removed or a network can be reduced to its minimum spanning tree, where all nodes
are connected with a minimum of edge (weights). Large networks may be
computationally expensive and a simplification would lead to significant
improvements. Further some topological features (especially when comparing
multiple networks) may be visible only after network simplification (e.g. from a
complete network to a more sparse network) and could allow to detect areas of
interest between the networks. This reduction in complexity can also reduce
computation time for other algorithms, such as the clustering module and additionally
can help to identify differences and similarities between networks (topology) by only
focusing on significant edges (depending on the simplification method significant
edges are selected differently). Moreover, a reduced network is easier to visualize.
For example, (topological) features of the network may be visualized better or only
the most significant nodes/ edges can be displayed.

The network simplification module exposes 7 functions, which provide different
functionalities to simplify a network through node or edge removal, adjust assigned
edge weights or estimate a network's minimum spanning tree. For distance/ similarity
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networks (networks where their assigned edge weights indicate either a distance or
similarity) a function which converses between distances and similarities is provided
and for correlation networks a function to change the edge weights to their absolute
values is provided. Edges can either be removed globally or on a per node basis
based on their edge attributes (either through a fixed threshold or by providing a
percentage of edges to be removed) or through probabilistic sampling, which aims at
identifying weak links between two nodes and removing them.

1.6. Plotting Module
The plotting module contains 7 exposed functions.
The clustering of networks (1.2) can be plotted on top of the provided distance matrix
used for clustering, which provides a visual representation of cluster size distribution
and within cluster similarity as well as between cluster dissimilarity (Figure 3A).
Additionally an agreement matrix between network clusterings (1.2) or community
detection algorithms (1.3) can be plotted, which indicates for each network (or node)
pair in how many of the performed algorithms they are grouped together (Figure 3B).
Different network partitionings (1.3) or clusterings (1.2) can be compared by means
of correlation and plotted into a hierarchical cluster map (Figure 3C). The
investigated networks and communities can be visualized (Figure 3D and 3E), which
is built on top of the NetworkX [5] plotting functions. Other plotting functions such as
heatmaps are also provided. These functions are built up on the seaborns [10] and
matplotlib [2] API.

https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10205097&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1310480&pre=&suf=&sa=0
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Figure 3: Example of plots that can be generated with VOLTA. A) A clustering is
plotted on top of a provided distance matrix. In this example the 21 networks are
grouped into 3 clusters (white squares on the matrix diagonal) B) An agreement
matrix between 4 different network clusterings algorithms can be plotted. In this
example, 4 indicates agreement between all the algorithms, while 1 indicates that
only 1 of the algorithms has grouped two networks together. This plot provides the
user with an insight in how robust the different biological views are for each network
pair. A high agreement indicates that this specific network pair is similar across most
of the investigated biological dimensions while a low agreement indicates that they
are different in most of the investigated dimensions. The user can decide based on
this insight if they want to investigate some dimensions in more detail for specific
data sets as well as to get an insight in the agreement between the different
investigated biological dimensions. C) The Pearson correlation between different
clusterings or network partitionings can be plotted. In this example 5 different
clusterings are compared. This plot quantifies how different the individual network
views are from each other. A high correlation indicates that the networks are highly
similar independent from the investigated biological angel. Additionally it allows the
users to identify how similar the combined view is to the individual views and based
on this decide if a single (or subset) of dimensions would provide the same result/
have the most impact. If the individual dimensions are highly different the user can
decide to investigate them individually (or a subset) instead. D) The investigated
network can be plotted. E) Identified communities can be plotted on top of the
network.
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1.7. Pipeline Wrappers Module and Analysis Pipelines
The pipeline wrappers module contains 6 submodules, which aim at providing
wrapper functions for the different analysis steps (for multiple networks) that can be
performed during a co-expression network analysis. The purpose of providing
wrapper functions and whole analysis pipeline files is to make the package easy to
use for novice users, being it computationally or in co-expression network analysis.
This allows users to replicate analyses easily between studies and allows new users
to run a complete analysis pipeline with a minimal amount of direct interactions with
VOLTA. While on the other hand exposing the individual functions in a Python
package allows more experienced users to run their own analysis, to adjust
parameters in more detail as well as to use VOLTA for other network analysis tasks
than on co-expression networks.

Three analysis pipelines are defined, in addition to a community detection, functional
enrichment and a read-and-write graph format file.

1.7.1. Submodules
The six submodules contain wrapper functions for estimating distance/ similarity
matrices between multiple networks based on their nodes, edges and structural
properties as well as based on random walks and the implemented tree functions
(1.1). The wrappers allow to call multiple metrics through an individual function call,
as well as to compute the same measurements for multiple networks simultaneously
and to translate the results into distance/ similarity matrices where applicable. In total
there are 22 exposed functions distributed over six submodules.The individual
functions are implemented in the distance module (1.1). The application of these
submodules is shown in the analysis pipeline files.

1.7.2. Analysis Pipelines
The VOLTA package provides 3 complete examples of analysis pipelines in the form
of Jupyter Notebooks
(https://github.com/fhaive/VOLTA/tree/master/jupyternotebooks). Moreover,
examples are provided to: (i) show how to read and write different graph formats to
be processed by VOLTA
[https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/import_and_export_
of_networks.ipynb]; (ii) show how to use the community module (1.3)
[https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/community_detectio
n.ipynb]; (iii) show how to functionally enrich a set of genes through the Panther
enrichment API (http://pantherdb.org/) [56], [57]
[https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Example_of_Enrich
ment.ipynb]. The provided files are structured in such a way that users will only need
to exchange the example networks with their own networks in order to perform a
default analysis. By providing the pipelines as Jupyter Notebook files it is very easy
for inexperienced users to modify small parts of the pipeline, such as changing

https://sciwheel.com/work/citation?ids=6543499,10450234&pre=&pre=&suf=&suf=&sa=0,0
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parameters, adding or removing individual steps or even adding external analysis
packages, while being provided with visual output and an interactive way to interact
with VOLTA. Additionally, we added explanations on how to interpret the results of
each step as well as what further steps could be performed or how the analysis
could be expanded to each function, used in the provided default analysis pipelines.

The 3 analysis pipelines defined, can be run individually or part of an extended
analysis. First a network - network comparison analysis pipeline is provided
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/network_-_network_
comparison.ipynb), which compares two or more networks based on their node and
edge properties, their individual node sub-areas and communities. A file that shows
how to use the community module (1.3) is provided
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/community_detectio
n.ipynb), which if desired by the user, can replace the simple community detection
section in the network - network comparison analysis pipeline. This pipeline makes
use of the get_node_similarity, node_edge_similarities, get_edge_similarities and
get_walk_distances pipeline wrapper submodules.
Secondly, a network clustering pipeline is provided
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Network_clustering.i
pynb), which shows how multiple networks can be grouped based on their nodes,
edges, subgraph and structural properties. This pipeline mainly makes use of the
functions defined in the distance module (1.1) as well as the clustering module (1.2).
The groupings resulting from this pipeline can be given as input for the third defined
analysis or a separate group of networks can be provided. This pipeline file calls
functions contained in the get_node_similarity, get_edge_similarities,
get_structural_vector and get_walk_distances pipeline wrapper submodules.
This analysis aims at identifying common subgraphs in a group of networks as well
as a consensus community partitioning of a group of networks and mainly makes
use of functions implemented in the common sub pattern module (1.4)
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Are_there_common_
strucutures_or_communities_in_a_group_of_networks_.ipynb).
The network simplification module (1.5) can be integrated with any of these analyses
in order to pre-modify the networks before performing elaborate analysis (Figure 2).

2. Comparison to other Tools
To date, many network analysis software solutions and packages have been
published. Due to the versatile nature of network models, either very general
packages that focus on basic network computations and metrics (such as NetworkX
[5] and iGraph [58]) or specialized packages for a particular problem (such as CDLIB
[6], which focuses on community detection) have been published. Software solutions
for co-expression network analysis often are optimized for a single analysis pipeline
or step and are commonly provided as a whole software solution (such as INfORM
[45] or CoNekt [59]). These softwares are usually easy to use and to understand for

https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10433021&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8704848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4827929&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6199957&pre=&suf=&sa=0
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novice users. However, they do not provide users with the flexibility to use the
software for other than the intended analysis (resulting from non exposed functions,
non modifiable pipelines and fixed file formats).

We therefore developed VOLTA an easy to use and flexible package that combines
the strengths of these software groups. VOLTA combines a diverse set of functions,
regarding many different fields of network analysis. Moreover, VOLTA aims, when
possible, to provide different algorithms for a given task (e.g. community detection
algorithms). This allows users to customize their pipelines, for example based on
their network structure or aims. Moreover, the user can apply ensemble strategies
which have been proven to give more robust results [45], [46]. For example in
community detection the results depend on the algorithm as well as the structure of
the network, since different algorithms might use different metrics to select a
partitioning. Similarly, in clustering, different algorithms can yield different results
when applied to the same data. VOLTA provides metrics
(https://github.com/fhaive/VOLTA/tree/master/html/volta) to evaluate these
algorithms, allowing users to select the best methods for their data set(s). All these
functions are fully exposed in the package, allowing users to set their own
parameters and combine them as needed. Additionally, pre-defined pipelines for
specific analysis in the domain of co-expression networks are provided. These are
provided in Jupyter Notebook files, which make it easy for the user to modify them
and at the same time to have a complete report of the analysis in the same file. This
allows inexperienced users to plug and play with VOLTA, while experienced users
have the possibility to construct their own unique analysis pipelines.

Table 2 and Table 3 compare VOLTA with different common network packages and
co-expression network analysis software in terms of their included functionalities,
flexibility and user-friendliness. The most similar tool to VOLTA is CompNet [60],
which is a Perl/ R based software application for the purpose of visual network
comparison available for Windows and Linux systems, mainly running on the R
iGraph library. Since CompNet is a software application its functionalities are non
exposed and cannot be used in a different manner than provided in its interface,
input formats are restricted and availability across systems is limited. This implies
that it is difficult to integrate its functionalities into larger analysis pipelines or to use it
in combination with other applications.

Due to this VOLTA is a unique application, which can be used by a wide range of
user groups for a diverse set of (co-expression) network analysis without the need of
combining numerous available software solutions and to worry about their
compatibility. VOLTA’s implementation allows it to be applied to any type of network
that can be represented as a NetworkX Graph object; this can be undirected,
directed, unipartite or bipartite networks. However the main target of VOLTA are
undirected, unipartite co-expression networks, which indicates that for other types of
networks the user needs to decide which functions and in which combination to

https://sciwheel.com/work/citation?ids=4827929,7652036&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6134998&pre=&suf=&sa=0


16

apply to their networks. A subset of the provided functions can be applied to directed
networks, which is indicated in their documentation. So for example VOLTA can be
used to analyse social networks, regulation networks, genetic interaction networks
[61], [62], the clustering of protein-protein interaction networks [63] or to analyze the
role of metabolites in a system [64].

Table 2: Comparison to Other Network Packages based on individual functionalities

Tool Language Community
Functions

Network
Metrics

Network
Similarity
Estimation &
Clustering

Identification
of Common
Sub-
structures

Network
Simplification

NetworkX [5] Python some yes no no yes

iGraph [58] Python/ R yes yes no no yes

WGCNA [65] R yes yes no some N/A

CDLIB [6] Python yes no no no no

BioNetStat
[66]

R no some some no some

INfORM [45] R some some no no some

CoNekT [59] Python /
JavaScript

some some some some N/A

CompNet
[60]

Perl/ R some some yes yes N/A

NetSimile
[31]

N/A (no
official
implementati
on)

no yes yes no no

VOLTA Python yes yes yes yes yes

Table 3: Comparison to Other Network Packages based suitability for inexperienced and
experienced users as well as versatility

Tool Provides
Predefined
Analysis
Pipelines?

Exposing
Individual
Functions &
their
Parameters?

Package
Usage
Examples
Provided?

Suited for
Co-expressio
n Network
Analysis?

Suited for
Different
Types of
Networks?

File Format
Restrictions?

NetworkX [5] no yes yes some
functionalities

yes no

iGraph [58] no yes yes some yes no

https://sciwheel.com/work/citation?ids=1451991,917621&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11333729&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11333730&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10433021&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=486535&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8704848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7454900&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4827929&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6199957&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6134998&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10488789&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9090647&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10433021&pre=&suf=&sa=0
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functionalities

WGCNA [65] some yes yes yes no yes

CDLIB [6] no yes yes some
functionalities

yes no (as in
NetworX/
iGraph)

BioNetStat
[66]

yes no yes yes no yes

INfORM [45] yes no yes yes no yes

CoNekT [59] yes no yes yes no yes

CompNet
[60]

N/A no (software
application)

yes some
functionalities
(network
comparison
only)

yes yes

NetSimile
[31]

N/A (no
official
implementati
on)

N/A (no
official
implementati
on)

N/A (no
official
implementati
on)

some
functionalities

yes N/A (no
official
implementati
on)

VOLTA yes yes yes yes yes no (as in
NetworkX )

3. Performance
To evaluate the impact of variation in network size and number of networks on
computation time as well as memory usage, performance profiling is performed on
the network clustering
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Network_clustering.i
pynb) (Figures 4-7), network comparison
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/network_-_network_
comparison.ipynb) (Figures 8-10), community detection
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/community_detectio
n.ipynb) (Figures 11-13) and common substructures
(https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Are_there_common_
strucutures_or_communities_in_a_group_of_networks_.ipynb) (Figures 14-16)
pipeline. Synthetic gene expression values have been created with MVBioDataSim
[67]. From these expression values pairwise Pearson correlations have been
calculated and the top ranked edges, based on absolute correlation values, have
been selected in order to create networks of a desired density. If not stated otherwise
the selected edges are considered to be unweighted and undirected.

Computation time of the complete pipelines are measured as well as the memory
usage over time. Memory usage is measured with the Python memory-profiler

https://sciwheel.com/work/citation?ids=486535&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8704848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7454900&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4827929&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6199957&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6134998&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10488789&pre=&suf=&sa=0
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Network_clustering.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Network_clustering.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/network_-_network_comparison.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/network_-_network_comparison.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/community_detection.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/community_detection.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Are_there_common_strucutures_or_communities_in_a_group_of_networks_.ipynb
https://github.com/fhaive/VOLTA/blob/master/jupyternotebooks/Are_there_common_strucutures_or_communities_in_a_group_of_networks_.ipynb
https://sciwheel.com/work/citation?ids=5743081&pre=&suf=&sa=0
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package through its mprof method, which measures the allocated memory of the
script every 0.1 seconds.

Clustering Pipeline

Figure 4: Allocated memory at each time point for the Network clustering pipeline for
a group of 10, 20, 30, 40, 50 and 100 networks. Each network contains 100 nodes
and a density of 0.2.

Figure 5: Allocated memory at each time point for the network clustering pipeline for
groups of 10 networks of 100 nodes with varying densities between 0.1 to 0.9.
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Figure 6: Allocated memory at each time point for the network clustering pipeline for
groups of 10 networks with density 0.1 and varying node sizes of 100, 500 1000 and
2500 nodes.

Figure 7: Allocated memory at each time point for the network clustering pipeline for
groups of 10 networks of unweighted and weighted networks of density 0.2, 0.5 and
0.9 with 100 nodes each. For the weighted networks the absolute Pearson
correlation values p and  1-p are assigned and used depending on if the used
algorithm expects a distance or similarity value.

Network Comparison Pipeline
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Figure 8: Allocated memory at each time point for the network comparison pipeline
for 2 networks of 100 nodes with varying densities between 0.1 to 0.9.

Figure 9: Allocated memory at each time point for the network comparison pipeline
for 2 networks with density 0.1 and varying node sizes of 100, 500, 1000 and 2500
nodes.
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Figure 10: Allocated memory at each time point for the network comparison pipeline
for groups of 10 networks of unweighted and weighted networks of density 0.2, 0.5
and 0.9 with 100 nodes each. For the weighted networks the absolute Pearson
correlation values p and  1-p are assigned and used depending on if the used
algorithm expects a distance or similarity value.

Community Detection Pipeline

Figure 11: Allocated memory at each time point for the community detection pipeline
for 1 network of 100 nodes with varying densities between 0.1 to 0.9.
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Figure 12: Allocated memory at each time point for the community detection pipeline
for 2 networks with density 0.1 and varying node sizes of 100, 500, 1000 and 2500
nodes.

Figure 13: Allocated memory at each time point for the community detection pipeline
for groups of 10 networks of unweighted and weighted networks of density 0.2, 0.5
and 0.9 with 100 nodes each. For the weighted networks the absolute Pearson
correlation values p and  1-p are assigned and used depending on if the used
algorithm expects a distance or similarity value.

Common Subgraphs Pipeline
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Figure 14: Allocated memory at each time point for the common subgraphs pipeline
for 5 networks of 100 nodes with varying densities between 0.1 to 0.9.

Figure 15: Allocated memory at each time point for the common subgraphs pipeline
for 5 networks  with density 0.1 and varying node sizes of 100, 500, 1000 and 2500
nodes.
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Figure 16: Allocated memory at each time point for the common subgraphs pipeline
for a group of 2, 5, 7, 10  and 15 networks. Each network contains 100 nodes and a
density of 0.2.

For all the pipelines, the computation time increases with an increase in network size
or number of networks. The same applies to the increase in memory usage for the
network clustering and network comparison pipeline, while network density does not
yield a significant increase in memory allocation for the community detection and
common subgraph pipelines. Weighted networks require reduce computation time,
which likely mainly results from the fact that the network edges are compared based
on their edge values instead of edge betweenness scores, which would need to be
computed within the pipeline. For the common subgraph pipeline, no weight based
profiling is performed, since its individual algorithms are weight independent. The
pipelines are run as presented in the jupyter files, with all network objects loaded into
memory (instead of making use of the reading from file option) and the
asynchronous option set to false where applicable.

4. Application / Case Study
We showcase the main functionalities of the VOLTA package through two different
examples of analyses. In the first example, we showcase the functionality of the
VOLTA package for the comparison of two co-expression networks. We used two
networks representing A549 cells treated with dasatinib and mitoxantrone, a
Tyrosine kinase inhibitor and a cytostatic drug, respectively. With this analysis we
aim to highlight the differences in the mechanism of action of the two drugs acting on
the same cell line. In the second example, we showcase the functionality of the
VOLTA package for grouping multiple co-expression networks. We collected
co-expression networks of 20 cell lines after treatment with dasatinib (Table 4). By
analyzing these networks, we aim to characterize the responses of different cell lines
to the same drug treatment.
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The different networks and their respective dimensionalities are displayed in Table 4.

Table 4: The networks used in the case study and their network size.

Cell Line Treated with # Nodes # Edges Density

HEPG2 dasatinib 977 11032 0.023

HCC515 dasatinib 977 13543 0.028

MCF7 dasatinib 977 13102 0.027

PC3 dasatinib 977 12775 0.026

HA1E dasatinib 977 12405 0.026

HT29 dasatinib 977 11588 0.024

A549 dasatinib 977 10820 0.022

A549 mitoxantrone 977 15308 0.032

MCF10A dasatinib 977 13942 0.029

BT20 dasatinib 977 10605 0.022

HS578T dasatinib 977 17535 0.036

A375 dasatinib 977 27178 0.057

SKBR3 dasatinib 977 28388 0.059

MDAMB231 dasatinib 977 25135 0.052

NPC dasatinib 977 7857 0.016

NEU dasatinib 977 6994 0.014

SKL dasatinib 977 6710 0.014

CD34 dasatinib 977 4294 0.009

ASC dasatinib 977 5772 0.012

HUVEC dasatinib 977 9828 0.020

HME1 dasatinib 977 4093 0.008
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4.1. Network Inference

In order to infer the networks utilized in this case study we retrieved the L1000
Connectivity Map perturbational profiles from the Gene Expression Omnibus (GEO)
(GEO ID: GSE70138). The dose and time point of drug perturbation for the present
case study are 10 um and 24h. In order to infer the networks, only the transcriptional
signatures of the L1000 landmark genes were employed (for more information,
please read [68]). Such signatures were utilized as input to INfORM [45], a
comprehensive tool for the inference of robust co-expression networks through an
ensemble approach. The algorithms selected in INfORM to infer the networks are clr
[69], ARACNE [70] and MRNET [71], while the metrics of correlation to build the
adjacency matrices are Pearson correlation, Spearman correlation, Kendall
correlation, empirical mutual information, Miller-Madow asymptotic bias corrected
empirical estimator, Schurmann-Grassberger estimate of the entropy of a Dirichlet
probability distribution and a shrinkage estimate of the entropy of a Dirichlet
probability distribution, as implemented in the R minet package [72]. The resulting
networks are undirected, non-complete binary networks.
The co-expression networks were converted into edgelists compatible with the
NetworkX graph format, as shown in the import and export Jupyter Notebook
(https://github.com/fhaive/VOLTA/tree/master/jupyternotebooks).

4.2. Comparison of two networks
To showcase the capabilities of the VOLTA package to compare two networks, we
analyzed the co-expression networks built from the A549 cell line treated with
dasatinib and mitoxantrone. This comparative analysis allows us to evaluate the
changes taking place in the networks induced by the two treatments. As a first
characterization, we sought to find genes whose centrality is remarkably different in
the two networks. To do so, we calculated the centrality of each node of the two
networks by computing the median among several centrality metrics, including
degree centrality, betweenness centrality and closeness centrality via the
distances.node_edge_similarities.sort_node_list() function. We, then, ranked the
nodes on the basis of the median centrality value and estimate the rank differences
for each gene between the two networks.

As a result, we observed that the OXA1L, YME1L1 and DNAJC15 genes have a
higher centrality in the mitoxantrone network compared with the dasatinib network
where they have a less central role. These results suggest an involvement of
mitoxantrone in the impairment of mitochondrial proteins metabolism, as also
previously demonstrated in [73]. On the contrary, the genes KEAP1 and NVL show
the opposite trend, acting as top central genes in the dasatinib network and resulting
peripheric in the mitoxantrone one. While KEAP1 gene is associated with Papillary
carcinoma and Goiter, Multinodular 1, with or Without Sertoli-Leydig Cell Tumors, the

https://sciwheel.com/work/citation?ids=4552206&pre=&suf=&sa=0
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https://sciwheel.com/work/citation?ids=950850&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8118047&pre=&suf=&sa=0
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gene NVL has never been associated with cancer or with dasatinib mechanism of
action. The values of the median centrality in both of the networks, along with the
absolute centrality difference of the top 10 differentially central genes are reported in
Table 5.

Table 5: Top 10 nodes ranked in their differences of median centrality rankings in the
individual networks.

Entrez ID Gene Symbol Absolute
Ranking
Difference

Dasatinib
Ranking

Mitoxantrone
Ranking

5018 OXA1L 924 964 40

10730 YME1L1 921 946 25

9817 KEAP1 895 19 914

4931 NVL 884 60 944

29103 DNAJC15 876 927 51

54555 DDX49 863 43 906

51097 SCCPDH 858 96 954

1070 CETN3 851 12 863

26136 TES 839 128 967

29978 UBQLN2 838 83 921

In order to obtain a biological insight behind these connectivity pattern changes in
both of the networks, we interrogated the WEB-based Gene SeT AnaLysis Toolkit
(WebGestalt [74] http://www.webgestalt.org/) by performing a Gene Set Enrichment
Analysis (GSEA) on the complete ranked gene list, of which the top genes are
reported in Table 5 against the Reactome database [75] (run on Dec. 8th 2020). The
results showed that the biological processes that are sustained by genes whose
centrality is significantly affected by the drug treatments are mostly related with cell
cycle and mitotic processes as well as signaling cascades led by the MAPK and
Tyrosine kinase activities, which are in line with the core activities of both of the
drugs.

Next we investigate for each node, if changes in their neighborhood have occured.
For each common node between the two networks 10 times degree random walks of
length 5 are performed via the
example_pipeline_wrappers.get_walk_distances.helper_walks() function. Estimating

https://sciwheel.com/work/citation?ids=7091948&pre=&suf=&sa=0
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for each node the number of walks performed based on its degree ensures that the
results are comparable between nodes. The more walks are performed, the more
accurate the subgraph area is explored. In general a larger number of walks ensures
a more accurate view on the subgraph area but this parameter has to be selected
with respect to graph size and walk length since these will influence computational
complexity. The results will vary based on the selected parameters and the structure
of the investigated network. This implies that for shorter walks a lower number of
walks will provide a sufficient overview over the subgraph area, while for longer
walks more walks are needed to scan the subgraph area (due to the increase in walk
possibilities), indicating that the results are more sensitive to changes in number of
performed walks for longer walks in comparison to shorter ones. Since only two
networks are compared a larger number of walks is performed than in the network
clustering analysis in order to reduce computational time. For each starting node the
visited nodes are counted, ranked and a Kendall rank correlation is estimated
between the two networks for each gene. This has been calculated through the
example_pipeline_wrappers.get_walk_distances.helper_get_counts() and
example_pipeline_wrappers.get_walk_distances.helper_walk_sim() function. The
genes with the lowest rank correlation values are shown in Table 6.

Table 6: Genes with lowest rank correlation based on random walks from the same
starting node in both networks.

Entrez ID Gene Symbol

10206 TRIM13

7832 BTG2

29937 NENF

8396 PIP4K2B

6856 SYPL1

11098 PRSS23

6845 VAMP7

23047 PDS5B

10921 RNPS1

10105 PPIF

Among all the genes with a low rank correlation identified through random walks, the
first three, as shown in Table 6, are known to be relevant to a malignant phenotype.
The E3 ubiquitin-protein ligase (TRIM13 product) is a regulator of both membrane
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and secretory proteins turnover located onto the membrane of the Endoplasmic
Reticulum (ER). This factor is involved in the alteration of the apoptotic process by
mediating the proteasomal degradation of MDM2 and AKT1 proteasomal
degradation. Tomar et al. [76], report that TRIM13 may act as a tumor suppressor.
On the other hand, the antiproliferative protein BTG2 is a known cell cycle regulator,
involved in the G1/S transition [77]. Finally, the NENF protein product is a
neurotrophic factor involved in the growth and differentiation of neuronal progenitors
[78].

After comparing the individual nodes (genes) between the two networks, we
investigate the edges. The dasatinib network contains 10820 edges and the
mitoxantrone network contains 15308 edges, of these edges only 750 are shared
between the networks, indicating that the connectivity between the networks is highly
different.

Communities

It is well known that in real networks the nodes are not randomly connected with
each other. Rather, they are prone to form distinct clusters of nodes which are tightly
connected within each other, rather than the rest of the network. Such structures are
named communities or modules [79]. The same applies to molecular networks,
where genes that are highly interconnected (and, therefore highly co-expressed) are
likely to be, as well, co-regulated. Such a principle reflects a common functional
involvement of genes belonging to the same community. For this reason, the
identification of distinct gene communities within molecular networks (known as
“community detection”) became a fundamental step of network analysis in order to
functionally characterize such clusters of co-expressed genes.
In this case study, we performed a community detection in both of the networks by
employing an ensemble of community detection algorithms, in order to increase the
robustness of the identified communities. The employed algorithms are louvain [50],
infomap [47] and label_propagation [49] as implemented in the community module.
The consensus partitioning was estimated with the communities.fast_consensus()
function. Through this analysis we identified 4 co-expression communities in the
mitoxantrone network (min: 116, max: 349, median: 256) and 8 in the dasatinib one
(min: 4, max: 215, median: 139.5). The community partitionings are depicted in
Figure 17 and 18. Figure 19 shows the distance of the identified communities in both
networks in terms of nodes content, calculated by the Jaccard distance. The overall
similarity among communities is moderate-to-low, with the lowest distance between
the only exception for the communities indicated as mitoxantrone_A549_1 and
dasatinib_A549_1 communities (JID: 0.779XXX).
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Figure 17: Partitioning of the mitoxantrone network.
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Figure 18: Partitioning of the dasatinib network.

This result indicates that the treatment with mitoxantrone and dasatinib has a
different influence on the genes’ co-expression patterns and that it might lead to a
scarce functional resemblance, by deregulating distinct cellular processes. To verify
this assumption, we evaluated the enrichment of Reactome pathways through the
Panther enrichment API [56] with a Bonferroni correction and an applied p-value
cutoff of <= 0.05.

The results of this analysis are summarized in Table 7. As expected, communities
detected in the mitoxantrone network highlight the genotoxic effect of mitoxantrone
by inducing DNA double strand breaks and by, in turn, deregulating the normal cell
cycle activity. On the other hand, the functional characterization of the communities
in the dasatinib network highlight the involvement of such a chemotherapeutic drug
in the intracellular signaling processes. In fact, as a Tyrosine Kinase inhibitor,
dasatinib is known to act by inhibiting peculiar mitogenic signaling cascades
mediated by BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and
PDGFRβ kinases [80]. Our analysis also showed that dasatinib might also induce the
deregulation of genes belonging to the DNA damage recognition machinery.

https://sciwheel.com/work/citation?ids=6543499&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2921737&pre=&suf=&sa=0
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Figure 19: Jaccard Distance between the identified communities w.r.t. their nodes.

Table 7: Enriched pathways in the communities of the two networks.
Drug Cluster Enriched

Reactome
Pathway
Term

P Value FDR Number in
List

Number in
Reference

Expected

Mitoxantro
ne

0 Immune
System

0.003 0 74 2158 41.6

Mitoxantro
ne

0 DNA
Double
Strand
Break
Repair

0.005 0 14 148 2.9

Mitoxantro
ne

0 DNA
Repair

0.011 0 20 309 5.96

Mitoxantro
ne

0 Cell Cycle
Checkpoint
s

0.022 0 18 270 5.2

Mitoxantro
ne

0 G2/M
Checkpoint
s

0.029 0 13 150 2.9

Mitoxantro
ne

1 Immune
System

0.023 0 67 2158 38.7

Mitoxantro
ne

1 Metabolis
m of

0.037 0 62 1977 35.4
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proteins

Mitoxantro
ne

2 Disease 0.032 0 27 1126 10.9

Mitoxantro
ne

2 Fc-gamma
receptor
(FCGR)
dependent
phagocyto
sis

0.046 0 9 149 1.4

Dasatinib 0 Immune
System

0.046 0 43 2158 21.9

Dasatinib 1 Transcripti
onal
regulation
by RUNX2

0.006 0 10 117 1.4

Dasatinib 1 Disease 0.019 0 32 1126 13.6

Dasatinib 1 PTEN
Regulation

0.023 0 10 137 1.7

Dasatinib 1 PIP3
activates
AKT
signaling

0.034 0 13 248 3

Dasatinib 1 Intracellula
r signaling
by second
messenger
s

0.035 0 14 287 3.5

Dasatinib 4 Recognitio
n of DNA
damage by
PCNA-cont
aining
replication
complex

0.001 0 6 30 0.3

Dasatinib 4 Resolution
of AP sites
via the
multiple-nu
cleotide
patch
replaceme
nt pathway

0.011 0 5 25 0.2

Dasatinib 4 DNA
Damage
Bypass

0.013 0 6 48 0.4

4.3. Network Clustering
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In order to compare the responses of different cell lines to the same drug treatment,
we performed a clustering based on nodes, edges, structural properties as well as
subgraph areas (Figure 20). The 20 networks investigated in this study consist of
different cell lines as reported in Tables 4 & 6 and were treated with the same dose
of dasatinib (10 um) at the same time point (24h).

Figure 20: The networks are compared on four different aspects: nodes, edges,
structural properties and subgraph areas by means of random walks (A). For each
category different distance, similarity and correlation measures are calculated and
transformed into distances (B). These measures are merged into a combined
distance matrix (C). On the four individual distance matrices clustering is performed
with three clustering algorithms (D). The individual clusterings are merged into a
consensus clustering, yielding the final clustering (E).

First, the node rank positions (based on different centrality measures) between the
networks are explored. With this kind of analysis, VOLTA allows to compare the
networks based on the distribution of the centrality scores of their nodes. Degree-,
closeness- and betweenness centrality as well as their mean and median node ranks
are estimated with the get_node_similarity.sort_list_and_get_shared() function
(Figure 20A). Based on these values the kendall rank correlation between all
networks for the whole set of nodes is calculated with the
example_pipeline_warppers.get_node_similarity.estimate_similarities_nodes()
function. A correlation value for each of the individual centrality properties as well
their mean and median is returned. The computed correlation values are in [-1,1],
where a value of 1 indicates that the nodes are ranked in the same order, while a
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value of -1 indicates the opposite. In this way, networks whose nodes are highly
correlated are considered more similar between each other. The correlation matrix
based on the median ranks of all three centrality measures is converted into a
distance matrix (Figure 20B) via the transformation: distance d = (1- correlation)/2. In
this way the correlation is translated into [0,1], where a value of 0 indicates that the
nodes are ranked identical between two networks. This transformation is required
since the later used clustering algorithms require distance matrices as input.
Correlation analysis is effective on networks that share a significant amount of
nodes, by providing insight into a node's overall connectivity and importance in the
network. However not all possible network types contain the same nodes, where the
similarity between networks can be investigated based on their number of shared
and unique nodes. Therefore this function additionally estimates the Jaccard,
Hamming and SMC distances/similarity between the individual networks based on
their nodes. However the investigated networks in this study all contain the same
nodes,and therefore these metrics are omitted in this particular analysis.

Subsequently, edge similarities between the networks are investigated (Figure 20A).
Since for this analysis unweighted networks are provided, edge weights are
assigned to each edge based on their edge betweenness values. Then, shared
edges and a binary edge representation for each network are estimated via the
example_pipeline_wrappers.get_edge_similarity.sort_list_and_get_shared() function.
Edge weights are not considered in this step. The output of this function output is
given as input to the
example_pipeline_wrappers.get_edge_similarity.estimate_similarities_edges()
function, which returns the Jaccard, Hamming and SMC distance/ similarity between
the existing edges of the networks as well as a percentage value of shared edges
between each pair of input networks (Figure 20B). In contrast to the node
comparison, where all networks shared the same nodes and therefore these
distances were of low importance, they are significant when comparing the networks
w.r.t. to their edges, since non complete networks are compared. This provides
insight if the same nodes are connected through the same edges or not, which can
provide insight into the underlying molecular interactions. Additionally, the Kendall
rank correlation based on edge betweenness values of the top 100 edges is returned
(this selection can differ between the networks) (Figure 20B). If weighted networks
are provided the edges can be compared directly based on their edge weight
rankings. The correlation values are again transformed into a distance with the same
formula as used in the previous step. Additionally the similarity values are converted
into a distance through the transformation: distance d = 1 - similarity. The four
individual measurements are combined into a single distance matrix through the
clustering.create_median_distance_matrix() function (Figure 20C). This is done so
that the clustering at the end will receive the same amount of input distance matrices
for each of the four categories (Figure 20A) on which a consensus clustering is
performed.
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As a next step, the topological/structural similarities between the networks are
compared. For each network a feature vector, based on a variety of topological
measures is computed with the
example_pipeline_wrappers.get_network_structural_vector.estimate_vector()
function (Figure 20A). This function computes the graph size (radius, diameter,
number of nodes and number of edges), the density, the average clustering, the
percentage of existing and non existing edges in comparison to a complete graph,
number of cycles and their size (number of edges a cycle is made up of) distribution
(mean, median, standard deviation, skewness and kurtosis of cycle size), shortest
path distribution (mean, median, standard deviation, skewness and kurtosis),
clustering coefficient, degree distribution (mean, median, standard deviation,
skewness and kurtosis), closeness centrality distribution (mean, median, standard
deviation, skewness and kurtosis), betweenness centrality distribution (mean,
median, standard deviation, skewness and kurtosis). Between these vectors, the
euclidean, canberra, correlation, cosine and jaccard distance are estimated with the
example_pipeline_wrappers.get_network_structural_vector.matrix_from_vector()
function (Figure 20B) and combined into a median distance matrix through the
clustering.create_median_distance_matrix() function (Figure 20C).

The final category focuses on subgraph areas (Figure 20A). For each common node
between every network pair (in the case of the investigated networks all nodes are
shared), 3 times node degree random walks of length 5 are performed, with the
example_pipeline_wrappers.get_walk_distances.helper_walks() function. By
estimating the number of walks for each node based on its degree the subarea of
each node is explored in a comparable fashion. A short walk length is selected in
order to limit the area to be explored. These parameters can be selected by the user
as needed. For each start node, the visited nodes and edges are counted, ranked on
their occurrence and the Kendall rank correlation for the top 10 visited nodes and
edges is estimated with the
example_pipeline_wrappers.get_walk_distances.helper_get_counts() and
example_pipeline_wrappers.get_walk_distances.helper_walk_sim() function
between each network pair for the same starting node (Figure 20B). Again, these
two measurements (nodes and edges) are transformed into a distance with the
above transformation and combined into a single distance matrix (Figure 20C), as
explained in the previous steps.

After the individual distance matrices of the four categories have been calculated, a
consensus clustering is performed (Figure 20D). First, parameter optimization is run
with the help of the clustering.multiobjective() function for the hierarchical clustering
(clustering.hierarchical_clustering()) and k-medoids
(clustering.kmedoids_clustering()) clustering algorithm. The multiobjective function
has multiple parameters, a user can select, to perform parameter selection of
clustering algorithms. Here we optimized to have high within cluster similarity, low
between cluster similarity and an even cluster size distribution. Since the affinity
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propagation algorithm (clustering.affinityPropagation_clustering()) does not contain
any parameters, it is not included in the parameter optimization round. After the best
parameters for each of the algorithms have been selected, each algorithm is run 10
times on each of the four created distance matrices. This is performed since some of
the used clustering algorithms have randomness. Multiple runs of the same
algorithm can therefore provide different clusterings, which are considered during the
consensus clustering. The algorithms not containing randomness are run the same
amount of times to ensure each algorithm is valued equally during the consensus
clustering step. Based on the 120 individual clusterings, a consensus clustering is
created (Figure 20E) through the clustering.consensus_clustering() function, its
implementation is based on Brain Connectivity Toolbox for Python
(https://github.com/aestrivex/bctpy). The consensus_clustering algorithm first
constructs an agreement graph, where each network is represented as a node and
an edge between two nodes is weighted by the fraction of clusterings these two
nodes (networks) are clustered together. The function provides different options on
how to prune the agreement graph, here it is set to “matrix”, which indicates a
threshold (to identify weak edges) is estimated based on a permutation of the
adjacency matrix. On the pruned graph community detection via the louvain [50]
algorithm is performed (here 10 times) and the process is continued until a
convergence is reached. Since the clustering algorithms as well as some of the
distance estimation matrices contain a certain degree of randomness, the final
results will vary slightly for each run.

As shown in Table 8, we obtained 3 distinct clusters (clusters 0, 1 and 2) of networks.
Arguably, such clusters reflect both the tissue of origin and the disease status of the
cell line. Cluster 1 mainly contains networks representing breast cancer cell lines,
with the exception of MCF7 cells, falling into cluster 0. Malignant melanoma cell line
A375 also belongs to the cluster 1. On the other hand, cluster 2 is populated by
networks representing normal cell lines of different origin, spanning from the central
nervous system to the adipose tissue. These results suggest that the tissue of origin,
even across different cell lines, determines common patterns, which are particular of
the tissue. As well, this is evident from the cellular status, since all of the networks
belonging to cluster 2 represent non-transformed cell lines. This might highlight that
such networks could contain patterns underlying physiological (or
quasi-physiological) cellular processes. Such common graph patterns are explored
in section 3.4.

Table 8: Clustering of the 20 Cell lines treated with dasatinib.

Cell Line
treated with
dasatinib

Assigned
Cluster

Origin Satus Morphology

https://sciwheel.com/work/citation?ids=86797&pre=&suf=&sa=0
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HEPG2 0 liver hepatocellular
carcinoma

epithelial-like

HCC515 0 lung adenocarcino
ma

epithelial

MCF7 0 breast adenocarcino
ma

epithelial

PC3 0 prostate adenocarcino
ma

epithelial

HA1E 0 kidney normal epithelial

HT29 0 colon colorectal
adenocarcino
ma

epithelial

A549 0 lung carcinoma epithelial-like

MCF10A 1 breast fibrocystic
disease

epithelial

BT20 1 breast carcinoma epithelial

HS578T 1 breast carcinoma epithelial

A375 1 skin malignant
melanoma

epithelial

SKBR3 1 breast adenocarcino
ma

epithelial

MDAMB231 1 breast adenocarcino
ma

epithelial

NPC 2 central
nervous
system

normal neural
progenitor
cells

NEU 2 central
nervous
system

normal neuronal cells

SKL 2 skeletal
muscle cells

normal muscle cells

CD34 2 bone normal hematopoietic
stem

ASC 2 adipose tissue normal fibroblast-like
stem cells
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HUVEC 2 vascular
system/
umbilical cord

normal endothelial

HME1 2 breast normal epithelial-like

4.4. Investigating a group of networks
In order to showcase VOLTA’s capability to identify properties that characterize a set
of graphs, the networks grouped in cluster 1 of Table 8 are investigated more closely.
First, we look into which structures are statistically overrepresented in these
networks. For each edge, its p-value based on the hypergeometric function as well
as the Benjamini - Hochberg correction [55] is calculated with the
pattern_matching.get_statistical_overrepresented_edges() function. Afterwards, all
edges with an associated p-value of less or equal to 0.05 are selected and a new
graph representing this cluster is constructed (1.4). This graph is depicted in Figure
21, plotted with the plotting.plot_graph() function.
The newly created graph is investigated for its most central genes. The top ten
ranked nodes based on their median degree, closeness and betweenness ranking
are shown in Table 9. Interestingly, some of the most central genes of the cluster 1
are involved in processes related to cell cycle, differentiation and metabolism. For
instance, the RAB21 gene belongs to the RAS oncogene family and it is involved in
cell motility and adhesion processes. It is associated with glioma tumors and
aberrant expression of this gene is associated with poor prognosis [81]. Discoidin
Domain Receptor Tyrosine Kinase 1 (DDR1) gene product belongs to a subfamily of
tyrosine kinase receptors. It is involved in the regulation of cell growth and
differentiation and has been associated with a number of human cancers, including
meningeal sarcoma and breast carcinoma [82].

https://sciwheel.com/work/citation?ids=6279401&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10754803&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3150475&pre=&suf=&sa=0
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Figure 21: Network, made up of statistically significant edges overrepresented in
cluster 1.

Table 9: The top most central nodes in the cluster 1 network, based on the median
ranking of degree, closeness and betweenness centrality.

Entrez ID Gene Symbol

5048 PAFAH1B1

23011 RAB21

6253 RTN2

10969 EBNA1BP2

780 DDR1

9761 MLEC

24138 IFIT5

1152 CKB

7398 USP1

23271 FMO2
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For each network in cluster 1, the louvain community detection algorithm is run 10
times and a consensus clustering is created. This was computed with the
pattern_matching.get_consensus_community() function. In total 4 communities
(community 0-3) are detected of size 288, 149, 231 and 309. The communities are
functionally enriched through the Panther enrichment API [56] against Reactome
Pathways by applying a Bonferroni correction, of which two of the clusters enrich
statistically significantly (p-value <= 0.05) for Reactome pathways. The enriched
pathways are displayed in Table 10.

As shown in Table 10, the enriched terms on the communities 2 and 3 indicate a
marked deregulation of immune-related pathways, together with cell cycle and DNA
repair machinery. Indeed, while community 2 is enriched by genes involved in
cytokine signaling and mitogenic signaling (M Phase and MAPK signaling pathway),
community 3 is additionally enriched by genes involved in transcription-coupled
nucleotide excision repair processes. These results indicate that communities 2 and
3 are characterized by a marked footprint of cell transformation together with the
involvement of the immune compartment, arguably activated in response to such
transformation and hyperproliferation, typical of malignant phenotypes.

Table 10: Community Enrichment of Reactome Pathways
Community Enriched Reactome

Pathway Term
PValue Number in

List
Number in
Reference

Expected

2 Cytokine Signaling in
Immune system

0.00009 32 823 10.5

2 M Phase 0.04 16 352 4.5

2 MAPK family signaling
cascades

0.04 14 276 3.53

3 Immune System 0.000001 76 2158 36.0

3 Cytokine Signaling in
Immune system

0.0002 37 823 13.7

3 DNA Repair 0.0003 21 309 5.16

3 Innate Immune System 0.002 42 1105 18.5

3 Transcription-Coupled
Nucleotide Excision Repair

0.003 10 78 1.3

3 Gap-filling DNA repair
synthesis and ligation in
TC-NER

0.006 9 64 1.1

3 Dual incision in TC-NER 0.007 9 65 1.1

3 Signaling by Interleukins 0.008 23 447 7.5

https://sciwheel.com/work/citation?ids=6543499&pre=&suf=&sa=0
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3 Gene expression
(Transcription)

0.008 49 1451 24.2

3 Signal Transduction 0.009 77 2728 45.6

3 Nucleotide Excision Repair 0.011 11 110 1.8

3 Base Excision Repair 0.012 9 70 1.2

3 Resolution of Abasic Sites
(AP sites)

0.012 7 36 0.6

3 Hemostasis 0.05 28 669 11.2
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