

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Socio-demographic and environmental risk factors accounting for the co-existence of wasting, stunting, and underweight in children under five: Analysis of crosssectional surveys from 31 sub-Saharan African countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052267
Article Type:	Original research
Date Submitted by the Author:	20-Apr-2021
Complete List of Authors:	Amadu, Iddrisu; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Seidu, Abdul-Aziz; University of Cape Coast, Department of Population and Health; James Cook University, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Duku, Eric; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Frimpong, James Boadu; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Hagan Jnr., John; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Aboagye, Richard ; University of Health and Allied Sciences, School of Public Health, University of Health and Allied Sciences, Ho, Ghana Ampah, Belinda; Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, Ne, Z, Esiama, Ghana Adu, Collins; Kwame Nkrumah University of Science and Technology, Department of Health Promotion and Disability Studies Ahinkorah, Bright; University of Technology Sydney, School of Public Health, Faculty of Health, University of Technology Sydney, NSW, Australia.
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, Child protection < PAEDIATRICS

1	
2	
4	SCHOLAR ONE [™]
5	Manuscripts
6	
7	
8 9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
⊃∠ 53	
54	
55	
56	
57	
50 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Review only

2		
3	1	Socio-demographic and environmental risk factors accounting for the co-existence of
4	2	wasting, stunting, and underweight in children under five: Analysis of cross-sectional
5	2	survovs from 21 sub-Sabaran African countries
6	5	surveys noni 31 sub-sanaran Annean countries
/	4	Iddrisu Amadu ^{1,2} , Abdul-Aziz Seidu ^{3,4} , Eric Duku ^{1,2} , James Boadu Frimpong ⁵ , John Elvis
0 0	5	Hagan Ir ^{5,6} , Richard Gyan Aboagye ⁷ , Belinda Ampah ⁸ , Collins Adu ⁹ , Bright Opoku
9 10	5	Abinkorahlo
10	-	Allinkolali
12	/	
13	8	¹ Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast,
14	9	Ghana
15	10	² Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of
16	11	Agriculture and Natural Sciences, University of Cape Coast, Ghana
17	12	³ Department of Population and Health, College of Humanities and Legal Studies,
18	12	University of Cape Coast Chana
19	1.0	4 Allege of Public Health Medical and Veterinany Sciences, James Cook University
20	14	"College of Public Health, Medical and Veterinary Sciences, James Cook University,
21	15	Townsville, Queensland, Australia
22	16	⁵ Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape
23	17	Coast, Ghana
25	18	⁶ Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology and
26	19	Sport Sciences, Bielefeld University, Bielefeld-Germany
27	20	7School of Public Health, University of Health and Allied Sciences, Ho. Ghana
28	20	⁸ Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7, Esiama
29	21	Change Ch
30	22	
31	23	⁹ Department of Health Promotion, Education and Disability Studies, Kwame Nkrumah
32	24	University of Science and Technology, Kumasi, Ghana
33	25	¹⁰ School of Public Health, Faculty of Health, University of Technology Sydney, NSW,
34 25	26	Australia.
36	27	
37	28	*Corresponding author
38	20	
39	29	
40	30	
41	31	IA: iddrisu.amadu@stu.ucc.edu.gh
42	27	*AS: abdulaatiz seidu@stu ucc edu gb
43	22	FD. orig duku@stu.ucc.edu.gh
44	33	
45	34	JBF: trimpongboadujames@gmail.com
40	35	JEH: elvis.hagan@ucc.edu.gh
47 78	36	RGA: raboagye18@sph.uhas.edu.gh
40	37	BA: oyebel@gmail.com
50	38	CA: collinsadu80@yahoo.com
51	39	BOA: brightahinkorah@gmail.com
52	10	
53	40	
54	41	
55		
56	42	
57	40	
58	43	
59 60	44	
00		

45 ABSTRACT

Objective: This study investigated the socio-demographic and environmental risk factors
47 of the co-existence of wasting, stunting, and underweight among children under age five
48 in sub-Saharan Africa.

Methods: Data from 31 sub-Saharan African countries were pooled from the Demographic
 and Health Surveys (DHS) collected between 2010 and 2019. We examined the risk of co existence of malnutrition using multinomial logistic regression models, withresults
 presented as relative risk ratios (RRR) with their respective confidence intervals.

¹⁵ 53 **Outcome meaures:** The outcome variables were three child anthropometrics: stunting
 ¹⁶ 54 (height-for-age z-scores); wasting (weight-for-height z-scores); and underweight (weight ¹⁷ 55 for-age z-scores).

Results: The prevalence of co-existence of stunting, wasting and underweight varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, wasting, and underweight as Benin (12.14%) and Gambia (0.58%) respectively. The risk of co-existence of the three malnutrition dimensions was higher among children age 1 year compared to those aged 0. Children who were females were less likely to have a co-existence of the three dimensions of malnutrition compared to their male counterparts. The risk of co-existence of the three dimensions was higher among children with small size at birth, those whose mothers had no education, not working, had no antenatal visits during pregnancy, children delivered at home, those whose mothers were poor, had no access to media, and children whose mothers had unimproved toilet facility.

Conclusion: Findings suggest context nutrition-specific interventions such as complimentary feeding, dietary supplementation and increasing dietary diversity to promote children feeding practices in the studied countries are warranted. Planned interventions should prioritize all the identified factors noted in the current study to help reduce the risks of co-existence of stunting, wasting, and underweight among children under age 5.

40
 72 Keywords: co-existence; wasting; stunting; underweight; children under five; sub-Saharan
 41
 42
 73 Africa

Stren	gth and Limitations
•	The use of nationally representative data ensures that our find are generalizable and replicable in the 31 SSA countries include this study.
•	Findings contribute to bridging the gaps identified in the curr research on CNS by including multiple indicators (stunting, wast and underweight) in the concurrent measurement of our outco variable, compared to the unitary assessment on malnutrition to currently dominates literature.
•	The study relied on secondary data, the analysis was limited to a variables that were in the dataset. Hence, interpretations inferences made from current findings must be limited to a these observed variables.
•	Also, the DHS employs cross-sectional designs which rest causality on the noted outcomes.
•	The key variables were self-reported by the mothers, therefore, there is the likelihood of recall bias and other so desirability concerns in the present study.

BACKGROUND

Malnutrition among children under 5 years remains a major public health problem across many developing countries¹⁻³. Factors such as insufficient food intake, diarrhoea, recurring infections, poor sanitation practices, and low parental education have been identified as significant contributors to the high prevalence of malnutrition during childhood^{1,4,5}. Despite the numerous interventions rolled out to address childhood malnutrition especially in sub-Saharan Africa where the phenomenon is quite pervasive, the progress seems to be insignificant^{6,7}. For example, a study reported that child malnutrition accounted for nearly half (45%) of child mortality rate in developing countries⁸. Aside from that, it was reported in 2018 that about 149 million and 49 million children under age 5 were stunted and wasted respectively9.

Three main indicators that are often used to represent malnutrition are underweight or low weight for age, stunting or low height for age, and wasting or low weight for height^{2,10-} ¹². Among the three indicators of malnutrition, stunting has been identified as the problem with the greatest magnitude among under 5 children in developing countries^{2,3}. Even though the prevalence of stunting in sub-Saharan Africa is declining, it is worth noting that it is still above 30%¹³ which is undeniably high. Research also indicates that the country-specific prevalence of wasting, underweight, and stunting is still high^{2,3}. For instance, in Ethiopia, the prevalence of wasting and stunting were 10% and 38% respectively¹⁴. Additionally, the prevalence of stunting, underweight and wasting among children in South Africa were 35.8%, 20.5%, and 17.2%³. Likewise, Anin et al.² reported 33.2%, 14.1%, 27% and 2.6% of prevalence in stunting, wasting, underweight and overweight among infants (6-23 months) across Northern Ghana.

Previous studies have investigated the socio-demographic and environmental risk factors associated with wasting, stunting and underweight among children under 5 years and found the age of a child, sex of the child, child's size at birth, mother's age during childbirth, mother's educational level, birth order, place of residence and mother's body mass index (BMI) as associated factors^{1-3,15,16}. Other studies also found significant linkage between household wealth quintile and maternal short stature, and nutritional status of children under 5^{17,18}. Regarding the sex of child, for example, female children were found to be less likely to suffer from stunting compared to males^{1,3}.

Despite the detrimental consequences of malnutrition on the health and wellbeing of children under 5, it appears few studies have utilised current nationally representative data from a larger sample to investigate the socio-demographic and environmental risk factors associated with stunting, underweight and wasting among this age group, making it difficult for policymakers and nutritional experts to provide up-to-date trends with appropriate strategies to curb the situation in the sub-region. This research lag presents a void in extant literature which this study seeks to bridge.

Therefore, the study investigated the socio-demographic and environmental risk factors of the co-existence of wasting, stunting, and underweight among children under age 5 in sub-Saharan Africa using data from the Demographic Health Survey (DHS) conducted in 31 countries between 2010 and 2019. The findings of the study could contribute to the formulation of policies and interventions to respond to the nutritional needs of children

under 5 years and also suggest pragmatic ways of reducing malnutrition among childrenin the sub-region.

Malnutrition is one of the pervasive and leading causes of death, especially among children. Globally, more than half of child mortally is attributed to malnutrition¹⁹. In developing countries, especially, in Africa, the prevalence of nutritional insecurity among children is staggering. According to studies^{20,21}, SSA accounts for a disproportionate number of children suffering from malnutrition in the world. The situation is more alarming as the co-existence of stunting, wasting and underweight and other diet-related (double burden) is increasingly becoming prevalent². The World Health Organization (WHO) report²² indicates that aggressive actions are needed to address the double burden of malnutrition to achieve the 6 global nutrition targets by 2025. This call underscores the need for more research that provides useful insights that could inform policy actions and intervention programming. Studies have examined the independent prevalence of stunting, wasting, and underweight and the risk factors associated with each of them among children under the age of 5years in sub-Saharan African countries²¹. However, the "multiple burdens", that is, the co-existence of the three conditions among children under the age of 5 years in SSA has received little attention. Here, we analyze the prevalence of the co-existence of stunting, wasting, and underweight among children under the age of 5years and the risk factors associated with it in SSA.

28 144

30 145 **METHODS**

32 146 **Data Source**

Data of 127,487 children under the age of 5 years from 31 sub-Saharan African countries were pooled from the most current Demographic and Health Surveys (DHS) conducted between 2010 and 2019 (Table 1). Specifically, the data were pooled from the children's file in each of the countries. The DHS Program has conducted over 400 surveys in over 90 developing countries around the world since 1984 every five years²³. The program implements cross-sectional surveys to gather nationally-representative data, analyze and disseminate accurate information on important demographic and health indicators spanning population, nutrition, and diseases. For all surveys, standardized protocols designed for each target group including children, women, and men at the household level are employed to allow for cross-national comparisons. Stratified two-stage sampling involving first, the listing of enumeration areas and selection of clusters, and then a random selection of households in each cluster. The detailed sampling method can be found in a previous study²⁴. The dataset is freely available for download at: https://dhsprogram.com/data/available-datasets.cfm. The Strengthening Reporting of Observational Studies in Epidemiology (STROBE) guidelines were followed in writing the manuscript²⁵.

167 Study Variables

Outcome Variable

The outcome variable considered in this study is derived from three child anthropometric variables including stunting (height-for-age z-scores); wasting (weight-for-height z-scores); and underweight (weight-for-age z-scores). The DHS (2021) specifies categorization for each of these variables following the WHO child growth standard. Following this standard, the three variables were first coded as follows:

i. Stunting: children with height-for-age z-scores below minus 2 (-2.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (moderately or severely stunted) and children with height-for-age z-scores below minus 3 (-3.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (severely stunted) were combined to form the response group "Stunt" while those height-for-age z-scores higher than minus 2 (-2.0) standard deviations (SD) greater than the mean on the WHO Child Growth Standards were regarded as "normal". These response categories were coded as o "Normal" and 1 "Stunt".

ii. Wasting: children with weight-for-height z-scores below minus 2 (-2.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (moderately or severely wasting) and children with weight-for-height z-scores below minus 3 (-3.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (severely wasting) were combined to form the response group "Wasting" while those weight-for-height z-scores higher than minus 2 (-2.0) standard deviations (SD) greater than the mean on the WHO Child Growth Standards were regarded as "Normal". These two response categories were coded as o "Normal" and 1 "Wasting"

iii. Underweight: children with weight-for-age z-scores below minus 2 (-2.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (moderately or severely underweight) and children with weight-for-age z-scores below minus 3 (-3.0) standard deviations (SD) less than the mean on the WHO Child Growth Standards (severely underweight) were combined to form the response group "Underweight" while those weight-for-age z-scores higher than minus 2 (-2.0) standard deviations (SD) greater than the mean on the WHO Child Growth Standards were regarded as "Normal". These two response categories were coded as o "Normal" and 1 "Underweight". For each of these variables, missing and "flagged" responses were deemed invalid and dropped.

These three variables were then added to generate the outcome variable "Co-existed malnutrition" with scores (discrete) ranging from 0 to 4 where 0 implies "Normal", that is, children with none of the three conditions; 1 implies "Single burden", that is, the child suffers from one of the three conditions; 2 indicates that child suffers from "Two burdens" out of the three; and 3 shows "Co-existed", that is, the child suffers from all three conditions of malnutrition. For parsimony, children who suffered from "Single burden" and those who suffered from "Two burdens" were added resulting in the variable "Co-existed malnutrition" with three response categories: 0=Normal; 1=One or two burdens; and 3=co-existed.

- 58 208
- 60 209

210 Independent Variables

Several risk factors spanning socio-demographic and environmental have been associated with child malnutrition. The relevant biosocial characteristics and sociocultural factors related to the child, mother, household head and the household together form compositional factors^{26,27}. Factors that describe location or "place-based" variables are contextual factors^{26,28,20}. In this study, contextual and composition factors except household-level characteristics related to environment and sanitation are categorized as "Socio-demographic risk factors". Socio-cultural household characteristics related to environment and sanitation are categorized as "Environmental risk factors".

15219 Socio-Demographic Risk Factors

The relevant variables under socio-demographic risk factors considered include the age of the child (0, 1, 2 and 4); sex of child (female and male); birth order of child (1, 2 to 4, and 5 and above); perceived size at birth (small, average and large (see¹⁵); mother's age (re-coded into two categories "15-19" years and "20-49" years); educational attainment (no formal, primary, secondary and higher); working status (yes and no); antenatal visits during pregnancy (yes and no); postnatal check within 2 months (yes and not); and place of delivery (home, health facility, other). At the household level, relevant variables included are the wealth status (recode as "poor", "middle" and "rich"); the age of household head (recode as ages below 35 years "young adults", between 35 and 55 years "middle-aged adults" and those above 55 years "Old-aged adults" (see²⁸); sex of household head (male and female); access to electricity (yes and no); and access to media (yes, no) which was derived from the three variables "access to television", "radio" and "newspaper". The contextual factors considered are Urbanicity (rural and urban) and the country of origin of the participant.

234 Environmental Risk Factors 36

We considered the following variables: type of toilet facility (re-coded into "improved" and unimproved" (see²⁸); source of drinking water (re-coded as "improved" and "unimproved" (see²⁸); and type of household cooking fuel (re-coded into "clean" and "unclean" (see28,30) under the category "environmental risk factors"

43 239 **Data Analyses**

The statistical analysis of the data was performed using the Stata SE software version 14.2. The "svyset" command was first used to declare the data as survey data to prevent the potential effects of the complex sampling techniques on the analyses. To understand the distributions of the variables, the data were summarized and presented in tables using descriptive statistics (frequencies, weighted percentages, and 95% confidence intervals (CIs) of percentages). We further integrated the data into a GIS environment and presented the distribution of key variables across the study countries in map images. This approach enhances the visualization of the data and understanding of the context of the study. The associations between the co-existence of malnutrition and each of the risk factors considered were assessed using the chi-square test of independence, with results presented in a contingency table. The risk factors as independent variables were then subjected to collinearity diagnosis tests, including Variance Inflation Factors (VIF), Square VIF, Tolerance, and R-squared. To determine the socio-demographic and environmental

risk factors associated with the co-existence of malnutrition, a multinomial regression model was implemented. The sample weight variable was used to adjust for potential over-and under-sampling. All statistical tests were conducted at p<0.05.

Ethical Approval

 DHS reports ethical clearance are provided by the Ethics Committee of ORC Macro Inc. as well as Ethics Boards of partner institutions (e.g., Ministries of Health) from studied countries. The DHS procedures require that principles for the protection of respondents' anonymity and confidentiality are adhered. Inner City Fund International also guarantees that the survey protocols meet the United States Department of Health and Human Services' regulations for the respect of human subjects. The current study used a secondary data, hence, no further ethical approval was sought. The datasets are freely available for download and usage at https://dhsprogram.com/data/available-datasets.cfm.

Table 1: Distribution of socio-demographic, environmental and contextual variables

22			<i>`</i>	Variable				
23 24	Variable (N=127,487) n	%	(N=127,487)	n	%		
25	Socio-demographic	factors		Access to media (tv/radio/newspaper)				
26	Age of child			Yes	45,043.56	35.33		
27	0	39,353.73	30.87	No	82,443.74	64.67		
28	1	36,230.39	28.42	Urbanicity	,			
29 30	2	25,774.66	20.22	Urban	42,343.17	33.21		
31	3	15,811.30	12.4	Rural	85,144.13	66.79		
32	4	10.317.23	8.09	Country	57 11 5	, ,		
33	Sex of child		,	Angola	7,318,29	5.74		
34	Male	64.348.16	50.47	Benin	15.472.88	12.14		
35 36	Female	63,130,14	40.53	Burkina Faso	8,907,87	6.00		
37	Birth order	4110	73.77	Burundi	/ 171 03	2,25		
38	1	24 882 00	10 50	Cameroon	2 010 62	/ 2·2/ אר ר		
39	, , to 4	24,003.00 61.208.45	19.52	Chad	2,910.03	2.20		
40	2 to 4	41 205 86	40.09	Cilau	5,990.00	4.71		
41	5 dilu above Derseived size at	41,295.00	32.39	Comoros	1,319.47	1.03		
42	Perceived size at			C				
43	DIRTN			Congo	2,608.83	2.05		
45	Large	42,978.82	33.71	Cote d'Ivoire	2,174.34	1.71		
46	Average	63,409.91	49.74	DR Congo	4,805.87	3.77		
47	Small	21,089.84	16.54	Ethiopia	6,572.69	5.16		
48	Mother's							
49	characteristics			Gabon	1,959.93	1.54		
50 51	Maternal age			Gambia	742.5298479	0.58		
51 52	15-19	9,092.47	7.13	Ghana	1,896.02	1.49		
53	20-49	118,394.83	92.87	Guinea	2,236.99	1.75		
54	Educational	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>.</i>		, , , , , , , , , , , , , , , , , , , ,			
55	attainment			Kenva	6.065.78	4.76		
56	No education	53,320,68	41.82	Lesotho	1.011.75	0.79		
5/	Primary	30 8/17 27	31.26	Liberia	1 0/15 06	153		
50 59	Secondary	20 265 61	רצ בר	Malawi	1 026 JE	رر ۱۶ د		
60	Higher	2 052 74	23.02	Mali	4,020.73 E 6E2 22	2.10		
	Inghei	2,922./4	5.1	mall	2,022,22	4.43		

1 2							
3		Working status			Namihia	005 1025662	0.71
4		No		25.40	Nigoria	905.1925003	0.71
5		NO	45,209.54	35.49	Ruanda	/,3/9.03	5.79
6		res Antonotologisto domin	02,1/5.43	04.51	RWallua	4,400.42	3.40
/ 8		Antenatal visits during	g		C		
9		pregnancy			Senegal	1,943.55	1.52
10		No	13,710.30	10.76	Sierra Leone	2,689.41	2.11
11						854.964580	_
12		Yes	113,759.99	89.24	South Africa	7	0.67
13		Postnatal check withi	n 2 months		Tanzania	6,060.69	4.75
14 15		No	74,571.69	58.49	Togo	2,220.15	1.74
16		Yes	52,915.61	41.51	Uganda	2,890.85	2.27
17		Place of delivery			Zambia	6,347.36	4.98
18		Home 🦯	39,934.13	31.33	Zimbabwe	3,986.95	3.13
19		Health facility	86,065.94	67.51	Environmental f	actors	
20					Type of toilet		
21 22		Other	1,481.88	1.16	facility		
23		Wealth status			Improved	54,131.64	42.47
24		Poor	54,066.08	42.41	Unimproved	73,331.75	57.53
25		Middle	25,855.00	20.28	Source of drinki	ng water	2. 22
26		Rich	47.566.22	37.31	Improved	83.659.77	65.63
27 29		Age of household	1775	515	F	2, 29,77	
20		head			Unimproved	43.815.68	34.37
30					Type of cooking	1510-510-0	51.57
31		Young-adults	54,020,16	43.08	fuel		
32		Middle-aged adults	55 787 81	43 76	Clean	111 121 88	80 76
33 24		Old-aged adults	16 778 46	12 16	Unclean	13 0/0 03	10.74
34 35		Sev of household	10,770.40	13.10	Geographic	1,049.05	10.24
36		bood			rogion		
37		Mala	101 608 76	70 77	Western		44 78
38		Male	101,090.30	/9.//	Vestern	53,202.07	41.70
39			25,/00.94	20.23	Control	41,003.95	32.04
40 1		Access to electricity		(25,602.42	20.08
42		NO	88,219.82	69.2	South Africa	6,/58.86	5.3
43		Yes	39,257.69	30.8			
44	268						
45 46	269	***Figure 1***					
47 48	270	***Figure 2***					
49 50	271	Patient and public invo	olvement				
51 52	272	Patients and the public	were not invo	olved in t	he design and con	duct of this resea	rch
53 54	273	Results					
55	274	Descriptive Analysis on	the Prevalence	e of Co-ex	kistence of Stuntin	ng, Wasting and	
56	275	Underweight Varied ac	ross Countries	and Sub-	Regions		
57	276	The prevalence of co	-existence of	stunting	, wasting and u	nderweight varie	d across
28 59	277	countries and sub-regi	ions, with the	highest	and lowest prev	alence of co-exis	tence of
60	278	stunting, wasting, and	underweight	as Beni	n (12.14%) and Ga	mbia (0.58%) res	pectively

(Figure 1). In terms of sub-region, the highest prevalence of co-existence of stunting,
wasting, and underweight was observed in Western Africa (41.78%) and the lowest
prevalence in Southern Africa (5.3%) (Figure 2). Significant associations between all the
independent variables and co-existence of stunting, wasting, and underweight, except
maternal age and age of household head were identified (Table 2).

Multinomial Logistic Regression Results of Risk Factors for Co-existence of One and a Co Existence of Two Dimensions of Malnutrition

Table 3 shows the results of the multinomial regression analysis of the risk factors of co-existence of dimensions of malnutrition (stunting, wasting, and underweight) among children under five years in the SSA. Children aged 1year [RRR = 2.008, 95% CI = 1.930, 2.089], two years [RRR = 2.624, 95% CI = 2.514, 2.739], three years [RRR = 2.122, 95% CI = 2.018, 2.231], and four years [RRR = 1.504, 95% CI = 1.417, 1.597] were more likely to have one or two dimensions of the malnutrition. The risk of having one or a coexistence of two dimensions of malnutrition was higher among children with average size at birth [RRR = 1.320, 95% CI =1.276, 1.365] and small size at birth [RRR = 1.931, 95% CI =1.846, 2.020] compared to those with large size at birth. Compared to children whose mothers had attained higher educational level, the risk of developing one or a coexistence of two malnutrition dimensions was higher among children whose mothers had no education [RRR = 2.624, 95% CI = 2.305, 2.987], primary [RRR = 2.189, 95% CI = 1.927, 2.487], and secondary [RRR = 1.751, 95% Cl = 1.545, 1.987] educational attainment respectively. However, this risk decreased with increasing educational attainment. The risk of developing one or a coexistence of two malnutrition dimensions was lower among children who were females [RRR = 0.752, 95% CI = 0.731, 0.775], those with second birth order [RRR = 0.938, 95% CI = 0.896, 0.981], those whose mothers were aged 20-49 years [RRR = 0.834, 95% CI = 0.780, 0.891], those whose age of household head was middle-aged [RRR = 0.954, 95% CI = 0.921, 0.987], and those whose source of drinking was unimproved [RRR = 0.959, 95% CI = 0.928, 0.990].

Also, children whose mothers did not visit the antenatal clinic during pregnancy [RRR = 1.139, 95% CI = 1.079, 1.201], those whose parents delivered at home [RRR = 1.183, 95% CI = 1.137, 1.230], those whose mothers had poor wealth status [RRR = 1.297, 95% CI = 1.25, 1.361], had middle wealth status [RRR = 1.195, 95% CI = 1.138, 1.254], had no access to media [RRR = 1.079, 95% CI = 1.042, 1.117], had no access to electricity [RRR = 1.136, 95% CI = 1.083, 1.191], used unclean type of cooking fuel [RRR = 1.177, 95% CI = 1.089, 1.271], and those from rural areas [RRR = 1.050, 95% CI = 1.006, 1.095] had higher risk of reporting one or a coexistence of two malnutrition dimensions.

Children from Burundi and Congo DR were at higher risk of developing one or co-existence
 of two malnutrition dimensions compared to those from Angola. Lower risk was however
 reported among children from the remaining countries studied except for Chad, Comoros,
 Nigeria, and Rwanda, where no statistical significance was found.

54 318 Co-existence of Three Dimensions of Malnutrition 55

Regarding the co-existence of the three dimensions of malnutrition (stunting, wasting, and underweight), age of the child, sex of the child, perceived size of birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility were found to be

2		
3	323	significant risk factors. The risk of co-existence of the three malnutrition dimensions
4 5	324	decreases with the increasing age of children. Thus, children aged 1 year [RRR = 3.714 95%
6	325	CI = 3.319, 4.156], 2 years [RRR = 2.739, 95% CI = 2.480, 3.222], and 3 years [RRR = 1.464, 95%
7	326	CI = 1.227, 1.748] were at greater risk of having co-existence of all the three forms of
8	327	malnutrition. Children who were females were less likely to have a co-existence of the
9 10	328	three dimensions of malnutrition compared to their counterpart males [RRR = 0.468, 95%
10	329	CI = 0.429, 0.510].
12	220	The rick of convictories of the three dimensions was higher among shildren with average
13	330	The fisk of co-existence of the three dimensions was higher among children with average
14	331	size at birth [RRR = 1.756, 95% CI = 1.574, 1.958], small size at birth [RRR = 3.818, 95% CI =
1 5	222	a second descent the second section [PPD - second

3.383, 4.308], those whose mothers had no education [RRR = 3.291, 95% Cl = 1.961, 5.522], had primary education [RRR = 2.381, 95% CI = 1.417, 4.001], not working [RRR = 1.195, 95% CI = 1.086, 1.314], had no antenatal visits during pregnancy [RRR = 1.364, 95% CI = 1.208, 1.541], delivered at home [RRR = 1.372, 95% CI = 1.232, 1.529], those whose mothers were poor [RRR = 1.408, 95% CI = 1.235, 1.605], had middle wealth status [RRR = 1.214, 95% CI = 1.054, 1.397], had no access to media [RRR = 1.255, 95% CI = 1.144, 1.377], and had unimproved toilet facility [RRR = 1.158, 95% CI = 1.032, 1.300].

Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having the co-existence of the three dimensions compared to those from Angola. Countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho, Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa had a lower risk among their children having co-existence of the three malnutrition dimensions (.

Page 14 of 27

BMJ Open

1	
2 3	~ • •
4	346
5	
6 7	
7 8	
9	
10	
11	
12	
14	
15	
16	
17 18	
19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30	
31 32	
33	
34	
35	
30 37	
38	
39	
40 41	
41	
43	
44	
45 46	
40	

(Co-existed (weighted				Co- existed (weighted		
Variable 🦻	%)	95% CI	Chi ²	Variable	%)	95% CI	Chi ²
Socio-demographic fa	ictors			Access to media	(tv/radio/news	spaper)	p<0.001
Age of child			p<0.001	Yes	2.14	2.0-2.2	
0	1.75	1.6-1.9		No	3.78	3.6-4.0	
1	4.44	4.2-4.7		Urbanicity			p<0.001
2	3.01	2.8-3.2		Urban	1.73	1.6-1.9	
3	1.62	1.4-1.8		Rural	3.21	3.1-3.3	
4	1.33	1.1-1.6		Country			p<0.001
Sex of child			p<0.001	Angola	2.46	2.1-2.8	
Male	3.43	3.3-3.6		Benin 🔪 💽	2.04	1.8-2.2	
Female	1.99	1.9-2.1		Burkina Faso	5.31	4.9-5.8	
Birth order			p<0.001	Burundi	3.76	3.2-4.4	
1	2.25	2.1-2.4		Cameroon	1.27	0.9-1.7	
2 to 4	2.56	2.4-2.7		Chad	5.86	5.2-6.5	
5 and above	3.23	3.1-3.4		Comoros	1.98	1.3-2.9	
Perceived size at							
birth			p<0.001	Congo	0.98	0.7-1.5	
Large	1.78	1.7-1.9		Cote d'Ivoire	2.28	1.7-3.0	
Average	2.6	2.5-2.7		DR Congo	2.66	2.2-3.2	
Small	4.98	4.7-5.3		Ethiopia	3.64	3.2-4.1	
Mother's characterist	ics		P =	Gabon	0.63	0.3-1.0	
Maternal age			0.080	Gambia	3.61	2.4-5.2	
15-19	2.78	2.5-3.1		Ghana	1.37	0.9-2.0	
<i></i>					- 57		

 BMJ Open

20-49	2.71	2.6-2.8		Guinea	2.26	1.7-2.9	
Educational attainment			p<0.001	Kenya	0.94	0.7-1.2	
No education	4.19	4.0-4.4		Lesotho	0.86	0.7-1.0	
Primary	2.09	2.0-2.2		Liberia	2.37	1.7-3.1	
Secondary	1.22	1.1-1.3		Malawi	1.03	0.7-1.4	
Higher	0.66	0.4-1.0		Mali	3.62	2.5-4.1	
Working status			p<0.001	Namibia	1.99	1.2-3.1	
No	3.13	3.0-3.3		Nigeria	4.1	3.7-4.6	
Yes	2.48	2.4-2.6		Rwanda	6.17	5.5-6.9	
Antenatal visits during							
pregnancy			p<0.001	Senegal	2.43	1.8-3.2	
No	5.41	5.0-5.8		Sierra Leone	1.94	1.4-2.5	
						0.02-	
Yes	2.39	2.3-2.5		South Africa	0.18	0.8	
Postnatal check within 2 n	nonths		p<0.001	Tanzania	1.86	2.1-3.5	
No	2.93	2.8-3.1	-	Togo	2.72	2.1-3.4	
Yes	2.42	2.3-2.6		Uganda	1.2	0.8-1.7	
Place of delivery			p<0.001	Zambia	1.22	1.0-1.5	
Home	4.36	4.2-4.6	-	Zimbabwe	0.78	0.5-1.1	
Health facility	1.96	1.9-2.1		Environmental factors			
-				Type of toilet			
Other	2.45	1.7-3.3		facility			p<0.001
Wealth status	-		p<0.001	Improved	1.76	1.6-1.9	
Poor	3.46	3.3-3.6		Unimproved	3.43	3.3-3.6	
Middle	2.74	2.5-2.9		Source of drinking wate	er		p<0.001
Rich	1.86	1.7-2.0		Improved	2.54	2.4-2.6	•
Age of household			p =		21	·	
head			0.276	Unimproved	3.06	2.9-3.2	

BMJ Open

Young-adults	2.65	2.5-2.8		Type of cooking fuel			D<0.001
	,					0.8.2-	Prese
Middle-aged adults	2.76	2.6-2.9		Clean	0.98	1.2	
Old-aged adults	2.8	2.6-3.1		Unclean	2.92	2.8-3.0	
Sex of household				Geographic			
head			p<0.001	region			p<0.00
Male	2.82	2.7-2.9		Western	3.11	3.0-2.3	
Female	2.33	2.1-2.5		Eastern	2.43	2.3-2.6	
Access to							
electricity			p<0.001	Central	2.87	2.7-3.1	
						0.66-	
No	3.21	3.1-3.3		South Africa	0.88	1.1	
Yes	1.61	1.5-1.7					
				0			

eli	
Table 3: Multinomial regression showing risk factors of co-existence of stunting, wasting, and underweigh	it

				Base	outcome	e (Ref: No	ormal)				
		Single	e and two dimensions	Co-existence of three-dimensions							
Variable	able RRR Rc		p-value	/alue 95% CI		RRR Robust SE		p-value	95% CI		
Age of child (Ref:0)											
1	2.008	0.041	<0.001	1.930	2.089	3.714	0.213	<0.001	3.319	4.156	
2	2.624	0.057	<0.001	2.514	2.739	2.827	0.189	<0.001	2.480	3.222	
3	2.122	0.054	<0.001	2.018	2.231	1.464	0.132	<0.001	1.227	1.748	
4	1.504	0.046	<0.001	1.417	1.597	1.051	0.120	0.664	0.840	1.315	
Sex of child (Ref: Male)											
Female	0.752	0.011	<0.001	0.731	0.775	0.468	0.021	<0.001	0.429	0.510	
Birth order (Ref: 1)											
2	0.938	0.022	0.005	0.896	0.981	1.002	0.069	0.981	0.875	1.146	

 BMJ Open

5 and above	0.969	0.026	0.238	0.920	1.021	0.995	0.076	0.952	0.858
Perceived size at birth	(Ref:								
Large)									
Average	1.320	0.023	<0.001	1.276	1.365	1.756	0.098	<0.001	1.574
Small	1.931	0.045	<0.001	1.846	2.020	3.818	0.235	<0.001	3.383
Maternal age (Ref: 15-1	9)		<0.001						
20-49	0.834	0.028	<0.001	0.780	0.891	0.881	0.081	0.171	0.735
Educational attainment	t (Ref:								
Higher)					-				_
No education	2.624	0.173	<0.001	2.305	2.987	3.291	0.869	<0.001	1.961
Primary	2.189	0.142	<0.001	1.927	2.487	2.381	0.631	<0.001	1.417
Secondary	1.751	0.112	<0.001	1.545	1.985	1.617	0.420	0.065	0.971
Working status (Ref: Yes)									
No	1.018	0.018	0.314	0.984	1.053	1.195	0.058	<0.001	1.086
Antenatal visits during	pregnancy (Ref	: Yes)							
No	1.139	0.031	<0.001	1.079	1.201	1.364	0.085	<0.001	1.208
Postnatal check within	2 months (Ref:	Yes)							
No	0.980	0.018	0.258	0.946	1.015	0.977	0.053	0.670	0.879
Place of delivery (Ref: I facility)	Health								
Home	1.183	0.024	<0.001	1.137	1.230	1.372	0.076	<0.001	1.232
Other	1.046	0.073	0.517	0.912	1.201	1.047	0.207	0.818	0.710
Wealth status (Ref: Ric	h)			-					
Poor	1.297	0.032	<0.001	1.235	1.361	1.408	0.094	<0.001	1.235
Middle	1.195	0.029	<0.001	1.138	1.254	1.214	0.087	0.007	1.054
Age of household head	l (Ref: Young-ad	ult)		-					
Middle-aged adults	0.954	0.017	0.008	0.921	0.987	1.010	0.052	0.841	0.913
Old-aged adults	0.974	0.023	0.273	0.930	1.021	1.065	0.070	0.338	0.936
Sex of household head	(Ref:)		, <u>,</u> , , ,	-		,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>
Male)	-								
Female	0.977	0.010	0 223	0.040	1 015	1 0 2 5	0.060	0 5 4 8	0.025

BMJ Open

No	1.079	0.019	<0.001	1.042	1.117	1.255	0.059	<0.001	1.144	
Access to electricity	(Ref: Yes)									
No	1.136	0.027	<0.001	1.083	1.191	1.062	0.077	0.404	0.922	
Type of toilet facility Improved)	y (Ref:									
Unimproved	1.027	0.019	0.148	0.991	1.065	1.158	0.068	0.013	1.032	
Source of drinking v	vater (Ref: Improv	ed)								
Unimproved	0.959	0.016	0.011	0.928	0.990	0.968	0.044	0.474	0.885	
Type of cooking fuel	(Ref: Clean)									
Unclean	1.177	0.046	<0.001	1.089	1.271	1.316	0.205	0.078	0.970	
Urbanicity (Ref: Urb	an)									
Rural	1.050	0.023	0.024	1.006	1.095	0.943	0.060	0.359	0.832	
Country (Ref: Angola	a)									
Benin	0.651	0.028	<0.001	0.598	0.708	0.625	0.078	<0.001	0.489	
Burkina Faso	0.952	0.046	0.304	0.866	1.046	1.946	0.241	<0.001	1.526	
Burundi	1.580	0.084	<0.001	1.424	1.753	2.049	0.295	<0.001	1.545	
Cameroon	0.669	0.041	<0.001	0.593	0.756	0.398	0.086	<0.001	0.261	
Chad	0.910	0.047	0.067	0.823	1.007	1.505	0.184	0.001	1.184	
Comoros	0.883	0.076	0.149	0.745	1.046	0.656	0.184	0.133	0.378	
Congo	0.674	0.052	<0.001	0.580	0.783	0.472	0.127	0.005	0.279	
Cote d'Ivoire	0.734	0.052	<0.001	0.638	0.844	0.739	0.153	0.144	0.492	
DR Congo	1.229	0.069	<0.001	1.100	1.373	1.351	0.216	0.059	0.988	
Ethiopia	0.810	0.045	<0.001	0.726	0.904	0.813	0.123	0.172	0.604	
Gabon	0.495	0.044	<0.001	0.415	0.590	0.319	0.149	0.014	0.128	
Gambia	0.732	0.073	0.002	0.603	0.889	1.001	0.246	0.997	0.618	
Ghana	0.453	0.037	<0.001	0.386	0.531	0.545	0.126	0.009	0.346	
Guinea	0.798	0.051	<0.001	0.705	0.904	0.726	0.132	0.078	0.509	
Kenya	0.553	0.030	<0.001	0.498	0.615	0.321	0.055	<0.001	0.230	
Lesotho	0.777	0.068	0.004	0.654	0.924	0.369	0.139	0.008	0.177	
Liberia	0.658	0.052	<0.001	0.565	0.768	0.776	0.187	0.291	0.484	

BMJ Open

Malawi	0.794	0.046	<0.001	0.708	0.889	0.447	0.098	<0.001	0.291	0.687
Mali	0.600	0.031	<0.001	0.541	0.664	1.006	0.138	0.963	0.769	1.316
Namibia	0.680	0.063	<0.001	0.568	0.815	0.849	0.225	0.535	0.505	1.426
Nigeria	0.953	0.045	0.310	0.868	1.046	1.527	0.199	0.001	1.183	1.972
Rwanda	1.059	0.057	0.285	0.954	1.176	1.991	0.260	<0.001	1.541	2.571
Senegal	0.660	0.048	<0.001	0.572	0.761	0.643	0.129	0.028	0.434	0.952
Sierra Leone	0.641	0.040	<0.001	0.567	0.725	0.656	0.129	0.031	0.447	0.963
South Africa	0.788	0.087	0.031	0.634	0.979	0.108	0.065	0.000	0.033	0.352
Tanzania	0.772	0.039	<0.001	0.699	0.851	0.699	0.111	0.024	0.512	0.954
Togo	0.557	0.036	<0.001	0.490	0.633	0.838	0.150	0.324	0.590	1.190
Uganda	0.627	0.039	<0.001	0.556	0.708	0.421	0.089	<0.001	0.278	0.637
Zambia	0.904	0.046 🔨	0.046	0.818	0.998	0.519	0.092	<0.001	0.366	0.736
Zimbabwe	0.693	0.039	<0.001	0.620	0.775	0.344	0.083	<0.001	0.214	0.554
				rel	10	20	ウム			
	Malawi Mali Namibia Nigeria Rwanda Senegal Sierra Leone South Africa Tanzania Togo Uganda Zambia Zimbabwe	Malawi0.794Mali0.600Namibia0.680Nigeria0.953Rwanda1.059Senegal0.660Sierra Leone0.641South Africa0.788Tanzania0.772Togo0.557Uganda0.627Zambia0.904Zimbabwe0.693	Malawi0.7940.046Mali0.6000.031Namibia0.6800.063Nigeria0.9530.045Rwanda1.0590.057Senegal0.6600.048Sierra Leone0.6410.040South Africa0.7880.087Tanzania0.7720.039Togo0.5570.036Uganda0.6270.039Zambia0.9040.046Zimbabwe0.6930.039	Malawi 0.794 0.046 <0.001 Mali 0.600 0.031 <0.001	Malawi 0.794 0.046 <0.001 0.708 Mali 0.600 0.031 <0.001	Malawi 0.794 0.046 <0.001 0.708 0.889 Mali 0.600 0.031 <0.001	Malawi 0.794 0.046 <0.001 0.708 0.889 0.447 Mali 0.600 0.031 <0.001 0.541 0.664 1.006 Namibia 0.680 0.063 <0.001 0.568 0.815 0.849 Nigeria 0.953 0.045 0.310 0.868 1.046 1.527 Rwanda 1.059 0.057 0.285 0.954 1.176 1.991 Senegal 0.660 0.048 <0.001 0.567 0.725 0.656 South Africa 0.772 0.039 <0.031 0.634 0.979 0.108 Tanzania 0.772 0.039 <0.001 0.699 0.831 0.699 Togo 0.557 0.036 <0.001 0.490 0.633 0.838 Uganda 0.627 0.039 <0.001 0.456 0.708 0.421 Zambia 0.904 0.046 0.818 0.998 0.519 Zimbabwe 0.693 0.039 <0.001 0.620 0.775 0.344	Malawi 0.794 0.046 <0.001 0.708 0.889 0.447 0.098 Mali 0.600 0.031 <0.001	Malawi 0.794 0.046 <0.001 0.708 0.889 0.447 0.098 <0.001 Mali 0.600 0.031 <0.001	Malawi 0.794 0.046 <0.001 0.708 0.889 0.447 0.098 <0.001 0.291 Mali 0.600 0.031 <0.001

3 351 DISCUSSION

The study investigated the socio-demographic and environmental risk factors of the co-existence of wasting, stunting, and underweight among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the countries with the highest and lowest prevalence of co-existence of stunting, wasting, and underweight were Benin (12.14%) and Gambia (0.58%) respectively. In terms of geographic region, the highest prevalence of co-existence of stunting, wasting, and underweight was observed in Western Africa (41.78%) and the lowest prevalence in Southern Africa (5.3%). Age of the child, sex of the child, the perceived size of birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility was also found as significant risk factors. The disparities in the prevalence among the countries and geographical regions could be attributed to the nutritional practices and beliefs practised in the countries and geographical regions. Differences in the health policies provided by governments in the various countries could also account for the disparities noted. This finding implies that countries that have high prevalence should take critical lessons from the countries that are doing well regarding the implementation of nutritional policies and interventions (e.g., increasing dietary supplementation, increasing dietary diversity) that target the reduction of the co-existence of wasting, stunting, and underweight among children under age 5 in sub-Saharan Africa².

Similar to previous studies^{1,3}, this study found that children aged 1 year, 2 years, and 3 years were at greater risk of having co-existence of all the three forms of malnutrition compared to those aged o. A plausible reason for this finding could be that as children grow their energy needs also increase¹, increasing their risk of having all three nutritional conditions. Altenatively, since these nutritional conditions may manifest after long durations of improper nutritional practices or undernutrition^{1,3}, older children may be at higher risk of having all three nutritional conditions. The finding suggests that complementary foods given to children as they grow are inadequate. To reduce the risk of co-existence of stunting, wasting and underweight among under 5 children, the health sectors in the various countries should invest heavily in providing adequate complementary feeding to this category of children.

Corroborating the findings of other studies^{1,3,31,32}, this study also found that children who were females were less likely to have a co-existence of the three dimensions of malnutrition compared to their male counterparts. An acceptable explanation for this finding could be the biological variations in morbidity between males and females at that young age³. It is also possible that since male children have higher birth weight compared to females, they require more energy^{1,33}, which increases the risk of males having all three nutritional conditions. Moreover, male children are perceived to be hungrier than females, therefore breastfeeding alone could be insufficient or inadequate^{3,34}, increasing their susceptibility to having the three nutritional conditions. The finding suggests that male children should be given critical attention in the development and implementation of nutritional programs (e.g., dietary supplementation) to mitigate the co-existence of stunting, wasting, and underweight among these male children under 5.

The study found that the risk of co-existence of the three dimensions of malnutrition was
 higher among children with the average size at birth and small size at birth compared to

children with large size at birth. It has been proven that malnutrition in children is partly influenced by maternal nutrition practices. Hence, mothers' appropriate nutritional behaviours during the prenatal and postnatal period is key to improve child growth. Conversely, maternal undernutrition causes low maternal BMI, which in turn affects the foetus to poor development often associated with small birth size and low birth weight^{1,3,21,35}. This finding indicates that mothers of children under 5 should continuously be educated on the best nutritional practices such as exclusive breastfeeding, complementary feeding, and dietary supplementation. These strategies will help ameliorate the risk of acquiring health conditions associated with malnutrition among children under 5.

- The risk of co-existence of the three dimensions was higher among children whose mothers had no education and primary education compared to those whose mothers had higher education. Mothers who have attained higher education are better informed about improved childcare practices³⁶, are more empowered to make health decisions³⁷, practice good personal hygiene³⁷, are more likely to use the health facility³⁸, proper feeding practices³⁵ and childcare in times of illness^{35,39}. This finding suggests that mothers with no formal or little education are neglected in nutritional programs that help to eliminate stunting, wasting, and underweight. Hence, they should be given the needed consideration to deal with this persistent health issue.
- This study also found that the risk of co-existence of the three dimensions was higher among children whose mothers were not working compared to those whose mothers were working. Women's employment status indicate their ability to afford proper nutritional products and health care services^{35,39}. Therefore, if mothers are not employed, the children become highly susceptible or vulnerable because mothers are unlikely to meet their nutritional needs or requirements. Mothers with children under 5 with such disadvantaged background should be given subsidies on children's nutritional products and perhaps, free access to health care services by governmental and non-governmental organizations. This step will be significant in reducing the risks of the co-existence of stunting, wasting, and underweight among children under 5.
- The risk of co-existence of the three dimensions was higher among children whose mothers had no antenatal visits during pregnancy compared to those whose mothers had antenatal visits during pregnancy. Specifically, mothers who attend antenatal services are usually educated on the best practices of nutrition and general healthcare, which hitherto would not be known by these mothers³⁷. Therefore, mothers who did not have antenatal visits may lack some knowledge about proper nutritional practices, increasing their children's risk of having these malnutrition related challenges. Regular antenatal visits could reduce children's risk of having stunting, underweight, and wasting, therefore, mothers should continuously be encouraged to go for antenatal care services in their countries.
- Children who were delivered at home compared to children who were delivered at a health facility were found to have a higher risk of co-existence of the three dimensions. Since mothers who deliver at home do not receive any expert nutritional advice from a qualified health practitioner³⁶, the children of such mothers are at higher risk of having these conditions because poor and/ or inadequate dietary practices. This finding shows that facility delivery may help reduce the risk of co-existence of stunting, wasting, and

441 underweight among children under 5. Therefore, mothers should regularly be educated
 442 on the need to opt for facility delivery because its positive implications on children's
 443 growth.

The risk of co-existence of the three dimensions was higher among children whose mothers were poor and had middle wealth status compared to those whose mothers were rich. Usually, mothers who have average income may lack the financial capacity to feed themselves and their children properly and adequately^{3,17,35}, increasing the children's risk of being stunted, underweight or wasted. Likewise, mothers from poor and middle wealth quintile may not have access to quality nutritional products and health care systems^{35,39}, making their children more susceptible to having all three nutritional conditions. This finding implies that women from poor economic backgrounds should be assisted with nutritional products and services to facilitate the reduction in the risks of the co-existence of stunting, wasting, and underweight among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no access to media compared to those whose mothers had access to media. Since many people are educated about proper nutritional practices through the mass media^{10,11}, mothers who have no access to the media may lack certain important nutritional information they need. This information gap could increase children's risk of having all three nutritional conditions through improper dietary practices from their mothers. For instance, mothers' access to appropriate information from the media would help them decide on which proper diets or food commodities are readily available on market for their children. More pragmatic ways of reaching mothers who have no access to media are encouraged. Regular outreach or sensitization programs to target women without access to media for example could help in reducing the risks of the co-existence of stunting, wasting, and underweight among children under 5.

Children whose mothers had unimproved toilet facilities were found to have a higher risk of co-existence of the three dimensions of child malnutrition compared to those whose mothers had improved toilet facility. Insanitary or unhygienic toilet conditions may increase mother-child-environment interactions that may result in increased exposure to childhood diseases and other opportunistic infections (e.g., diarrhoeal episodes, fever) either through consumption of contaminated foods, drinking water or poor environmental sanitation²¹. These conditions have been shown to cause growth retardation in children. Governmental and non-governmental organizations should support with the provision of improved household toilet facilities for poorer communities to help minimize the risks of the co-existence of child malnutrition indicators.

Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having the co-existence of the three dimensions compared to those from Angola. On the other hand, countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho, Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa had a lower risk among their children having co-existence of the three malnutrition dimensions. The sub-regional and country-specific variations in socio-economic, agro-ecological and geographical characteristics may strongly influence the nutritional status of children because inadequate food supplies, limited access to arable land for agriculture, unfavorable climatic conditions (e.g., desertification), rapid population growth, and increasing cost of living may determine food access, availability and production in studied

countries in SSA^{40,41}. Governmental priorities should intensify efforts to minimize the risk of co-existence of stunting, wasting, and underweight among children under age 5 with sound socio-economic and sustainable human capital development.

Conclusions

The study investigated the socio-demographic and environmental risk factors of the co-existence of wasting, stunting, and underweight among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the prevalence of co-existence of stunting, wasting, and underweight ranged from 0.58 % in the Gambia to 12.14% in Benin. The study also found that the prevalence of co-existence of stunting, wasting, and underweight was high in Western Africa (41.78%) but low in Southern Africa (5.3%). The significant findings show that the disadvantaged have more risks of the co-existence of wasting, stunting and underweight among under 5 children in selected SSA countries. Findings require context nutrition-specific interventions such as complimentary feeding, dietary supplementation and increasing dietary diversity to promote children feeding practices across the studied countries. Besides, country-specific sustainable human capital developmental agenda (e.g., empowerment initiatives, entrepreneurial training), especially among mothers is required to help improve children's dietary intake by governments and partnering institutions or agencies.

Acknowledgements: The authors thank the MEASURE DHS project for their support and for free access to the original data

Contributors: IA developed the study concept and performed the data analysis. AS, ED, JBF, JEH, RGA, BA, and BOA drafted and revised the manuscript critically for its intellectual content. All authors read and approved the final manuscript.

- Funding: This research received no specific grant from any funding agency in the public,
- commercial or not-for-profit sectors

Competing interests: None

Patient consent for publication : No consent to publish was needed for this study as we did not use any details, images or videos related to individual participants. In addition, data used are available in the public domain.

Ethics Approval and consent to participate

DHS reports ethical clearance are provided by the Ethics Committee of ORC Macro Inc. as well as Ethics Boards of partner institutions (e.g., Ministries of Health) from studied countries. The DHS procedures require that principles for the protection of respondents' anonymity and confidentiality are adhered. Inner City Fund International also guarantees that the survey protocols meet the United States Department of Health and Human Services' regulations for the respect of human subjects. The current study used a secondary data, hence, no further ethical approval was sought. The datasets are freely available for download and usage at https://dhsprogram.com/data/available-datasets.cfm.

1		
2		
4	530	Decision of the second state of the second state of the second state of
5	531	Provenance and peer review :Not commissioned; externally peer reviewed.
6	532	
7	533	Data availability statement: Data are available in a public, open access
8	534	repository. Data for this study were sourced from Demographic and Health surveys
9 10	535	(DHS) and available here: http://dhsprogram.com/data/available-datasets.cfm
11	536	
12	F 2 7	
13	537	
14 15	538	References
16	539	1. Amare ZY, Ahmed ME, Mehari AB. Determinants of nutritional status among
17 18	540	children under age 5 in Ethiopia: further analysis of the 2016 Ethiopia demographic
19	541	and health survey. Global Health 2019;15(1):1–11.
20	542	2. Anin SK, Saaka M, Fischer F, Kraemer A. Association between Infant and Young
21	543	Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23
22	544	Months) in Northern Ghana, Nutrients 2020; 12, 2565.
23	545	https://doi.org/10.3390/nu12092565
24 25	546	3. Madiba S. Chelule PK. Mokgatle MM. Attending informal preschools and daycare
26	547	centers is a risk factor for underweight stunting and wasting in children under the
27	548	age of five years in underprivileged communities in South Africa International
28	540	lournal of Environmental Research and Public Health 2010: 16(14) 2580
29	545	A Valow RM Amsalu E Rikos D Provalonce and factors associated with stunting
30 21	550	4. Talew Divi, Allisalu F, Dikes D. Flevalence and factors associated with stuffing,
31 32	221	children and washing: a community based closs sectional study among
33	552	
34	553	2014; 4(147), 2101-0509.
35	554	5. WHO. NUTRION Landscape information System (NLIS) Country Profile indicators:
36	555	Interpretation Guide; World Health Organization: Geneva, Switzerland, 2010.
3/ 20	556	6. Akombi BJ, Agho KE, Hall JJ, Wali N, Renzaho A, Merom D. Stunting, wasting and
39	557	underweight in sub-Saharan Africa: a systematic review. International Journal of
40	558	Environmental Research and Public Health 2017; 14(8), 863.
41	559	7. WHO. Global nutrition targets 2025: policy brief series (WHO/NMH/NHD/14.2).
42	560	Geneva: World Health Organization; 2014.
43	561	https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_e
44 45	562	ng.pdf
46	563	8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,
47	564	Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition
48	565	Study Group. Maternal and child undernutrition and overweight in low-income and
49	566	middle-income countries. The lancet 2013; 382(9890), 427-451.
50 51	567	9. World Health Organization. Levels and trends in child malnutrition: key findings of
52	568	the 2019 edition (No. WHO/NMH/NHD/19.20). World Health Organization. 2019.
53	569	10. De Onis M, Onyango A, Borghi E, Siyam A, Blössner M, Lutter C. Worldwide
54	570	implementation of the WHO child growth standards. Public Health Nutrition
55	571	2012; 15(9), 1603-1610.
56 57	572	11. De Onis M, Blössner M, Borghi E. Prevalence and trends of stunting among pre-
57 58	573	school children, 1990–2020. Public Health Nutrition 2012: 15(1). 142-148.
59	574	12. World Health Organization. Community-based management of severe acute
60	575	malnutrition: a joint statement by the World Health Organization, the World Food

1		
2		
4	576	Programme, the United Nations System Standing Committee on Nutrition and the
5	577	United Nations Children's Fund. 2007.
6	578	13. UNICEF. Levels and trends in child malnutrition, United Nations Children's fund
7	579	(UNICEF), World Health Organization, International Bank for Reconstruction and
8	580	Development/The World Bank. Levels and trends in child malnutrition: key findings
9 10	581	of the 2019 edition of the joint child malnutrition estimates. Geneva: World Health
11	582	Organization; 2019 Licence: CC BY-NC-SA 3.0 IGO; 2019.
12	583	14. Central Statistical Agency (CSA)[Ethiopia] and ICF. Ethiopia demographic and
13	584	health survey, Addis Ababa, Ethiopia and Calverton, Maryland, USA. 2016.
14	585	15. Yaya S, Uthman OA, Ekholuenetale M, Bishwajit G, Adjiwanou V. Effects of birth
15	586	spacing on adverse childhood health outcomes: evidence from 34 countries in sub-
17	587	Saharan Africa. J Matern & Neonatal Med 2020;33(20):3501–8.
18	588	16. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri A, Nyieku FE, et al. Predictive
19	589	Probabilities of Access to Clean Cooking: Evidence from the Demographic and
20	590	Health Surveys in 31 Countries in Sub-Saharan Africa. 2019;12(3):320–2.
21	591	17. Mamabolo RL, Alberts M, Steyn NP, Delemarre-van de Waal HA, Levitt NS.
23	592	Prevalence and determinants of stunting and overweight in 3-year-old black South
24	593	African children residing in the Central Region of Limpopo Province, South
25	594	Africa. Public Health Nutrition 2005: 8(5), 501-508.
26	595	18. Novignon J. Aboagye E. Agyemang OS. Arveetev G. Socioeconomic-related
2/	596	inequalities in child malnutrition: evidence from the Ghana multiple indicator
20 29	597	cluster survey. Health Economics Review 2015: 5(1), 1-11.
30	598	19. Bain J.F. Awah PK. Geraldine N. Kindong NP. Siga Y. Bernard N. Tanieko AT.
31	599	Malnutrition in Sub-Saharan Africa: burden causes and prospects. Pan African
32	600	Medical Journal 2013: 15(1)
33	601	20 Fanzo I The nutrition challenge in sub-Saharan Africa (No. 2012-012) United
35	602	Nations Development Programme Regional Bureau for Africa 2012
36	602	Akombi BL Agbo KE Merom D Benzabo AM Hall II Child malnutrition in sub-
37	604	Sabaran Africa: A meta analysis of domographic and health surveys (2006-2016)
38	605	PL os One 2017:12(r): 00177228
39 40	606	A World Health Organization United Nations Children's Fund (2000) WHO shild
40 41	600	22. Wond Health Organization. Onlited Nations Children's Fund (2009) WHO Child
42	607	growth standards and the identification of severe acute maindunitor in mains and
43	608	Children A Joint Statement. World Health Organization. 2014; 11.
44	609	23. Corsi DJ, Neuman M, Finiay JE, Subramanian SV. Demographic and health surveys:
45	610	a profile. International Journal of Epidemiology 2012; 41(6), 1602-1613.
40 47	611	24. Allaga A, Rullin R. Cluster optimal sample size for demographic and health surveys.
48	612	In 7th International Conference on Teaching Statistics–ICOTS (Vol. 7, pp. 2-7). 2006.
49	613	25. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe
50	614	Initiative. The Strengthening the Reporting of Observational Studies in
51	615	Epidemiology (STROBE) Statement: guidelines for reporting observational
52 53	616	studies. International journal of surgery. 2014; 12(12), 1495-1499.
54	617	26. Collins J, Ward BM, Snow P, Kippen S, Judd F. Compositional, Contextual, and
55	618	Collective Community Factors in Mental Health and Well-Being in Australian Rural
56	619	Communities. Qualitative Health Research 2017; 27(5), 677–687.
57	620	https://doi.org/10.1177/1049732315625195
58 50	621	27. Pol LG, Thomas RK. The demography of health and health care. Springer Science &
60	622	Business Media. 2001.

2		
3	623	28. Armah FA. Ekumah B. Yawson DO. Odoi JO. Afitiri AB. Nvieku F.F. Access to
4	624	improved water and sanitation in sub-Saharan Africa in a quarter century. Helivon
5	625	2018: 4(11) = 0.0031 https://doi.org/10.1016/j.heliyon.2018 = 0.0031
0 7	625	2010, 4(11), 200991. https://doi.org/10.1010/j.inciryon.2010.200991
, 8	627	composition? City & Community 2008, 7(2) 462, 470
9	627	Composition: City & Community 2008, 7(2), 103–179.
10	628	30. Amegan AK, Boachie J, Nayna S, Jaakkola JJK. Association of biomass fuel use with
11	629	reduced body weight of adult Ghanaian women. J Expo Sci Environ Epidemiol 2019;1.
12	630	31. Alemayehu M, Tinsae F, Haileslassie K, Seid O, Gebregziabher G, Yebyo H.
13	631	Undernutrition status and associated factors in under-5 children, in Tigray,
14 15	632	Northern Ethiopia. Nutrition 2015; 31(7-8), 964-970.
16	633	32. Mya KS, Kyaw AT, Tun T. Feeding practices and nutritional status of children age 6-
17	634	23 months in Myanmar: A secondary analysis of the 2015-16 Demographic and
18	635	Health Survey. PloS one 2019; 14(1), e0209044.
19	636	33. Bork KA, Diallo A. Boys are more stunted than girls from early infancy to 3 years of
20	637	age in rural Senegal. The Journal of Nutrition 2017; 147(5), 940-947.
21	638	34. Tumilowicz A. Habicht JP. Pelto G. Pelletier DL. Gender perceptions predict sex
22	639	differences in growth patterns of indigenous Guatemalan infants and young
24	640	children The American Journal of Clinical Nutrition 2015; 102(5), 1240-1258
25	6/1	25 Mukabutera A Thomson DB Hedt-Gauthier BL Basinga P Nvirazinvove L Murrav
26	642	M. Rick factors associated with underweight status in children under five: an
27	642	analysis of the 2010 Rwanda Domographic Health Survey (RDHS) RMC Nutrition
28	045	
29 30	644	2010; 2(1), 1-12.
31	645	36. Oyekale AS. Factors explaining acute mainutrition among under-five children in
32	646	Sub-Sahara Africa (SSA). Life Sci J 2012; 9, 2101-7.
33	647	37. Keats A. Women's schooling, fertility, and child health outcomes: Evidence from
34	648	Uganda's free primary education program. Journal of Development Economics
35	649	2018; 135, 142-159.
30 27	650	38. Sunguya BF, Poudel KC, Mlunde LB, Urassa DP, Yasuoka J, Jimba M. Poor nutrition
38	651	status and associated feeding practices among HIV-positive children in a food
39	652	secure region in Tanzania: a call for tailored nutrition training. PloS one 2014; 9(5),
40	653	e98308.
41	654	39. Iannotti LL, Dulience SJL, Green J, Joseph S, François J, Antenor ML, Nickerson
42	655	NM. Linear growth increased in young children in an urban slum of Haiti: a
43	656	randomized controlled trial of a lipid-based nutrient supplement. The American
44 45	657	Journal of Clinical Nutrition 2014: 99(1), 198-208.
46	658	40. Lopriore C. Muehlhoff F. Food security and nutrition trends in West Africa
47	659	Challenges and the way forward. In Proceedings of the 2nd International Workshop
48	660	on Food-based Approaches for a Healthy Nutrition Quagadougou Burkina 2003:
49	661	
50	662	25-20. Al Salami A. Kamara A.P. Privious 7. Smallholder Agriculture in East Africa: Trends
51 52	002	41. Salahir A, Kalilara AB, Bhxiova Z. Shlalihoider Agriculture in East Africa. Herds,
53	663	Constraints and Opportunities; African Development Bank: Tunis, Tunisia, 2010.
54	664	
55	66 5	
56	665	
57 59	666	
50 59		
60	667	

1 2		
- 3 4	668	Figure legends
5 6 7	669 670	Figure 1 : Percentage distribution of co-existed child malnutrition in the 31 study countries in SSA
8 9 10	671 672	Figure 2: Proportional circle map showing the percentage distribution of co-existed child malnutrition in study countries by regions of SSA
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	673	

Figure 1: Percentage distribution of co-existed child malnutrition in the 31 study countries in SSA

Figure 2: Proportional circle map showing the percentage distribution of co-existed child malnutrition in study countries by regions of SSA

BMJ Open

BMJ Open

Socio-demographic and environmental risk factors accounting for the co-existence of stunting, underweight, and wasting in children under five: Analysis of crosssectional surveys from 31 sub-Saharan African countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052267.R1
Article Type:	Original research
Date Submitted by the Author:	28-Aug-2021
Complete List of Authors:	Amadu, Iddrisu; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Seidu, Abdul-Aziz; University of Cape Coast, Department of Population and Health; James Cook University, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Duku, Eric; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Boadu Frimpong, James; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Hagan Jnr., John; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Aboagye, Richard ; University of Health and Allied Sciences, Ho, Ghana Ampah, Belinda; Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7, Esiama, Ghana Adu, Collins; Kwame Nkrumah University of Science and Technology, Department of Health Promotion and Disability Studies Ahinkorah, Bright; University of Technology Sydney, School of Public Health, Faculty of Health, University of Technology Sydney, NSW, Australia.
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health services research, Health policy, Global health
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, Child protection < PAEDIATRICS

1	
2 3	
4	
5 6 7 8 9	SCHOLARONE [™] Manuscripts
10 11	
12	
13 14	
15	
16 17	
18 19	
20	
21 22	
23	
24 25	
26 27	
28	
29 30	
31	
33	
34 35	
36	
37 38	
39 40	
40	
42 43	
44	
45 46	
47 48	
49	
50 51	
52	
5 <i>3</i> 54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Review only

1		
2		
5 4	1	Socio-demographic and environmental risk factors accounting for the co-existence of
5	2	stunting, underweight, and wasting in children under five: Analysis of cross-sectional
6	3	surveys from 31 sub-Saharan African countries
7 8	4	Iddrisu Amadu ^{1,2} , Abdul-Aziz Seidu ^{3,4,5} , Eric Duku ^{1,2} , James Boadu Frimpong ⁶ , John Elvis
9	5	Hagan Jr ^{6,7} , Richard Gyan Aboagye ⁸ , Belinda Ampah ⁹ , Collins Adu ¹⁰ , Bright Opoku
10	6	Ahinkorah ¹¹
11	7	
12		
13 14	8	1. Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape
15	9	Coast, Ghana
16	10	2. Department of Fisheries and Aquatic Sciences, School of Biological Sciences,
17	11	College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
18	12	3. Department of Population and Health, College of Humanities and Legal Studies,
19	13	University of Cape Coast, Ghana.
20	14	4. College of Public Health, Medical and Veterinary Sciences, James Cook University,
21 22	15	Townsville, Oueensland, Australia
23	16	5. Department of Estate Management, Takoradi Technical University, Takoradi,
24	17	Ghana
25	10	6 Department of Health Physical Education and Recreation University of Cane
26	10	Cost Cone Cost Chana
27	19	- Neurocognition and Action Piemochanics Research Croup, Eaculty of Reychology
28	20	7. Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology
29 30	21	and Sport Sciences, Bielefeid University, Bielefeid-Germany
31	22	8. School of Public Health, University of Health and Allied Sciences, Ho, Ghana
32	23	9. Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7,
33	24	Esiama, Ghana
34	25	10. Department of Health Promotion, Education and Disability Studies, Kwame
35	26	Nkrumah University of Science and Technology, Kumasi, Ghana
30 27	27	11. School of Public Health, Faculty of Health, University of Technology Sydney, NSW,
38	28	Australia.
39 40	29	Email addresses
41	20	IA iddrigu amadu@stu ucc adu gh
42	30	A. Iudiisu.aiiiauu@stu.ucc.euu.gii
43	31	"As: abdul-aziz.seidu@stu.ucc.edu.gn
44 45	32	
45	33	JBF: frimpongboadujames@gmail.com
47	34	JEH: elvis.hagan@ucc.edu.gh
48	35	RGA: raboagye18@sph.uhas.edu.gh
49	36	BA: <u>oyebel@gmail.com</u>
50	37	CA: collinsadu80@yahoo.com
51	38	BOA: brightahinkorah@gmail.com
52	39	
53 54 55	40	Correspondence to:
56	41	Abdul-Aziz Seidu, Department of Population and Health, University of Cape Coast, PMR TE0494
57	42	Cape Coast, Ghana, Email:abdul-aziz seidu@stu ucc edu.gh
58		
59 60	43	

45 ABSTRACT

Objective: This study investigated the socio-demographic and environmental risk factors
47 of the co-existence of stunting, underweight, and wasting among children under age five
48 in sub-Saharan Africa.

Methods: Data from 31 sub-Saharan African countries were pooled from the Demographic
 and Health Surveys (DHS) collected between 2010 and 2019. We examined the risk of co existence of undernutrition using multinomial logistic regression models, with results
 presented as relative risk ratios (RRR) with their respective confidence intervals.

Outcome measures: The outcome variables were three child anthropometrics: stunting
 (height-for-age z-scores); underweight (weight-for-age z-scores); and wasting (weight for-height z-scores).

Results: The prevalence of co-existence of stunting, underweight, and wasting varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Benin (12.14%) and Gambia (0.58%) respectively. The risk of co-existence of the three undernutrition dimensions was higher among children age 1 year compared to those aged o. Children who were females were less likely to have a co-existence of the three dimensions of undernutrition compared to their male counterparts. The risk of co-existence of the three dimensions was higher among children with small size at birth, those whose mothers had no education, not working, had no antenatal visits during pregnancy, children delivered at home, those whose mothers were poor had no access to media, and children whose mothers had unimproved toilet facility.

Conclusion: Findings suggest context nutrition-specific interventions such as complementary feeding, dietary supplementation and increasing dietary diversity to promote children feeding practices in the studied countries are warranted. Planned interventions should prioritize all the identified factors noted in the current study to help reduce the risks of co-existence of stunting, underweight, and wasting among children under age 5.

72 Keywords: co-existence; stunting; underweight; wasting; children under five; sub-Saharan
 73 Africa
Strength and Limitations
• The use of nationally representative data ensures that our findings are generalizable replicable in the 31 SSA countries included in this study.
 Findings contribute to bridging the gaps identified in the current research on CN including multiple indicators (stunting, underweight, and wasting) in the concur measurement of our outcome variable, compared to the unitary assessment undernutrition that currently dominates literature.
• The study relied on secondary data, the analysis was limited to only variables that we the dataset. Hence, interpretations and inferences made from current findings must limited to only these observed variables.
 Also, the DHS employs cross-sectional designs which restrict causality on the n outcomes.
The key variables were self-reported by the mothers, and therefore, there is the likelih of recall bias and other social desirability concerns in the present study.

BACKGROUND

Undernutrition among children under 5 years remains a major public health problem across many developing countries¹⁻³. Factors such as insufficient food intake, diarrhoea, recurring infections, poor sanitation practices, and low parental education have been identified as significant contributors to the high prevalence of undernutrition during childhood^{1,4,5}. Despite the numerous interventions rolled out to address childhood undernutrition especially in sub-Saharan Africa where the phenomenon is quite pervasive, the progress seems to be insignificant^{6,7}. For example, a study reported that child undernutrition accounted for nearly half (45%) of the child mortality rate in developing countries⁸. Aside from that, it was reported in 2018 that about 149 million and 49 million children under age 5 were stunted and wasted respectively⁹.

Three main indicators that are often used to represent undernutrition are underweight or low weight for age, stunting or low height for age, and wasting or low weight for height^{2,10-} ¹². Among the three indicators of undernutrition, stunting has been identified as the problem with the greatest magnitude among under 5 children in developing countries^{2,3}. Even though the prevalence of stunting in sub-Saharan Africa is declining, it is worth noting that it is still above 30%¹³ which is undeniably high. Research also indicates that the country-specific prevalence of stunting, underweight and wasting is still high^{2,3}. For instance, in Ethiopia, the prevalence of wasting and stunting were 10% and 38% respectively¹⁴. Additionally, the prevalence of stunting, underweight and wasting among children in South Africa were 35.8%, 20.5%, and 17.2%³. Likewise, Anin et al.² reported 33.2%, 14.1%, 27% and 2.6% of prevalence in stunting, wasting, underweight and overweight among infants (6-23 months) across Northern Ghana.

Previous studies have investigated the socio-demographic and environmental risk factors associated with either stunting, underweight or wasting among children under 5 years and found the age of a child, sex of the child, child's size at birth, mother's age during childbirth, mother's educational level, birth order, place of residence and mother's body mass index (BMI) as associated factors^{1-3,15,16}. Other studies also found a significant linkage between household wealth quintile and maternal short stature, and nutritional status of children under 5^{17,18}. Regarding the sex of a child, for example, female children were found to be less likely to suffer from stunting compared to males^{1,3}.

Apart from studies that have examined the factors associated with either stunting, underweight, and wasting, some scholars have begun looking at predictors of the co-existence of any two or three of the indicators of malnutrition. A study in 84 countries that examined the prevalence and predictors of co-existence of stunting and wasting found sex and age of children as significant predictors¹⁹. Other studies in Ghana²⁰ and India²¹ also examined the co-existence of stunting, underweight, and wasting and found birth interval, birth weight, dietary diversity, place of delivery, wealth index, mother's BMI, mother's educational level, and partners' educational level as associated factors. The need to examine the co-existence of stunting, underweight and wasting is important because not much work has been done on that subject and hence children who concurrently suffer from stunting, underweight, and wasting are less likely to be reached in malnutrition prevention programmes, especially in SSA. For instance, some scholars have indicated that despite evidence that wasting and stunting are global public health problems that frequently co-exist, they are usually separated in terms of policy, guidance, programming

and financing²². This creates a gap in literature that needs to be filled. Despite the detrimental consequences of undernutrition on the health and wellbeing of children under 5 in SSA, few studies have utilised current nationally representative data from a larger sample to investigate the socio-demographic and environmental risk factors associated with the co-existence of stunting, underweight, and wasting among this age group. Studies presenting empirical analyses of the co-existence of these three indicators of child undernutritionin SSA are absent in extant literature making it difficult for policymakers and nutritional experts to provide up-to-date trends with appropriate strategies to curb the situation in the sub-region. This research lag presents a void in extant literature which this study seeks to bridge. Therefore, the study investigated the socio-demographic and environmental risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from the Demographic Health Survey (DHS) conducted in 31 countries between 2010 and 2019. The findings of the study could contribute to the formulation of policies and interventions to respond to the nutritional needs of children under 5 years and also suggest pragmatic ways of reducing undernutrition among children in the sub-region.

24 143

²⁵ 144 **METHODS**

²⁷ 145 **Data Source**

The dataset included 127,487 children under the age of 5 years from 31 sub-Saharan African countries (Figure 1) were pooled from the most current Demographic and Health Surveys (DHS) conducted between 2010 and 2019 (Appendix 1). Specifically, the data were pooled from the children's files in each of the countries. The DHS Program has conducted over 400 surveys in over 90 developing countries around the world since 1984 every five years²³. The program implements cross-sectional surveys to gather nationally-representative data, analyze and disseminate accurate information on important demographic and health indicators spanning population, nutrition, and diseases. For all surveys, standardized protocols designed for each target group including children, women, and men at the household level are employed to allow for cross-national comparisons. Stratified two-stage sampling involving first, the listing of enumeration areas and selection of clusters, and then a random selection of households in each cluster. The detailed sampling method can be found in a previous study²⁴. The dataset is freely available for download at: https://dhsprogram.com/data/available-datasets.cfm. The Strengthening Reporting of Observational Studies in Epidemiology (STROBE) guidelines were followed in writing the manuscript²⁵.

- 49
 50
 162
 Study Variables
- 51 163 Outcome Variable
 52

The outcome variable considered in this study is derived from three child anthropometric variables including stunting (height-for-age z-scores); underweight (weight-for-age z-scores) and wasting (weight-for-height z-scores). The DHS (2021) specifies categorization for each of these variables following the WHO child growth standard. Each of the three variables we coded into "o" for "Normal" and "1" for "Stunting", "underweight" and "Wasting" respectively.

These three variables were then added to generate the outcome variable "Co-existed undernutrition" with scores (discrete) ranging from 0 to 4 where 0 implies "Normal", that is, children with none of the three conditions; 1 implies "Single burden", that is, the child suffers from one of the three conditions; 2 indicates that child suffers from "Two burdens" out of the three; and 3 shows "Co-existed", that is, the child suffers from all three conditions of undernutrition. For parsimony, children who suffered from "Single burden" and those who suffered from "Two burdens" were added resulting in the variable "Co-existed undernutrition" with three response categories: 0=Normal; 1=One or two burdens; and 3=co-existed.

1415 179 Independent Variables

Several risk factors spanning socio-demographic and environmental factors have been associated with child undernutrition. The relevant biosocial characteristics and sociocultural factors related to the child, mother, household head and the household together form compositional factors^{26,27}. Factors that describe location or "place-based" variables are contextual factors^{20,26,28,29}. In this study, contextual and composition factors except household-level characteristics related to environment and sanitation are categorized as "Socio-demographic risk factors". Socio-cultural household characteristics related to environment and sanitation are categorized as "Environmental risk factors".

27
28188Socio-Demographic Risk Factors

The relevant variables under socio-demographic risk factors considered include the age of the child; sex of child; birth order of child; perceived size at birth; mother's age; educational attainment; working status; antenatal visits during pregnancy; postnatal check within 2 months; and place of delivery. At the household level, relevant variables included are the wealth status; the age of household head; sex of household head (male and female); access to electricity; and access to media which was derived from the three variables "access to television", "radio" and "newspaper". The contextual factors considered are Urbanicity and the country of origin of the participant.

³⁹
 40
 197
 Environmental Risk Factors

We considered the following variables: type of toilet facility (re-coded into "improved"
and unimproved"²⁸; source of drinking water (re-coded as "improved" and
"unimproved"²⁸; and type of household cooking fuel (re-coded into "clean" and "unclean"
^{28,30} under the category "environmental risk factors"

47 202 Data Analyses

The statistical analysis of the data was performed using the Stata SE software version 14.2. The "svyset" command was first used to declare the data as survey data to prevent the potential effects of the complex sampling techniques on the analyses. To understand the distributions of the variables, the data were summarized and presented in tables using descriptive statistics (frequencies, weighted percentages, and 95% confidence intervals (CIs) of percentages). We further integrated the data into a GIS environment and presented the distribution of key variables across the study countries and geographic regions in map images (Figure 1 and Figure 2). This approach enhances the visualization of the data and understanding of the context of the study. The associations between the co-existence of undernutrition and each of the risk factors considered were assessed using

2
3
4
5
6
7
8
9

the chi-square test of independence, with results presented in a contingency table. The risk factors as independent variables were then subjected to collinearity diagnosis tests, including Variance Inflation Factors (VIF), Square VIF, Tolerance, and R-squared (See Appendix 2). To determine the socio-demographic and environmental risk factors associated with the co-existence of undernutrition, a multinomial regression model was implemented. The sample weight variable was used to adjust for potential over-and under-sampling. All statistical tests were conducted at p<0.05.

Ethical Approval

DHS reports ethical clearance is provided by the Ethics Committee of ORC Macro Inc. as well as Ethics Boards of partner institutions (e.g., Ministries of Health) from studied countries. The DHS procedures require that principles for the protection of respondents' anonymity and confidentiality adhere. Inner City Fund International also guarantees that the survey protocols meet the United States Department of Health and Human Services' regulations for the respect of human subjects. The current study used secondary data, hence, no further ethical approval was sought. The datasets are freely available for download and usage at https://dhsprogram.com/data/available-datasets.cfm.

Table 1

- ***Figure 1***
- ***Figure 2***
- Patient and public involvement
- Patients and the public were not involved in the design and conduct of this research
- Results

Descriptive Analysis on the Prevalence of Co-existence of Stunting, Underweight, and

wasting varied across Countries and Sub-Regions

Table 1 shows the description of the sample in the study across the independent variables. Appendix 2 shows the distribution of sample by country. The prevalence of co-existence of stunting, underweight, and underweight varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Rwanda (6.17%) and South Africa (0.18%) respectively (Figure 1). In terms of sub-region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa (3.11%) and the lowest prevalence in Southern Africa (0.88%) (Figure 2). Significant associations between all the independent variables and co-existence of stunting, wasting, and underweight, except maternal age and age of household head, were identified (Table 2).

Table 2

Multinomial Logistic Regression Results of Risk Factors for Co-existence of One and a Co-**Existence of Two Dimensions of Undernutrition**

Table 3 shows the results of the multinomial regression analysis of the risk factors of co-existence of dimensions of undernutrition (stunting, underweight, and wasting) among children under five years in the SSA. Age of child, size of the child at birth, sex of the child,

birth order, educational level, maternal age, ANC attendance, place of delivery, source of
drinking water, sex of household head, wealth index, access to electricity and place of
residence were associated with one or two dimensions of undernutrition. See Appendix 3
for country-level risk of co-existence of stunting, wasting, and underweight.

9 259

Co-existence of Three Dimensions of Undernutrition

Regarding the co-existence of the three dimensions of undernutrition (stunting, underweight, and wasting), age of the child, sex of the child, perceived size of birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility were found to be significant risk factors (Table 3).

¹⁹₂₀ 266 *****Table 3*****

²¹ 267 **DISCUSSION**

The study investigated the socio-demographic and environmental risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the countries with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting were Benin and Gambia respectively. In terms of geographic region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa and the lowest prevalence in Southern Africa. The disparities in the prevalence among the countries and geographical regions could be attributed to the nutritional practices and beliefs practised in the countries and geographical regions. Differences in the health policies provided by governments in the various countries could also account for the disparities noted. This finding implies that countries that have high prevalence should take critical lessons from the countries that are doing well regarding the implementation of nutritional policies and interventions (e.g., increasing dietary supplementation, increasing dietary diversity) that target the reduction of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa².

Similar to previous studies^{1,3}, this study found that children aged 1 year, 2 years, and 3 years were at greater risk of having co-existence of all the three forms of undernutrition compared to those aged o. A plausible reason for this finding could be that as children grow their energy needs also increase¹, increasing their risk of having all three nutritional conditions. Alternatively, since these nutritional conditions may manifest after long durations of improper nutritional practices or undernutrition^{1,3}, older children may be at higher risk of having all three nutritional conditions. The finding suggests that complementary foods given to children as they grow are inadequate. To reduce the risk of co-existence of stunting, underweight, and wasting among under 5 children, the health sectors in the various countries should invest heavily in providing adequate complementary feeding to this category of children.

Corroborating the findings of other studies^{1,3,31,32}, this study also found that children who
were females were less likely to have a co-existence of the three dimensions of
undernutrition compared to their male counterparts. An acceptable explanation for this

finding could be the biological variations in morbidity between males and females at that young age³. It is also possible that since male children have higher birth weight compared to females, they require more energy^{1,33}, which increases the risk of males having all three nutritional conditions. Moreover, male children are perceived to be hungrier than females, therefore breastfeeding alone could be insufficient or inadequate^{3,34}, increasing their susceptibility to having the three nutritional conditions. The finding suggests that male children should be given critical attention in the development and implementation of nutritional programs (e.g., dietary supplementation) to mitigate the co-existence of stunting, underweight, and wasting among these male children under 5.

The study found that the risk of co-existence of the three dimensions of undernutrition was higher among children with the average size at birth and small size at birth compared to children with large size at birth. It has been proven that undernutrition in children is partly influenced by maternal nutrition practices. Hence, mothers' appropriate nutritional behaviours during the prenatal and postnatal period is key to improve child growth. Conversely, maternal undernutrition causes low maternal BMI, which in turn affects the foetus to poor development often associated with a small birth size and low birth weight^{1,3,21,35}. This finding indicates that mothers of children under 5 should continuously be educated on the best nutritional practices such as exclusive breastfeeding, complementary feeding, and dietary supplementation. These strategies will help ameliorate the risk of acquiring health conditions associated with undernutrition among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no education and primary education compared to those whose mothers had higher education. Mothers who have attained higher education are better informed about improved childcare practices³⁶, are more empowered to make health decisions³⁷, practice good personal hygiene³⁷, are more likely to use the health facility³⁸, proper feeding practices³⁵ and childcare in times of illness^{35,39}. This finding suggests that mothers with no formal or little education are neglected in nutritional programs that help to eliminate stunting, underweight, and wasting . Hence, they should be given the needed consideration to deal with this persistent health issue.

This study also found that the risk of co-existence of the three dimensions was higher among children whose mothers were not working compared to those whose mothers were working. Women's employment status indicates their ability to afford proper nutritional products and health care services^{35,39}. Therefore, if mothers are not employed, the children become highly susceptible or vulnerable because mothers are unlikely to meet their nutritional needs or requirements. Mothers with children under 5 with such disadvantaged backgrounds should be given subsidies on children's nutritional products and perhaps, free access to health care services by governmental and non-governmental organizations. This step will be significant in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no antenatal visits during pregnancy compared to those whose mothers had antenatal visits during pregnancy. Specifically, mothers who attend antenatal services are usually educated on the best practices of nutrition and general healthcare, which hitherto would not be known by these mothers³⁷. Therefore, mothers who did not have antenatal

343 visits may lack some knowledge about proper nutritional practices, increasing their
 343 children's risk of having these undernutrition -related challenges. Regular antenatal visits
 345 could reduce children's risk of stunting, underweight, and wasting, therefore, mothers
 346 should continuously be encouraged to go for antenatal care services in their countries.

Children who were delivered at home compared to children who were delivered at a health facility were found to have a higher risk of co-existence of the three dimensions. Since mothers who deliver at home do not receive any expert nutritional advice from a qualified health practitioner³⁶, the children of such mothers are at higher risk of having these conditions because of poor and/ or inadequate dietary practices. This finding shows that facility delivery may help reduce the risk of co-existence of stunting, underweight, and wasting among children under 5. Therefore, mothers should regularly be educated on the need to opt for facility delivery because of its positive implications on children's growth.

The risk of co-existence of the three dimensions was higher among children whose mothers were poor and had middle wealth status compared to those whose mothers were rich. Usually, mothers who have an average income may lack the financial capacity to feed themselves and their children properly and adequately^{3,17,35}, increasing the children's risk of being stunted, underweight or wasted. Likewise, mothers from poor and middle wealth quintiles may not have access to quality nutritional products and health care systems^{35,39}, making their children more susceptible to having all three nutritional conditions. This finding implies that women from poor economic backgrounds should be assisted with nutritional products and services to facilitate the reduction in the risks of the co-existence of stunting, underweight, and wasting among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no access to media compared to those whose mothers had access to media. Since many people are educated about proper nutritional practices through the mass media^{10,11}, mothers who have no access to the media may lack certain important nutritional information they need. This information gap could increase children's risk of having all three nutritional conditions through improper dietary practices from their mothers. For instance, mothers' access to appropriate information from the media would help them decide on which proper diets or food commodities are readily available on market for their children. More pragmatic ways of reaching mothers who have no access to media are encouraged. Regular outreach or sensitization programs to target women without access to media for example could help in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5.

Children whose mothers had unimproved toilet facilities were found to have a higher risk of co-existence of the three dimensions of child undernutrition compared to those whose mothers had improved toilet facilities. Insanitary or unhygienic toilet conditions may increase mother-child-environment interactions that may result in increased exposure to childhood diseases and other opportunistic infections (e.g., diarrhoeal episodes, fever) either through consumption of contaminated foods, drinking water or poor environmental sanitation²¹. These conditions have been shown to cause growth retardation in children. Governmental and non-governmental organizations should support the provision of improved household toilet facilities for poorer communities to help minimize the risks of the co-existence of child undernutrition indicators.

Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having the co-existence of the three dimensions compared to those from Angola. On the other hand, countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho, Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa had a lower risk among their children having co-existence of the three undernutrition dimensions. The sub-regional and country-specific variations in socio-economic, agro-ecological and geographical characteristics may strongly influence the nutritional status of children because of inadequate food supplies, limited access to arable land for agriculture, unfavourable climatic conditions (e.g., desertification), rapid population growth, and increasing cost of living may determine food access, availability and production in studied countries in SSA^{40,41}. Governmental priorities should intensify efforts to minimize the risk of co-existence of stunting, underweight, and wasting among children under age 5 with sound socio-economic and sustainable human capital development.

Conclusions

The study investigated the socio-demographic and environmental risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the prevalence of co-existence of stunting, underweight, and wastingranged from 0.58 % in the Gambia to 12.14% in Benin. The study also found that the prevalence of co-existence of stunting, underweight, and wasting was high in Western Africa (41.78%) but low in Southern Africa (5.3%). The significant findings show that the disadvantaged have more risks of the co-existence of stunting, underweight, and wasting among under 5 children in selected SSA countries. Findings require context nutrition-specific interventions such as complementary feeding, dietary supplementation and increasing dietary diversity to promote children feeding practices across the studied countries. Besides, country-specific sustainable human capital developmental agenda (e.g., empowerment initiatives, entrepreneurial training), especially among mothers are required to help improve children's dietary intake by governments and partnering institutions or agencies.

Acknowledgements: The authors thank the MEASURE DHS project for their support and free access to the original data

Contributors: IA and BOA developed the study concept. IA performed the data analysis. AS, ED, JBF, JEH, RGA, BA, CA and BOA drafted and revised the manuscript critically for its intellectual content. All authors read and approved the final manuscript. AS had the final responsibility to submit the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

Competing interests: None Patient consent for publication: No consent to publish was needed for this study as we did not use any details, images or videos related to individual participants. In

2											
3	431	addition, data used are available in the public domain.									
4	432	, , , , , , , , , , , , , , , , , , ,									
5	433	Ethics Approval and consent to participate									
7	133	DHS reports ethical clearance are provided by the Ethics Committee of OBC Macro Inc. as									
, 8	434	well as Ethics Boards of partner institutions (a.g. Ministrias of Health) from studied									
9	455	well as Ethics boards of partier institutions (e.g., Ministries of Health) from studied									
10	436	countries. The DHS procedures require that principles for the protection of respondents'									
11	437	anonymity and confidentiality are adhered. Inner City Fund International also guarantees									
12	438	that the survey protocols meet the United States Department of Health and Human									
13	439	Services' regulations for the respect of human subjects. The current study used a									
14	440	secondary data, hence, no further ethical approval was sought. The datasets are freely									
15 16	441	available for download and usage at https://dhsprogram.com/data/available-datasets.cfm.									
17	442										
18	443	Provenance and peer review: Not commissioned: externally peer reviewed.									
19	ΛΛΛ										
20	444	Data availability statement: Data are available in a public, open access									
21	445	bala availability statement. Data are available in a public, open access									
22	446	repository. Data for this study were sourced from Demographic and Health surveys									
23	447	(DHS) and available here: http://dhsprogram.com/data/available-datasets.cfm									
24	448										
25 26	110										
20	445										
28	450	References									
29											
30	451	1. Amare ZY, Ahmed ME, Mehari AB. Determinants of nutritional status among									
31	452	children under age 5 in Ethiopia: further analysis of the 2016 Ethiopia demographic									
32	453	and health survey. Global Health 2019;15(1):1–11.									
33	454	2. Anin SK, Saaka M, Fischer F, Kraemer A. Association between Infant and Young									
34 25	455	Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23									
35 36	456	Months) in Northern Ghana Nutrients 2020: 12 2565.									
37	157	https://doi.org/10.3300/pu12002565									
38	457 AEQ	2 Madiba S. Chalula PK. Makgatla MM. Attending informal preschools and daycare									
39	450	5. Maduba 5, Cheldle FR, Morgadie MM. Attending informal preschools and daycare									
40	459	centers is a risk factor for under weight, stunding and wasting in children under the									
41	460	age of five years in underprivileged communities in South Africa. International									
42	461	Journal of Environmental Research and Public Health 2019; 16(14), 2589.									
43	462	4. Yalew BM, Amsalu F, Bikes D. Prevalence and factors associated with stunting,									
44 45	463	underweight and wasting: a community based cross sectional study among									
45	464	children age 6-59 months at Lalibela Town, Northern Ethiopia. J Nutr Disorders Ther									
47	465	2014; 4(147), 2161-0509.									
48	466	5. WHO. Nutrition Landscape Information System (NLIS) Country Profile Indicators:									
49	467	Interpretation Guide: World Health Organization: Geneva, Switzerland, 2010.									
50	169	6 Akombi BL Agbo KE Hall II Wali N Benzabo A Merom D Stunting wasting and									
51	400	underweight in sub Sabaran Africa: a sustematic review. International Journal of									
52	469	underweight in sub-sanarah Africa: a systematic review. International Journal of									
53	470	Environmental Research and Public Health 2017; 14(8), 863.									
54 55	471	7. WHO. Global nutrition targets 2025: policy brief series (WHO/NMH/NHD/14.2).									
55	472	Geneva: World Health Organization; 2014.									
57	473	https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_e									
58	474	ng.pdf									
59	475	8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,									
60	476	Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition									

1		
2		
4	477	Study Group. Maternal and child undernutrition and overweight in low-income and
5	478	middle-income countries. The lancet 2013; 382(9890), 427-451.
6	479	9. World Health Organization. Levels and trends in child malnutrition: key findings of
7 0	480	the 2019 edition (No. WHO/NMH/NHD/19.20). World Health Organization. 2019.
8 9	481	10. De Onis M, Onyango A, Borghi E, Siyam A, Blössner M, Lutter C. Worldwide
10	482	implementation of the WHO child growth standards. Public Health Nutrition
11	483	2012; 15(9), 1603-1610.
12	484	11. De Onis M, Blössner M, Borghi E. Prevalence and trends of stunting among pre-
13	485	school children, 1990–2020. Public Health Nutrition 2012; 15(1), 142-148.
15	486	12. World Health Organization. Community-based management of severe acute
16	487	malnutrition: a joint statement by the World Health Organization, the World Food
17	488	Programme, the United Nations System Standing Committee on Nutrition and the
18	489	United Nations Children's Fund. 2007.
19 20	490	13. UNICEF. Levels and trends in child malnutrition, United Nations Children's fund
20	491	(UNICEF), World Health Organization, International Bank for Reconstruction and
22	492	Development/The World Bank. Levels and trends in child malnutrition: key findings
23	493	of the 2019 edition of the joint child malnutrition estimates. Geneva: World Health
24 25	494	Organization; 2019 Licence: CC BY-NC-SA 3.0 IGO; 2019.
25 26	495	14. Central Statistical Agency (CSA)[Ethiopia] and ICF. Ethiopia demographic and
27	496	health survey, Addis Ababa, Ethiopia and Calverton, Maryland, USA. 2016.
28	497	15. Yaya S, Uthman OA, Ekholuenetale M, Bishwajit G, Adjiwanou V. Effects of birth
29	498	spacing on adverse childhood health outcomes: evidence from 34 countries in sub-
30 21	499	Saharan Africa. J Matern & Neonatal Med 2020;33(20):3501–8.
32	500	16. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri A, Nyieku FE, et al. Predictive
33	501	Probabilities of Access to Clean Cooking: Evidence from the Demographic and
34	502	Health Surveys in 31 Countries in Sub-Saharan Africa. 2019;12(3):320–2.
35	503	17. Mamabolo RL, Alberts M, Steyn NP, Delemarre-van de Waal HA, Levitt NS.
30 37	504	Prevalence and determinants of stunting and overweight in 3-year-old black South
38	505	African children residing in the Central Region of Limpopo Province, South
39	506	Africa. Public Health Nutrition 2005; 8(5), 501-508
40	507	18. Novignon J, Aboagye E, Agyemang OS, Aryeetey G. Socioeconomic-related
41 42	508	inequalities in child malnutrition: evidence from the Ghana multiple indicator
42	509	cluster survey. <i>Health Economics Review</i> 2015; 5(1), 1-11.
44	510	19. Khara T, Mwangome M, Ngari M, Dolan C. Children concurrently wasted and
45	511	stunted: A meta-analysis of prevalence data of children 6–59 months from 84
46 47	512	countries. Maternal & child nutrition. 2018 Apr;14(2):e12516.
47 48	513	20. Boah M, Azupogo F, Amporfro DA, Abada LA. The epidemiology of undernutrition
49	514	and its determinants in children under five years in Ghana. Plos one. 2019 Jul
50 51	515	31;14(7):e0219665.
52	516	21. Khan RE, Raza MA. Determinants of malnutrition in Indian children: new evidence
53	517	from IDHS through CIAF. Quality & Quantity. 2016 Jan 1;50(1):299-316.
54 55	518	22. Angood C, Khara T, Dolan C, Berkley JA, WaSt Technical Interest Group. Research
56	519	priorities on the relationship between wasting and stunting. PloS one. 2016 May
57 58	520	9;11(5):e0153221.
59		
60		

1		
2		
3 4	521	23. Corsi DJ, Neuman M, Finlay JE, Subramanian SV. Demographic and health surveys:
5	522	a profile. International Journal of Epidemiology 2012; 41(6), 1602-1613.
6	523	24. Aliaga A, Ruilin R. Cluster optimal sample size for demographic and health surveys.
7	524	In 7th International Conference on Teaching Statistics–ICOTS (Vol. 7, pp. 2-7). 2006.
8	525	25. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe
9 10	526	Initiative. The Strengthening the Reporting of Observational Studies in
11	527	Epidemiology (STROBE) Statement: guidelines for reporting observational
12	528	studies. International journal of surgery. 2014; 12(12), 1495-1499.
13	529	26. Collins J, Ward BM, Snow P, Kippen S, Judd F. Compositional, Contextual, and
14	530	Collective Community Factors in Mental Health and Well-Being in Australian Rural
15	531	Communities. Oualitative Health Research 2017; 27(5), 677–687.
16 17	532	https://doi.org/10.1177/1049732315625195
17	533	27. Pol I G. Thomas RK. The demography of health and health care. Springer Science &
19	53/	Business Media 2001
20	525	28 Armah FA Ekumah B Vawson DO Odoi 10 Afitiri AB Nyieku F.F. Access to
21	222	improved water and capitation in sub Sabaran Africa in a guarter contury. Heliven
22	550	and samation in sub-samatan Amea in a quarter century. Henyon
23 24	537	2018; 4(11), e00931. https://doi.org/10.1016/j.henyon.2018.e00931
24 25	538	29. Ross CE, Mirowsky J. Neighborhood socioeconomic status and health: context or
26	539	composition? City & Community 2008; $7(2)$, 163–179.
27	540	30. Amegah AK, Boachie J, Nayha S, Jaakkola JJK. Association of biomass fuel use with
28	541	reduced body weight of adult Ghanaian women. J Expo Sci Environ Epidemiol 2019;1.
29	542	31. Alemayehu M, Tinsae F, Haileslassie K, Seid O, Gebregziabher G, Yebyo H.
30 21	543	Undernutrition status and associated factors in under-5 children, in Tigray,
32	544	Northern Ethiopia. Nutrition 2015; 31(7-8), 964-970.
33	545	32. Mya KS, Kyaw AT, Tun T. Feeding practices and nutritional status of children age 6-
34	546	23 months in Myanmar: A secondary analysis of the 2015-16 Demographic and
35	547	Health Survey. PloS one 2019; 14(1), e0209044.
36	548	33. Bork KA, Diallo A. Boys are more stunted than girls from early infancy to 3 years of
3/	549	age in rural Senegal. The Journal of Nutrition 2017; 147(5), 940-947.
20 39	550	34. Tumilowicz A, Habicht JP, Pelto G, Pelletier DL. Gender perceptions predict sex
40	551	differences in growth patterns of indigenous Guatemalan infants and young
41	552	children. The American Journal of Clinical Nutrition 2015; 102(5), 1249-1258.
42	553	35. Mukabutera A. Thomson DR. Hedt-Gauthier BL. Basinga P. Nvirazinvove L. Murrav
43	554	M. Risk factors associated with underweight status in children under five: an
44 45	555	analysis of the 2010 Rwanda Demographic Health Survey (RDHS) BMC Nutrition
45 46	556	
47	557	26 Ovekale AS Eactors explaining acute malnutrition among under-five children in
48	557	Sub Sabara Africa (SSA) Life Sci Lana: 0, 2101 7
49	558	Sub-Salial a Allica (SSA). Life Sci J 2012; 9, 2101-7.
50	559	37. Keats A. women's schooling, fertility, and child health outcomes: Evidence from
51	560	Uganda's free primary education program. Journal of Development Economics
52 53	561	2018; 135, 142-159.
55	562	38. Sunguya BF, Poudel KC, Mlunde LB, Urassa DP, Yasuoka J, Jimba M. Poor nutrition
55	563	status and associated feeding practices among HIV-positive children in a food
56	564	secure region in Tanzania: a call for tailored nutrition training. PloS one 2014; 9(5),
57	565	e98308.
58 50	566	39. Iannotti LL, Dulience SJL, Green J, Joseph S, François J, Antenor ML, Nickerson
60	567	NM. Linear growth increased in young children in an urban slum of Haiti: a
00		

1 2 3 4 5 6 7 8 9 10 11 12 13 14	568 569 570 571 572 573 574 575 576	 randomized controlled trial of a lipid-based nutrient supplement. The American Journal of Clinical Nutrition 2014; 99(1), 198-208. 40. Lopriore C, Muehlhoff E. Food security and nutrition trends in West Africa—Challenges and the way forward. In Proceedings of the 2nd International Workshop on Food-based Approaches for a Healthy Nutrition, Ouagadougou, Burkina. 2003; 23–28. 41. Salami A, Kamara AB, Brixiova Z. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities; African Development Bank: Tunis, Tunisia, 2010.
15 16	577	Figures
17 18 19	578 579	Figure 1 : Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA
20 21 22	580 581	Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
23 24	582	
25 26	583	
27 28	584	
29 30	585	
31 32	586	
33 34	587	
35	588	
30 37	589	
38 39	590	
40 41	591	
42 43	592	
44 45	593	
46 47	594	
48 49	595	
50 51	596	
52	597	
53 54	598	
55 56	599	
57 58 59	600	
00		

602 Tables

603 Table 1: Distribution of socio-demographic, environmental and contextual variables

Variable %		Variable	%	
Socio-demographic factors				
Age of child		Urbanicity		
0	30.87	Urban	33.21	
1	28.42	Rural	66.79	
2	20.22	Place of delivery		
3	12.40	Home	31.33	
4	8.09	Health facility	67.51	
Sex of child		Other	1.16	
Male	50.47	Wealth status		
Female	49.53	Poor	42.41	
Birth order		Middle	20.28	
1	19.52	Rich	37.31	
		Age of household		
2 to 4	48.09	head		
5 and above	32.39	Young-adults	43.08	
Perceived size at birth		Middle-aged adults	43.76	
Large	33.71	Old-aged adults	13.16	
Average	49.74	Sex of household head		
Small	16.54	Male	79.77	
Mother's characteristics		Female	20.23	
Maternal age		Access to electricity		
15-19	7.13	No	69.20	
20-49	92.87	Yes	30.80	
Educational attainment		Environmental factors		
No education	41.82	Type of toilet facility		

 BMJ Open

Primary	31.26	Improved	42.4
Secondary	23.82	Unimproved	57.5
		Source of drinking	
Higher	3.10	water	
Working status		Improved	65.6
No	35.49	Unimproved	34.3
Yes	64.51	Type of cooking fuel	
Antenatal visits during pregnancy		Clean	89.7
No	10.76	Unclean	10.2
Yes	89.24	Geographic region	
Postnatal check within 2 months		Western	41.7
No	58.49	Eastern	32.8
Yes	41.51	Central	20.0
Access to media (tv/radio/newspap	ber)	South Africa	5.3
Yes	35.33		
No	64.67		(N=127,48

606 Distribution by country is shown in appendix 1

Table 2: Prevalence (%) of co-existence of wasting, stunting and underweight and its associated socio-demographic and environmental
 factors

	Co-existed				Co-existed		
Variable	(weighted %)	95% CI	Chi ²	Variable	(weighted %)	95% CI	Chi ²
Socio-demographic factors				Access to media (tv/radio/newspaper)			p<0.001
Age of child			p<0.001	Yes	2.14	2.0-2.2	
						3.6-	
0	1.75	1.6-1.9		No	3.78	4.0	
1	4.44	4.2-4.7		Urbanicity			p<0.001
2	3.01	2.8-3.2		Urban	1.73	1.6-1.9	
3	1.62	1.4-1.8		Rural	3.21	3.1-3.3	

4	1.33	1.1-1.6		Country			p<0.001
Sex of child			p<0.001	Angola	2.46	2.1-2.8	
Male	3.43	3.3-3.6		Benin	2.04	1.8-2.2	
						4.9-	
Female	1.99	1.9-2.1		Burkina Faso	5.31	5.8	
Dirth order			D (0.004	Durundi	2 76		
Birth order			p<0.001	Burunai	3./0	3.2-4.4	
1	2.25	2.1-2.4		Cameroon	1.27	0.9-1.7	
2 to 4	2.56	2.4-2.7		Chad	5.86	5.2-6.5	
5 and above	3.23	3.1-3.4		Comoros	1.98	1.3-2.9	
Perceived size at							
birth			p<0.001	Congo	0.98	0.7-1.5	
Large	1.78	1.7-1.9		Cote d'Ivoire	2.28	1.7-3.0	
Average	2.6	2.5-2.7		DR Congo	2.66	2.2-3.2	
Small	4.98	4.7-5.3		Ethiopia	3.64	3.2-4.1	
Mother's characteristics				Gabon	0.63	0.3-1.0	
			P =				
Maternal age			0.080	Gambia	3.61	2.4-5.2	
-						0.9-	
15-19	2.78	2.5-3.1		Ghana	1.37	2.0	
20-49	2.71	2.6-2.8		Guinea	2.26	1.7-2.9	
Educational attainment			D (0 0 0 1	Kapya	0.04	0712	
			p<0.001	Nellyd	0.94	0./-1.2	
	4.19	4.0-4.4		Lesolno	0.00	0./-1.0	
Primary	2.09	2.0-2.2		Liberia	2.37	1.7-3.1	
Secondary	1.22	1.1-1.3		Malawi	1.03	0.7-1.4	
Higher	0.66	0.4-1.0		Mali	3.62	2.5-4.1	
Working status			p<0.001	Namibia	1.99	1.2-3.1	
No	3.13	3.0-3.3		Nigeria	4.1	3.7-4.6	

 BMJ Open

Yes	2.48	2.4-2.6		Rwanda	6.17	5.5-6.9	
Antenatal visits during pregr	nancy		p<0.001	Senegal	2.43	1.8-3.2	
No	5.41	5.0-5.8		Sierra Leone	1.94	1.4-2.5	
						0.02-	
Yes	2.39	2.3-2.5		South Africa	0.18	0.8	
Postnatal check within 2 more	nths		p<0.001	Tanzania	1.86	2.1-3.5	
No	2.93	2.8-3.1		Тодо	2.72	2.1-3.4	
Yes	2.42	2.3-2.6		Uganda	1.2	0.8-1.7	
Place of delivery			p<0.001	Zambia	1.22	1.0-1.5	
Home	4.36	4.2-4.6		Zimbabwe	0.78	0.5-1.1	
Health facility	1.96	1.9-2.1		Environmental factors			
				Type of toilet			
Other	2.45	1.7-3.3		facility			p<0.001
Wealth status			p<0.001	Improved	1.76	1.6-1.9	
Poor	3.46	3.3-3.6		Unimproved	3.43	3.3-3.6	
Middle	2.74	2.5-2.9		Source of drinking water			p<0.001
Rich	1.86	1.7-2.0		Improved	2.54	2.4-2.6	•
Age of household			p =				
head			0.276	Unimproved	3.06	2.9-3.2	
				Type of cooking			
Young-adults	2.65	2.5-2.8		fuel			p<0.001
-						0.8.2-	
Middle-aged adults	2.76	2.6-2.9		Clean	0.98	1.2	
Old-aged adults	2.8	2.6-3.1		Unclean	2.92	2.8-3.0	
Sex of household				Geographic			
head			p<0.001	region			p<0.001
Male	2.82	2.7-2.9		Western	3.11	3.0-2.3	
Female	2.33	2.1-2.5		Eastern	2.43	2.3-2.6	

Access to electricity			p<0.001	Central	2.87	2.7-3.1 0.66-
No	3.21	3.1-3.3		South Africa	0.88	1.1
Yes	1.61	1.5-1.7				

 Table 3: Multinomial regression showing risk factors of co-existence of stunting, underweight, and wasting

Variable	Base outcom	e (Ref: Norma	al)					
	Single and tw	o dimension		Co-existence of thr	Co-existence of three-dimensions			
	RRR	g	95% CI	RRR	95	% CI		
Age of child (Ref:0)				C ,				
1	2.008***	1.93	2.089	3.714***	3.319	4.156		
2	2.624***	2.514	2.739	2.827***	2.48	3.222		
3	2.122***	2.018	2.231	1.464***	1.227	1.748		
4	1.504***	1.417	1.597	1.051	0.84	1.315		
Sex of child (Ref: Male	e)							
Female	0.752***	0.731	0.775	0.468***	0.429	0.51		
Birth order (Ref: 1)								
2	0.938**	0.896	0.981	1.002	0.875	1.146		
5 and above	0.969	0.92	1.021	0.995	0.858	1.155		
Perceived size at birth	(Ref: Large)							
Average	1.32***	1.276	1.365	1.756***	1.574	1.958		
Small	1.931***	1.846	2.02	3.818***	3.383	4.308		
Maternal age (Ref: 15-	-19)							
20-49	0.834***	0.78	0.891	0.881	0.735	1.056		
Educational attainmer	nt (Ref: Higher)							
No education	2.624***	2.305	2.987	3.291***	1.961	5.522		
Primary	2.189***	1.927	2.487	2.381***	1.417	4.001		

 BMJ Open

Secondary	1.751***	1.545	1.985	1.617	0.971	2.691
Working status (Ref: Y	es)					
No	1.018	0.984	1.053	1.195***	1.086	1.314
Antenatal visits during	pregnancy (Ref:	Yes)				<0.00
No	1.139***	1.079	1.201	1.364***	1.208	1.541
Postnatal check within	2 months (Ref: Y	es)				
No	0.98	0.946	1.015	0.977	0.879	1.086
Place of delivery (Ref:	Health facility)					
Home	1.183***	1.137	1.23	1.372***	1.232	1.529
Other	1.046	0.912	1.201	1.047	0.71	1.543
Wealth status (Ref: Ric	:h)					
Poor	1.297***	1.235	1.361	1.408***	1.235	1.605
Middle	1.195***	1.138	1.254	1.214**	1.054	1.397
Age of household head	l (Ref: Young-adu	lt)				
Middle-aged adults	0.954**	0.921	0.987	1.01	0.913	1.118
Old-aged adults	0.974	0.93	1.021	1.065	0.936	1.213
Sex of household head	(Ref: Male)					
Female	0.977	0.94	1.015	1.035	0.925	1.159
Access to media (tv/ra	dio/newspaper) (Ref: Yes)				
No	1.079***	1.042	1.117	1.255***	1.144	1.377
Access to electricity (R	ef: Yes)					
No	1.136***	1.083	1.191	1.062	0.922	1.225
Type of toilet facility (I	Ref: Improved)					
Unimproved	1.027	0.991	1.065	1.158**	1.032	1.3
Source of drinking wat	er (Ref: Improved	I)				
Unimproved	0.959**	0.928	0.99	0.968	0.885	1.058
Type of cooking fuel (R	lef: Clean)					
Unclean	1.177***	1.089	1.271	1.316	0.97	1.787
Urbanicity (Ref: Urban)					
Rural	1.05**	1.006	1.095	0.943	0.832	1.069

For beer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA

Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA

Supplementary Tables

Appendix 1: Distribution of sample by country

Country	Survey year	n	%
Angola	2015-16	7,318	5.74
Benin	2017-18	15,473	12.14
Burkina Faso	2010	8,908	6.99
Burundi	2016-17	4,172	3.27
Cameroon	2018	2,911	2.28
Chad	2014-2015	5,999	4.71
Comoros	2012	1,320	1.03
Congo	2013	2,609	2.05
Cote d'Ivoire	2011-12	2,174	1.71
Congo DR	2013-14	4,806	3.77
Ethiopia	2016	6,573	5.16
Gabon	2012	1,960	1.54
Gambia	2013	743	0.58
Ghana	2014	1,896	1.49
Guinea	2018	2,237	1.75
Kenya	2014	6,066	4.76
Lesotho	2014	1,012	0.79
Liberia	2013	1,946	1.53
Malawi	2015-16	4,027	3.16
Mali	2018	5,653	4.43
Namibia	2013	905	0.71
Nigeria	2018	7,379	5.79
Rwanda	2014-15	4,408	3.46
Senegal	2010-11	1,944	1.52
Sierra Leone	2019	2,689	2.11
South Africa	2016	855	0.67
Tanzania	2015-16	6,061	4.75
Тодо	2013-14	2,220	1.74
Uganda	2016	2,891	2.27
Zambia	2018	6,347	4.98
Zimbabwe	2015	3,987	3.13

Appendix 2: Multicollinearity diagnos	is			
		SQRT		R-
Variable	VIF	VIF	Tolerance	Squared
Age of child	1.05	1.02	0.9547	0.0453
Sex of child	1.01	1	0.9948	0.0052
Birth order	1.36	1.17	0.7366	0.2634
Perceived size at birth	1.02	1.01	0.9798	0.0202
Age at child birth	1.22	1.1	0.8224	0.1776
Educational attainment	1.51	1.23	0.664	0.336
Working status	1.07	1.03	0.9357	0.0643
Antenatal visits during pregnancy	1.25	1.12	0.7976	0.2024
Postnatal check within 2 months	1.1	1.05	0.9098	0.0902
Place of delivery	1.31	1.15	0.7617	0.2383
Wealth status	1.8	1.34	0.5554	0.4446
Age of household head	1.05	1.02	0.9546	0.0454
Sex of household head	1.03	1.02	0.9702	0.0298
Access to media				
(tv/radio/newspaper)	1.26	1.12	0.7913	0.2087
Access to electricity	1.71	1.31	0.5837	0.4163
Type of toilet facility	1.35	1.16	0.7404	0.2596
Source of drinking water	1.09	1.04	0.9191	0.0809
Type of cooking fuel	1.31	1.14	0.7653	0.2347
Urbanicity	1.58	1.26	0.6319	0.3681
Country	1.17	1.08	0.8579	0.1421
Mean VIF	1.26			

Appendix 3: Country-level risk of co-existence of stunting, wasting, and underweight

б							
7 o		Base outco	me (Ref: N	ormal)			
o 9		Single and	two dimen	sions	Co-existence	e of three-d	imensions
10		RRR	9	5% CI	RRR	9	5% CI
1	Country (Ref: Angola)						
2	Benin	0.651***	0.598	0.708	0.625***	0.489	0.798
3	Burkina Faso	0.952	0.866	1.046	1.946***	1.526	2.481
4 F	Burundi	1.580***	1.424	1.753	2.049***	1.545	2.718
5	Cameroon	0.669***	0.593	0.756	0.398***	0.261	0.609
5 7	Chad	0.910	0.823	1.007	1.505**	1.184	1.913
8	Comoros	0.883	0.745	1.046	0.656	0.378	1.138
Э	Congo	0.674***	0.580	0.783	0.472**	0.279	0.800
)	Cote d'Ivoire	0.734***	0.638	0.844	0.739	0.492	1.109
ן ר	DR Congo	1.229***	1.100	1.373	1.351	0.988	1.847
2 3	Ethiopia	0.810***	0.726	0.904	0.813	0.604	1.095
4	Gabon	0.495***	0.415	0.59	0.319**	0.128	0.796
5	Gambia	0.732**	0.603	0.889	1.001	0.618	1.620
5	Ghana	0.453***	0.386	0.531	0.545**	0.346	0.857
7	Guinea	0.798***	0.705	0.904	0.726	0.509	1.036
5	Kenva	0.553***	0.498	0.501	0 321***	0.230	0 449
)	Lesotho	0.777**	0.654	0.013	0.369***	0.230	0.772
1	Liberia	0.658***	0.054	0.524	0.305	0.177	1 243
2	Malawi	0.000	0.505	0.700	0.778	0.404	0.687
3	Mali	0.754	0.708	0.664	1,006	0.251	1 216
4 -	Namibia	0.000	0.541	0.004	0.840	0.705	1.310
5	Nigoria	0.080	0.000	1.046	1 5 7 * *	1 1 0 2	1.420
7	Bwanda	1.050	0.000	1 1 7 6	1.001***	1.105	1.972
3	Rwallua Conogol	1.059	0.954	1.170	1.991	1.541	2.571
9	Senegal	0.660***	0.572	0.761	0.643*	0.434	0.952
)	Sierra Leone	0.641***	0.567	0.725	0.656*	0.447	0.963
	South Africa	0.788*	0.634	0.979	0.108***	0.033	0.352
2	Tanzania	0.772***	0.699	0.851	0.699**	0.512	0.954
4	Togo	0.557***	0.490	0.633	0.838	0.590	1.190
5	Uganda	0.627***	0.556	0.708	0.421***	0.278	0.637
б	Zambia	0.904*	0.818	0.998	0.519***	0.366	0.736
7	Zimbabwe	0.693***	0.620	0.775	0.344***	0.214	0.554

> > For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Risk factors associated with the co-existence of stunting, underweight, and wasting in children under five: Analysis of cross-sectional surveys from 31 sub-Saharan African countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052267.R2
Article Type:	Original research
Date Submitted by the Author:	11-Oct-2021
Complete List of Authors:	Amadu, Iddrisu; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Seidu, Abdul-Aziz; University of Cape Coast, Department of Population and Health; James Cook University, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Duku, Eric; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Boadu Frimpong, James; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Hagan Jnr., John; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Aboagye, Richard ; University of Health and Allied Sciences, School of Public Health, University of Health and Allied Sciences, No, Ghana Ampah, Belinda; Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7, Esiama, Ghana Adu, Collins; Kwame Nkrumah University of Science and Technology, Department of Health Promotion and Disability Studies Ahinkorah, Bright; University of Technology Sydney, School of Public Health, Faculty of Health, University of Technology Sydney, NSW, Australia.
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health services research, Health policy, Global health
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, Child protection < PAEDIATRICS

SCHOLARONE™
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3 ∕	1	Risk factors associated with the co-existence of stunting, underweight, and wasting in
5	2	children under five: Analysis of cross-sectional surveys from 31 sub-Saharan African
6	3	countries
7	4	Iddrisu Amadu ^{1,2,3} , Abdul-Aziz Seidu ^{4,5,6} , Eric Duku ^{1,2} , James Boadu Frimpong ⁷ , John Elvis
0 0	5	Hagan Ir ^{7,8} , Richard Gvan Aboagve ⁹ , Belinda Ampah ¹⁰ , Collins Adu ¹¹ , Bright Opoku
10	6	Abinkorsh ¹²
11	7	
12	/	
13	8	1. Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape
14	9	Coast, Ghana
15 16	10	2. Department of Fisheries and Aquatic Sciences, School of Biological Sciences,
17	11	College of Agriculture and Natural Sciences. University of Cape Coast, Ghana
18	12	3. Emperiks Research, NT0085, Tamale, Ghana
19	13	4. Department of Population and Health. College of Humanities and Legal Studies.
20	1/	Liniversity of Cape Coast, Ghana
21	15	E College of Public Health Medical and Veterinary Sciences, James Cook University
22	10	J. Conege of Fubic freatin, medical and veterinary sciences, sames cook oniversity,
25 74	10	6 Department of Estate Management, Takeradi Technical University, Takeradi
25	1/	6. Department of Estate Management, Takoradi recimical Oniversity, Takoradi,
26	18	
27	19	7. Department of Health, Physical Education, and Recreation, University of Cape
28	20	Coast, Cape Coast, Ghana
29	21	8. Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology
30	22	and Sport Sciences, Bielefeld University, Bielefeld-Germany
32	23	9. School of Public Health, University of Health and Allied Sciences, Ho, Ghana
33	24	10. Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7,
34	25	Esiama, Ghana
35	26	11. Department of Health Promotion, Education and Disability Studies, Kwame
36	27	Nkrumah University of Science and Technology, Kumasi, Ghana
3/	28	12. School of Public Health, Faculty of Health, University of Technology Sydney, NSW,
30 39	29	Australia.
40		
41	30	Email addresses
42	24	14. id drive area du Octumenta du sth
43	31	IA: Iddrisu.amadu@stu.ucc.edu.gn
44 45	32	*AS: abdul-aziz.seidu@stu.ucc.edu.gh
45	33	ED: eric.duku@stu.ucc.edu.gh
47	34	JBF: frimpongboadujames@gmail.com
48	35	JEH: elvis.hagan@ucc.edu.gh
49	36	RGA: raboagye18@sph.uhas.edu.gh
50	37	BA: <u>oyebel@gmail.com</u>
51	38	CA: collinsadu80@yahoo.com
52 53	39	BOA: brightahinkorah@gmail.com
54	40	
55	4.4	
56	41	Correspondence to:
57	42	Abdul-Aziz Seidu, Department of Population and Health, University of Cape Coast. PMB TF0494.
58 50	43	Cape Coast, Ghana, Email:abdul-aziz.seidu@stu.ucc.edu.gh
59 60	-	

44 ABSTRACT

Objective: This study investigated the risk factors associated with the co-existence of 46 stunting, underweight, and wasting among children under age five in sub-Saharan 47 Africa(SSA).

48 Methods: Data from 31 sub-Saharan African countries were pooled from the Demographic
 49 and Health Surveys collected between 2010 and 2019. We examined the risk of co 50 existence of undernutrition using multinomial logistic regression models, with results
 51 presented as relative risk ratios with their respective confidence intervals.

Dutcome measures: The outcome variables were three child anthropometrics: stunting
 (height-for-age z-scores); underweight (weight-for-age z-scores); and wasting (weight-for height z-scores).

Results: The prevalence of co-existence of stunting, underweight, and wasting varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Benin (12.14%) and Gambia (0.58%) respectively. The risk of co-existence of the three undernutrition dimensions was higher among children age 1 year compared to those aged 0. The risk of co-existence of the three dimensions was higher among female children, those with small size at birth, those whose mothers had no education, not working, had no antenatal visits during pregnancy, children delivered at home, those whose mothers were poor, had no access to media and children whose mothers had unimproved toilet facility.

Conclusion: Findings suggest the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions need to be well-tailored considering the compositional characteristics. In the long-term, regional policies and coordinated interventions among governments of SSA countries need to be designed to address the disparate prevalence of the co-existence of stunting, wasting and underweight in under-five children across the four geographic regions.

Keywords: co-existence; stunting; underweight; wasting; children under five; sub-Saharan
 Africa

 The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study. Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stuntin underweight, and wasting) in the concurrent measurement of o outcome variable, compared to the unitary assessment oundernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations are inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study. 	 The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study. Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stuntir underweight, and wasting) in the concurrent measurement of coutcome variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	Stre	ngth and Limitations
 Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of on outcome variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations and inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restrict causality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study. 	 Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of concurrent variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restrict causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	•	The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study.
 The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations at inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, at therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	 The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	•	Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of o outcome variable, compared to the unitary assessment of undernutrition that currently dominates literature.
 Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	 Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	•	The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations ar inferences made from current findings must be limited to or these observed variables.
 The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study. 	 The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	٠	Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes.
		•	The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study.

BACKGROUND

Undernutrition among children under 5 years remains a major public health problem across many low-and middle-income countries¹⁻³. Factors such as insufficient food intake, diarrhoea, recurring infections, poor sanitation practices, and low parental education have been identified as significant contributors to the high prevalence of undernutrition during childhood^{1,4,5}. Despite the numerous interventions rolled out to address childhood undernutrition especially in sub-Saharan Africa where the phenomenon is quite pervasive, the progress seems to be insignificant^{6,7}. For example, a study reported that child undernutrition accounted for nearly half (45%) of the child mortality rate in low-and middle-income countries⁸. Aside from that, it was reported in 2018 that about 149 million and 49 million children under age 5 were stunted and wasted respectively⁹.

Three main indicators that are often used to represent undernutrition are underweight or low weight for age, stunting or low height for age, and wasting or low weight for height^{2,10-} ¹². Among the three indicators of undernutrition, stunting has been identified as the problem with the greatest magnitude among under 5 children in developing countries^{2,3}. Even though the prevalence of stunting in sub-Saharan Africa is declining, it is worth noting that it is still above 30%¹³ which is undeniably high. Research also indicates that the country-specific prevalence of stunting, underweight and wasting is still high^{2,3}. For instance, in Ethiopia, the prevalence of wasting and stunting were 10% and 38% respectively¹⁴. Additionally, the prevalence of stunting, underweight and wasting among children in South Africa were 35.8%, 20.5%, and 17.2%³. Likewise, Anin et al.² reported 33.2%, 14.1%, 27% and 2.6% of prevalence in stunting, wasting, underweight and overweight among infants (6-23 months) across Northern Ghana.

Previous studies have investigated the compositional and contextual risk factors associated with either stunting, underweight or wasting among children under 5 years and found the age of a child, sex of the child, child's size at birth, mother's age during childbirth, mother's educational level, birth order, place of residence and mother's body mass index (BMI) as associated factors^{1-3,15,16}. Other studies also found a significant linkage between household wealth quintile and maternal short stature, and nutritional status of children under 5^{17,18}. Regarding the sex of a child, for example, female children were found to be less likely to suffer from stunting compared to males^{1,3}.

Apart from studies that have examined the factors associated with either stunting, underweight, and wasting, some scholars have begun looking at predictors of the co-existence of any two or three of the indicators of malnutrition. A study in 84 countries that examined the prevalence and predictors of co-existence of stunting and wasting found sex and age of children as significant predictors¹⁹. Other studies in Ghana²⁰ and India²¹ also examined the co-existence of stunting, underweight, and wasting and found birth interval, birth weight, dietary diversity, place of delivery, wealth index, mother's BMI, mother's educational level, and partners' educational level as associated factors. The need to examine the co-existence of stunting, underweight and wasting is important because not much work has been done on that subject and hence children who concurrently suffer from stunting, underweight, and wasting are less likely to be reached in malnutrition prevention programmes, especially in SSA. For instance, some scholars have indicated that despite evidence that wasting and stunting are global public health problems that frequently co-exist, they are usually separated in terms of policy, guidance, programming

and financing²². This creates a gap in the literature that needs to be filled. Despite the detrimental consequences of undernutrition on the health and wellbeing of children under 5 in SSA, studies utilizing current, and nationally representative data to investigate the risk factors associated with the co-existence of stunting, underweight, and wasting among this age group are absent in the literature. Studies presenting empirical analyses of the co-existence of these three indicators of child undernutritionin SSA are absent in extant literature making it difficult for policymakers and nutritional experts to provide up-to-date trends with appropriate strategies to curb the situation in the sub-region. This research lag presents a void in extant literature which this study seeks to bridge. Therefore, the study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from the Demographic Health Survey (DHS) conducted in 31 countries between 2010 and 2019. The findings of the study could contribute to the formulation of policies and interventions to respond to the nutritional needs of children under 5 years and also suggest pragmatic ways of reducing undernutrition among children in the sub-region.

METHODS

Data Source

The dataset included 127,487 children under the age of 5 years from 31 sub-Saharan African countries (Figure 1) were pooled from the most current Demographic and Health Surveys (DHS) conducted between 2010 and 2019 (Appendix 1). Specifically, the data were pooled from the children's files in each of the countries. The DHS Program has conducted over 400 surveys in over 90 developing countries around the world since 1984 every five years²³. The program implements cross-sectional surveys to gather nationally-representative data, analyze and disseminate accurate information on important demographic and health indicators spanning population, nutrition, and diseases. For all surveys, standardized protocols designed for each target group including children, women, and men at the household level are employed to allow for cross-national comparisons. Stratified two-stage sampling involving first, the listing of enumeration areas and selection of clusters, and then a random selection of households in each cluster. The detailed sampling method can be found in a previous study²⁴. The dataset is freely available for download at: https://dhsprogram.com/data/available-datasets.cfm²⁵. The Strengthening Reporting of Observational Studies in Epidemiology (STROBE) guidelines were followed in writing the manuscript²⁶.

Study Variables

Outcome Variable

The outcome variable considered in this study is derived from three child anthropometric variables including stunting (height-for-age z-scores); underweight (weight-for-age z-scores) and wasting (weight-for-height z-scores). The DHS (2021) specifies categorization for each of these variables following the WHO child growth standard. Each of the three variables we coded into "o" for "Normal" and "1" for "Stunting", "underweight" and "Wasting" respectively.

These three variables were then added to generate the outcome variable "Co-existed undernutrition" with scores (discrete) ranging from 0 to 3 where 0 implies "Normal", that is, children with none of the three conditions; 1 implies "Single burden", that is, the child suffers from one of the three conditions; 2 indicates that child suffers from "Two burdens" out of the three; and 3 shows "Co-existed", that is, the child suffers from all three conditions of undernutrition. For parsimony, children who suffered from "Single burden" and those who suffered from "Two burdens" were added resulting in the variable "Co-existed undernutrition" with three response categories: 0=Normal; 1=One or two burdens; and 3=co-existed.

15 178 Independent Variables

Several risk factors spanning compositional to contextual factors have been associated with child undernutrition. The relevant biosocial characteristics and sociocultural factors related to the child, mother, household head and the household together form compositional factors^{27,28}. Factors that describe location or "place-based" variables are contextual factors^{20,27,29,30}. The relevant compositional factors considered include the age of the child; sex of the child; birth order of child; perceived size at birth; mother's age; educational attainment; working status; antenatal visits during pregnancy; postnatal check within 2 months; and place of delivery. At the household level, relevant variables included are the wealth status; the age of household head; sex of household head (male and female); access to electricity; and access to media which was derived from the three variables "access to television", "radio" and "newspaper". Household basic needs including the type of toilet facility (re-coded into "improved" and unimproved"²⁹; source of drinking water (re-coded as "improved" and "unimproved"²⁹, and type of household cooking fuel (re-coded into "clean" and "unclean"^{29,31} are also considered. The contextual factors considered are urbanicity and the country of origin of the participant.

3536 194 Data Analyses

The statistical analysis of the data was performed using the Stata SE software version 14.2. The "svyset" command was first used to declare the data as survey data to prevent the potential effects of the complex sampling techniques on the analyses. The sample weight variable in the DHS was used to provide weighted samples in the analyses. To understand the distributions of the variables, the data were summarized and presented in tables using descriptive statistics (frequencies, weighted percentages, and 95% confidence intervals (CIs) of percentages). We further integrated the data into a GIS environment and presented the distribution of key variables across the study countries and geographic regions in map images (Figure 1 and Figure 2). This approach enhances the visualization of the data and understanding of the context of the study. The associations between the co-existence of undernutrition and each of the risk factors considered were assessed using the chi-square test of independence, with results presented in a contingency table. The risk factors as independent variables were then subjected to collinearity diagnosis tests, including Variance Inflation Factors (VIF), Square VIF, Tolerance, and R-squared. This was done to ascertain whether the independent variables were actually "independent", that is, are not correlated with one another and will not share variance in the outcome variable. Results from the multicollinearity diagnoses test (See Appendix 2) show that the variables were not correlated (Mean VIF=1.26; Maximum VIF=1.71; Minimum VIF=1.02). To determine

the risk factors associated with the co-existence of undernutrition, a multinomial
regression model was implemented. All statistical tests were conducted at p<0.05.

6 7 215 **Ethical Approval**

This study used secondary data from the DHS Program. Since we neither interacted directly nor indirectly with the study participants, there was no need for ethical approval. Details on the ethical considerations of the DHS Program could be found at https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-

- 13 220 Respondents.cfm.
- 14 15

16

221

222 Patient and public involvement

Patients and the public were not involved in the design and conduct of this research
 Patients and the public were not involved in the design and conduct of this research

19 224 **Results** 20

21 225 **Distribution of sample characteristics**

The study included a total of 127,487 under-five children. It is found that most (30.87%) of 226 22 23 the children were less than a year (Table 1). With regards to sex, both males and females 227 24 constituted approximately half of the sample. A majority of the children (92.87%) were 228 25 born to mothers aged between 20 to 49 years while only 7.13% were born to mothers aged 229 26 15 to 19years. In terms of education, most (41.82%) of the children were born to mothers 230 27 with no formal education. Only 3.10% of the children were born to a mother with a higher 28 231 29 232 level of educational attainment. Further, 42.1% of the children were born in poor 30 233 households while 37.21% were born in rich households. More than half (57.53%) of the 31 234 children lived in a household with unimproved toilet facilities. However, most (65.63%) of 32 235 the children lived in households with access to improved drinking water sources. Similarly, 33 34 a majority (89.76%) of the children lived in households using clean cooking fuel (Table 1). 236 35

As shown in Appendix 2, the prevalence of co-existence of stunting, underweight, and 36 237 37 underweight varied across countries and sub-regions, with the highest and lowest 238 38 prevalence of co-existence of stunting, underweight, and wasting as Rwanda (6.17%) and 239 39 South Africa (0.18%) respectively (Figure 1). In terms of sub-region, the highest prevalence 240 40 of co-existence of stunting, underweight, and wasting was observed in Western Africa 241 41 (3.11%) and the lowest prevalence in Southern Africa (0.88%) (Figure 2). 42 242 43

- Significant associations between all the independent variables and co-existence of
 stunting, wasting, and underweight, except maternal age and age of household head,
 were identified (Table 2).
- ⁴⁸ 246 ***Table 1***
- 49 50 247
- 51 248 ***Figure 1***
- 52 53 249 ***Figure 2***
- 54 55 250 ***Table 2***

⁵⁶ 251 **Risk factors of the co-existence of stunting, wasting and underweight**

Table 3 shows the results of the multinomial regression analysis of the risk factors of co existence of dimensions of undernutrition (stunting, underweight, and wasting) among

children under five years in the SSA. Age of child, size of the child at birth, sex of the child, birth order, educational level, maternal age, ANC attendance, place of delivery, source of drinking water, sex of household head, wealth index, access to electricity and place of residence were associated with one or two dimensions of undernutrition. See Appendix 3 for country-level risk of co-existence of stunting, wasting, and underweight.

Regarding the co-existence of the three dimensions of undernutrition (stunting, underweight, and wasting), age of the child, sex of the child, perceived birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility were found to be significant risk factors (Table 3).

17 264 *****Table 3*****

19 265 **DISCUSSION**

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the countries with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting were Benin and Gambia respectively. In terms of geographic region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa and the lowest prevalence in Southern Africa. The disparities in the prevalence among the countries and geographical regions could be attributed to the nutritional practices and beliefs practised in the countries and geographical regions. Differences in the health policies provided by governments in the various countries could also account for the disparities noted. This finding implies that countries that have high prevalence should take critical lessons from the countries that are doing well regarding the implementation of nutritional policies and interventions (e.g., increasing dietary supplementation, increasing dietary diversity) that target the reduction of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa².

Similar to previous studies^{1,3}, this study found that children aged 1 year, 2 years, and 3 years were at greater risk of having co-existence of all the three forms of undernutrition compared to those aged o. A plausible reason for this finding could be that as children grow their energy needs also increase¹, increasing their risk of having all three nutritional conditions. Alternatively, since these nutritional conditions may manifest after long durations of improper nutritional practices or undernutrition^{1,3}, older children may be at higher risk of having all three nutritional conditions. The finding suggests that complementary foods given to children as they grow are inadequate. To reduce the risk of co-existence of stunting, underweight, and wasting among under 5 children, the health sectors in the various countries should invest heavily in providing adequate complementary feeding to this category of children.

Corroborating the findings of other studies^{1,3,32,33}, this study also found that children who were females were less likely to have a co-existence of the three dimensions of undernutrition compared to their male counterparts. An acceptable explanation for this finding could be the biological variations in morbidity between males and females at that young age³. It is also possible that since male children have higher birth weight compared to females, they require more energy^{1,34}, which increases the risk of males having all three
nutritional conditions. Moreover, male children are perceived to be hungrier than females, therefore breastfeeding alone could be insufficient or inadequate^{3,35}, increasing their susceptibility to having the three nutritional conditions. The finding suggests that male children should be given critical attention in the development and implementation of nutritional programs (e.g., dietary supplementation) to mitigate the co-existence of stunting, underweight, and wasting among these male children under 5 years.

The study found that the risk of co-existence of the three dimensions of undernutrition was higher among children with the average size at birth and small size at birth compared to children with large size at birth. It has been proven that undernutrition in children is partly influenced by maternal nutrition practices. Hence, mothers' appropriate nutritional behaviours during the prenatal and postnatal periods are key to improve child growth. Conversely, maternal undernutrition causes low maternal BMI, which in turn affects the foetus to poor development often associated with small birth size and low birth weight^{1,3,21,36}. This finding indicates that mothers of children under 5 should continuously be educated on the best nutritional practices such as exclusive breastfeeding, complementary feeding, and dietary supplementation. These strategies will help ameliorate the risk of acquiring health conditions associated with undernutrition among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no education and primary education compared to those whose mothers had higher education. Mothers who have attained higher education are better informed about improved childcare practices³⁷, are more empowered to make health decisions³⁸, practice good personal hygiene³⁸, are more likely to use the health facility³⁹, proper feeding practices³⁶ and childcare in times of illness^{36,40}. This finding suggests that mothers with no formal or little education are neglected in nutritional programs that help to eliminate stunting, underweight, and wasting. Hence, they should be given the needed consideration to deal with this persistent health issue.

This study also found that the risk of co-existence of the three dimensions was higher among children whose mothers were not working compared to those whose mothers were working. Women's employment status indicates their ability to afford proper nutritional products and health care services^{36,40}. Therefore, if mothers are not employed, the children become highly susceptible or vulnerable because mothers are unlikely to meet their nutritional needs or requirements. Mothers with children under 5 with such disadvantaged backgrounds should be given subsidies on children's nutritional products and perhaps, free access to health care services by governmental and non-governmental organizations. This step will be significant in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.

The risk of co-existence of the three dimensions was higher among children whose mothers had no antenatal visits during pregnancy compared to those whose mothers had antenatal visits during pregnancy. Specifically, mothers who attend antenatal services are usually educated on the best practices of nutrition and general healthcare, which hitherto would not be known by these mothers³⁸. Therefore, mothers who did not have antenatal visits may lack some knowledge about proper nutritional practices, increasing their children's risk of having these undernutrition-related challenges. Regular antenatal visits could reduce children's risk of stunting, being underweight, and wasting, therefore,

3 343 mothers should continuously be encouraged to go for antenatal care services in their
 344 countries.

Children who were delivered at home compared to children who were delivered at a health facility were found to have a higher risk of co-existence of the three dimensions. Since mothers who deliver at home do not receive any expert nutritional advice from a qualified health practitioner³⁷, the children of such mothers are at higher risk of having these conditions because of poor and/ or inadequate dietary practices. This finding shows that facility delivery may help reduce the risk of co-existence of stunting, underweight, and wasting among children under 5. Therefore, mothers should regularly be educated on the need to opt for facility delivery because of its positive implications on children's growth.

- The risk of co-existence of the three dimensions was higher among children whose mothers were poor and had middle wealth status compared to those whose mothers were rich. Usually, mothers who have an average income may lack the financial capacity to feed themselves and their children properly and adequately^{3,17,36}, increasing the children's risk of being stunted, underweight or wasted. Likewise, mothers from poor and middle wealth quintiles may not have access to quality nutritional products and health care systems^{36,40}, making their children more susceptible to having all three nutritional conditions. This finding implies that women from poor economic backgrounds should be assisted with nutritional products and services to facilitate the reduction in the risks of the co-existence of stunting, underweight, and wasting among children under 5.
- The risk of co-existence of the three dimensions was higher among children whose mothers had no access to media compared to those whose mothers had access to media. Since many people are educated about proper nutritional practices through the mass media^{10,11}, mothers who have no access to the media may lack certain important nutritional information they need. This information gap could increase children's risk of having all three nutritional conditions through improper dietary practices from their mothers. For instance, mothers' access to appropriate information from the media would help them decide on which proper diets or food commodities are readily available on market for their children. More pragmatic ways of reaching mothers who have no access to media are encouraged. Regular outreach or sensitization programs to target women without access to media for example could help in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.
- Children whose mothers had unimproved toilet facilities were found to have a higher risk of co-existence of the three dimensions of child undernutrition compared to those whose mothers had improved toilet facilities. Insanitary or unhygienic toilet conditions may increase mother-child-environment interactions that may result in increased exposure to childhood diseases and other opportunistic infections (e.g., diarrhoeal episodes, fever) either through consumption of contaminated foods, drinking water or poor environmental sanitation²¹. These conditions have been shown to cause growth retardation in children. Government and non-governmental organizations should support the provision of improved household toilet facilities for poorer communities to help minimize the risks of the co-existence of child undernutrition indicators.
- S85 Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having
 S86 the co-existence of the three dimensions compared to those from Angola. On the other
 S86

hand, countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho, Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa had a lower risk among their children having co-existence of the three undernutrition dimensions. The sub-regional and country-specific variations in socio-economic, agro-ecological and geographical characteristics may strongly influence the nutritional status of children because of inadequate food supplies, limited access to arable land for agriculture, unfavourable climatic conditions (e.g., desertification), rapid population growth, and increasing cost of living may determine food access, availability and production in studied countries in SSA^{41,42}. Governmental priorities should intensify efforts to minimize the risk of co-existence of stunting, underweight, and wasting among children under age 5 with sound socio-economic and sustainable human capital development.

Conclusions and implications

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the prevalence of co-existence of stunting, underweight, and wasting ranged from 0.58 % in the Gambia to 12.14% in Benin. The study also found that the prevalence of co-existence of stunting, underweight, and wasting was high in Western Africa (41.78%) but low in Southern Africa (5.3%). The significant findings show that the disadvantaged have more risks of the co-existence of stunting, underweight, and wasting among under 5 children in selected SSA countries. These findings demonstrate the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions needs to be well-tailored considering the compositional characteristics including child's age, sex, birth size; maternal education, working status, place of delivery, antenatal visit; and household's wealth status, access to media and improved toilet facility are required. For instance, such programs could be geared towards improving females' access to education, reducing unemployment, expanding access to the media and using it to promote education on the need for antenatal care. In the long-term, regional policies and coordinated interventions among governments of SSA countries need to be designed to address the disparate prevalence of the co-existence of stunting, wasting and underweight in under-five children across the four geographic regions. The implementation of these at the local-level should consider rural-urban differences in the prevalence of the condition and the risk factors elicited.

Acknowledgements: The authors thank the MEASURE DHS project for their support and free access to the original data

Contributors: IA and BOA developed the study concept. IA performed the data analysis. AS, ED, JBF, JEH, RGA, BA, CA and BOA drafted and revised the manuscript critically for its intellectual content. All authors read and approved the final manuscript. AS had the final responsibility to submit the manuscript.

Funding: This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors

2		
3	431	Competing interests: None
4 5	432	
5	433	Patient consent for publication: No consent to publish was needed for this study
7	434	as we did not use any details, images or videos related to individual participants. In
8	435	addition data used are available in the public domain
9	126	
10	430	Ethics Approval and concent to participate
11	437	Ethics Approval and consent to participate
12	438	This study used secondary data from the DHS Program. Since we neither interacted
13 14	439	directly nor indirectly with the study participants, there was no need for ethical approval.
14	440	Details on the ethical considerations of the DHS Program could found at
16	441	https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-
17	442	Respondents.cfm.
18	443	
19	444	Provenance and peer review: Not commissioned; externally peer reviewed.
20	445	
21	446	Data availability statement: Data are available in a public, open access repository.
22	447	
24		
25	448	References
26	440	4 Amore 7V Abroad ME Mabari AD Determinants of putritional status among
27	449	1. Amare ZY, Anmed ME, Menan AB. Determinants of nutritional status among
28	450	children under age 5 in Ethiopia: further analysis of the 2016 Ethiopia demographic
29 30	451	and health survey. Global Health 2019;15(1):1–11.
30	452	2. Anin SK, Saaka M, Fischer F, Kraemer A. Association between Infant and Young
32	453	Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23
33	454	Months) in Northern Ghana. Nutrients 2020; 12, 2565.
34	455	https://doi.org/10.3390/nu12092565
35	456	3. Madiba S, Chelule PK, Mokgatle MM. Attending informal preschools and daycare
36	457	centers is a risk factor for underweight, stunting and wasting in children under the
3/ 38	458	age of five years in underprivileged communities in South Africa. International
30	459	Journal of Environmental Research and Public Health 2019; 16(14), 2589.
40	460	4. Yalew BM, Amsalu F, Bikes D. Prevalence and factors associated with stunting.
41	461	underweight and wasting: a community based cross sectional study among
42	162	children age 6-50 months at Lalibela Town Northern Ethionia I Nutr Disorders Ther
43	462	
44 45	403	5 WHO Nutrition Londscope Information System (NUIS) Country Profile Indicators
45 46	404	5. Who. Nutrition Editascape Information System (NEIS) Country Frome indicators.
47	465	Interpretation Guide; wond Health Organization: Geneva, Switzenand, 2010.
48	466	6. Akombi BJ, Agno KE, Hali JJ, Wali N, Renzano A, Merom D. Stunting, wasting and
49	467	underweight in sub-Saharan Africa: a systematic review. International Journal of
50	468	Environmental Research and Public Health 2017; 14(8), 863.
51	469	7. WHO. Global nutrition targets 2025: policy brief series (WHO/NMH/NHD/14.2).
52 52	470	Geneva: World Health Organization; 2014.
55 54	471	https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_e
55	472	ng.pdf
56	473	8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,
57	474	Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition
58	475	Study Group. Maternal and child undernutrition and overweight in low-income and
59	476	middle-income countries. The lancet 2013: $382(9890)$. 427-451.
60		

1		
2 3		
4	477	9. World Health Organization. Levels and trends in child mainutrition: key findings of
5	4/8	the 2019 edition (No. WHO/NMH/NHD/19.20). World Health Organization. 2019.
6	479	10. De Onis M, Onyango A, Borgni E, Siyam A, Biossner M, Lutter C. Worldwide
/ 8	480	implementation of the WHO child growth standards. Public Health Nutrition
9	481	2012; 15(9), 1603-1610.
10	482	11. De Onis M, Biossner M, Borgni E. Prevalence and trends of stunting among pre-
11	483	school children, 1990–2020. Public Health Nutrition 2012; 15(1), 142-148.
12	484	12. World Health Organization. Community-based management of severe acute
14	485	Brogramme, the United Nations System Standing Committee on Nutrition and the
15	480	Programme, the Onneed Nations System Standing Committee on Nutrition and the
16	487	UNICEE Lough and trends in shild malnutrition. United Nations Children's fund
17	488	13. UNICEF. Levels and trends in child maindufficini, United Nations Children's fund
10 19	489	(UNICEF), Wond Health Organization, international bank for Reconstruction and
20	490	of the 2010 edition of the joint child malnutrition estimates. Concurs World Health
21	491	Or the 2019 edition of the joint child manutition estimates. Geneva, world health
22	492	14 Control Statistical Agency (CSA)[Ethiopia] and ICE Ethiopia demographic and
23 24	495	health survey Addis Ababa Ethiopia and Calverton Maryland USA 2016
25	494	15 Vava S. Lithman OA. Ekholuenetale M. Bishwaiit C. Adiiwanou V. Effects of hirth
26	495	spacing on adverse childhood health outcomes: evidence from 34 countries in sub-
27	497	Saharan Africa / Matern & Neonatal Med 2020:33(20):3501–8
28 29	498	16. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri A, Nvieku FE, et al. Predictive
30	499	Probabilities of Access to Clean Cooking: Evidence from the Demographic and
31	500	Health Surveys in 31 Countries in Sub-Saharan Africa. 2019:12(3):320–2.
32	501	17. Mamabolo RL, Alberts M, Stevn NP, Delemarre-van de Waal HA, Levitt NS.
33 34	502	Prevalence and determinants of stunting and overweight in 3-year-old black South
35	503	African children residing in the Central Region of Limpopo Province, South
36	504	Africa. Public Health Nutrition 2005; 8(5), 501-508.
37	505	18. Novignon J, Aboagye E, Agyemang OS, Aryeetey G. Socioeconomic-related
38 39	506	inequalities in child malnutrition: evidence from the Ghana multiple indicator
40	507	cluster survey. Health Economics Review 2015; 5(1), 1-11.
41	508	19. Khara T, Mwangome M, Ngari M, Dolan C. Children concurrently wasted and
42	509	stunted: A meta-analysis of prevalence data of children 6–59 months from 84
43 44	510	countries. Maternal & child nutrition. 2018 Apr:14(2):e12516
45	511	20 Bosh M Azupogo E Amporfro DA Abada LA The enidemiology of undernutrition
46	511	20. Boart M, Azupogo T, Amporto DA, Abada LA. The epidemiology of undernation
47 49	512	and its determinants in children under five years in Ghana. Plos one. 2019 Jui
40 49	513	31;14(7):e0219665.
50	514	21. Khan RE, Raza MA. Determinants of malnutrition in Indian children: new evidence
51	515	from IDHS through CIAF. Quality & Quantity. 2016 Jan 1;50(1):299-316.
52 53	516	22. Angood C, Khara T, Dolan C, Berkley JA, WaSt Technical Interest Group. Research
54	517	priorities on the relationship between wasting and stunting. PloS one. 2016 May
55	518	9;11(5):e0153221.
56	519	23. Corsi DJ. Neuman M. Finlay JF. Subramanian SV. Demographic and health surveys
57 58	520	a profile. International Journal of Epidemiology 2012: 41(6), 1602-1613.
59		
60		

1		
2		
5 4	521	24. Aliaga A, Ruilin R. Cluster optimal sample size for demographic and health surveys.
5	522	In 7th International Conference on Teaching Statistics–ICOTS (Vol. 7, pp. 2-7). 2006.
6	523	25. DHS. DHS data source <u>https://dhsprogram.com/data/available-datasets.cfm</u>
7	524	26. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe
8	525	Initiative. The Strengthening the Reporting of Observational Studies in
9	526	Epidemiology (STROBE) Statement: guidelines for reporting observational
10 11	527	studies. International journal of surgery. 2014; 12(12), 1495-1499.
12	528	27. Collins J. Ward BM. Snow P. Kippen S. Judd F. Compositional. Contextual. and
13	529	Collective Community Factors in Mental Health and Well-Being in Australian Bural
14	520	Communities Qualitative Health Research 2017: 27(5) 677–687
15	521	https://doi.org/10.1177/10.40722216625105
16	531	28 Poll C Thomas PK The demography of health and health care. Springer Science &
17	552	20. For EG, montas KK. The demography of health and health care. Springer Science &
18 10	533	Business Media. 2001.
20	534	29. Arman FA, Ekuman B, Yawson DO, Odol JO, Afitiri AR, Nyleku F.E. Access to
21	535	improved water and sanitation in sub-Saharan Africa in a quarter century. Heliyon
22	536	2018; 4(11), e00931. https://doi.org/10.1016/j.heliyon.2018.e00931
23	537	30. Ross CE, Mirowsky J. Neighborhood socioeconomic status and health: context or
24	538	composition? City & Community 2008; 7(2), 163–179.
25 26	539	31. Amegah AK, Boachie J, Näyhä S, Jaakkola JJK. Association of biomass fuel use with
20 27	540	reduced body weight of adult Ghanaian women. J Expo Sci Environ Epidemiol 2019;1.
28	541	32. Alemayehu M, Tinsae F, Haileslassie K, Seid O, Gebregziabher G, Yebyo H.
29	542	Undernutrition status and associated factors in under-5 children, in Tigray,
30	543	Northern Ethiopia. Nutrition 2015; 31(7-8), 964-970.
31	544	33. Mya KS, Kyaw AT, Tun T. Feeding practices and nutritional status of children age 6-
32	545	23 months in Myanmar: A secondary analysis of the 2015-16 Demographic and
33 34	546	Health Survey. PloS one 2019: 14(1). e0209044.
35	547	34 Bork KA Diallo A Boys are more stunted than girls from early infancy to 3 years of
36	5/18	age in rural Senegal The Journal of Nutrition 2017: 147(5) 040-047
37	540	25 Tumilowicz & Habicht IP Pelto C. Pelletier DI. Cender perceptions predict sex
38	545	differences in growth patterns of indigenous Cuatemalan infants and young
39	550	children. The American Journal of Clinical Nutrition 2015, 102(5), 1240, 1258
40 41	551	Children. The American Journal of Children Nuclicion 2015, 102(5), 1249-1256.
42	552	36. Mukabutera A, Thomson DR, Hedt-Gauthier BL, Basinga P, Nyirazinyoye L, Murray
43	553	M. Risk factors associated with underweight status in children under five: an
44	554	analysis of the 2010 Rwanda Demographic Health Survey (RDHS). BMC Nutrition
45	555	2016; 2(1), 1-12.
46	556	37. Oyekale AS. Factors explaining acute malnutrition among under-five children in
4/ 10	557	Sub-Sahara Africa (SSA). Life Sci J 2012; 9, 2101-7.
40 49	558	38. Keats A. Women's schooling, fertility, and child health outcomes: Evidence from
50	559	Uganda's free primary education program. Journal of Development Economics
51	560	2018; 135, 142-159.
52	561	39. Sunguya BF, Poudel KC, Mlunde LB, Urassa DP, Yasuoka J, Jimba M. Poor nutrition
53	562	status and associated feeding practices among HIV-positive children in a food
54 55	563	secure region in Tanzania: a call for tailored nutrition training. PloS one 2014: 9(5).
55 56	564	e98308.
57	565	40. Jannotti LL, Dulience SJL, Green J. Joseph S. Francois J. Antenor MI Nickerson
58	566	NM. Linear growth increased in young children in an urban slum of Haitir a
59		
60		

1 2		
2	567	randomized controlled trial of a linid-based nutrient supplement. The American
4	568	Journal of Clinical Nutrition 2014: 99(1), 198-208.
5 6	569	41. Lopriore C, Muehlhoff E. Food security and nutrition trends in West Africa—
7	570	Challenges and the way forward. In Proceedings of the 2nd International Workshop
8	571	on Food-based Approaches for a Healthy Nutrition, Ouagadougou, Burkina. 2003;
9 10	572	23–28.
11	573	42. Salami A, Kamara AB, Brixiova Z. Smallholder Agriculture in East Africa: Trends,
12	574	Constraints and Opportunities; African Development Bank: Tunis, Tunisia, 2010.
13 14	575	
15 16	576	
17 18	577	
19 20	578	
21	579	
22	580	
24 25 26	581	Figures
26 27	582	Figure 1: Percentage distribution of co-existence of stunting, underweight, and
28	583	wasting (SUW) in children from the 31 study countries in SSA
29 30	584	Figure 2: Percentage distribution of co-existence of stunting, underweight, and
31 32	585	wasting (SUW) in children by regions of SSA
33 34	586	
35 36	587	
37	588	
38 39	589	
40 41	590	
42 43	591	
44 45	592	
46 47	593	
48	594	
49 50	595	
51 52	596	
53		
54	597	
55 56		
57		
58		
59 60		
00		

Tables

Table 1: Distribution of the relevant variables and characteristics of under-five children in SSA

601				
	Variable	%	Variable	%
	Age of child		Urbanicity	
	0	30.87	Urban	33.21
	1	28.42	Rural	66.79
	2	20.22	Place of delivery	
	3	12.40	Home	31.33
	4	8.09	Health facility	67.51
	Sex of child	0.05	Other	1 16
	Male	50 /17	Wealth status	1.10
	Female	/0 53	Poor	12 /1
	Pirth order	49.55	Middlo	42.41
		10 52	Diah	20.28
	1	19.52		37.31
	2 to 4	19 00	Age of household	
	Z to 4	40.09	Neuro adulta	42.00
	5 and above	32.39	Young-adults	43.08
	Perceived size at birth	22.74	Middle-aged adults	43.76
	Large	33.71	Old-aged adults	13.16
	Average	49.74	Sex of household head	
	Small	16.54	Male	79.77
	Mother's characteristics		Female	20.23
	Maternal age		Access to electricity	
	15-19	7.13	No	69.20
	20-49	92.87	Yes	30.80
	Educational attainment			
	No education	41.82	Type of toilet facility	
	Primary	31.26	Improved	42.47
	Secondary	23.82	Unimproved	57.53
	,		Source of drinking	
	Higher	3.10	water	
	Working status		Improved	65.63
	No	35.49	Unimproved	34.37
	Yes	64.51	Type of cooking fuel	
	Antenatal visits during pregnancy		Clean	89.76
	No	10 76	Unclean	10.24
	Ves	29.70	Geographic region	10.24
	Postnatal check within 2 months	05.24	Western	/11 78
	No	EQ 10	Eastern	41.70
	No	JO.49	Control	32.64
	Yes	41.51		20.08
	Access to media (tv/radio/newspa	per)	South Africa	5.30
	Yes	35.33		
	No	64.67		(N=127,487)

 BMJ Open

 604 Table 2: Prevalence and association of the co-existence of stunting, underweight and wasting with independent variables

Variable	Co-existed Weighted %	Variable	Co-existed Weighted % (95%	Variable	Co-existed
	(95% CI)		CI)		Weighted % (95% CI)
				Country	
Age of child (p<0.001)	Place of delive	/ery (p<0.001)	(p<0.001)	
<1	1.75 (1.6-1.9)	Home Health	4.36 (4.2-4.6)	Angola	2.46 (2.1-2.8)
1	4.44 (4.2-4.7	facility	1.96 (1.9-2.1)	Benin Burkina	2.04 (1.8-2.2)
2	3.01 (2.8-3.2)	Other	2.45 (1.7-3.3)	Faso	5.31 (4.9-5.8)
3	1.62 (1.4-1.8)	Wealth statu	ıs (p<0.001)	Burundi	3.76 (3.2-4.4)
4	1.33 (1.1-1.6)	Poor	3.46 (3.3-3.6)	Cameroon	1.27 (0.9-1.7)
Sex of child (p<0.001)	Middle	2.74 (2.5-2.9)	Chad	5.86 (5.2-6.5)
Male	3.43 (3.3-3.6)	Rich	1.86 (1.7-2.0)	Comoros	1.98 (1.3-2.9)
		Age of house	hold head (p =		
Female	1.99 (1.9-2.1)	0.2760 Young-		Congo Cote	0.98 (0.7-1.5)
Birth order (p	<0.001)	adults Middle-	2.65 (2.5-2.8)	d'Ivoire	2.28 (1.7-3.0)
1	2.25 (2.1-2.4)	aged adults Old-aged	2.76 (2.6-2.9)	DR Congo	2.66 (2.2-3.2)
2 to 4	2.56 (2.4-2.7)	adults	2.8 (2.6-3.1)	Ethiopia	3.64 (3.2-4.1)
5 and above	3.23 (3.1-3.4)	Sex of house	hold head (p<0.001)	Gabon	0.63 (0.3-1.0)
Perceived siz	e at birth			The	
(p<0.001)		Male	2.82 (2.7-2.9)	Gambia	3.61 (2.4-5.2)
Large	1.78 (1.7-1.9)	Female	2.33 (2.1-2.5)	Ghana	1.37 (0.9-2.0)
Average	2.6 (2.5-2.7)	Access to ele	ctricity (p<0.001)	Guinea	2.26 (1.7-2.9)
Small	4.98 (4.7-5.3)	No	3.21 (3.1-3.3)	Kenya	0.94 (0.7-1.2)

Lesotho

Liberia

Malawi

Namibia

Nigeria

Rwanda

Senegal

Sierra

Leone

South

Africa

Togo

Uganda Zambia

Zimbabwe

Western

Eastern Central

South Africa

Tanzania

Mali

0.86 (0.7-1.0)

2.37 (1.7-3.1)

1.03 (0.7-1.4)

3.62 (2.5-4.1)

1.99 (1.2-3.1)

4.1 (3.7-4.6)

6.17 (5.5-6.9)

2.43 (1.8-3.2)

1.94 (1.4-2.5)

0.18 (0.02-0.8)

1.86 (2.1-3.5)

2.72 (2.1-3.4)

1.2 (0.8-1.7)

1.22 (1.0-1.5)

0.78 (0.5-1.1)

3.11 (3.0-2.3) 2.43 (2.3-2.6)

2.87 (2.7-3.1)

0.88 (0.66-1.1)

Geographic region (p<0.0010

2					
3		Maternal age	(P = 0.080)	Yes	1.61 (1.5-1.7)
4 5			. ,	Access to me	dia
5		15-19	2.78 (2.5-3.1)	(tv/radio/ne	wspaper) (p<0.001)
7		20-49	2.71 (2.6-2.8)	Yes	2.14 (2.0-2.2)
8		Educational at	tainment		, , , , , , , , , , , , , , , , , , ,
9		(p<0.001)		No	3.78 (3.6-4.0)
10		No education	4 19 (4 0-4 4)	Type of toile	t facility (n<0.001)
11		Primary	2 0 (2 0 2 2)	Improved	1.76(1.6-1.0)
12		Filling	2.09 (2.0-2.2)	Improved	1.70(1.0-1.3)
13		Secondary	1.22 (1.1-1.3)	Unimproved	3.43 (3.3-3.6)
14 15				Source of dri	nking water
16		Higner	0.66 (0.4-1.0)	(p<0.001)	
17					
18		working statu	s (p<0.001)	Improved	2.54 (2.4-2.6)
19					
20		No	3.13 (3.0-3.3)	Unimproved	3.06 (2.9-3.2)
21		Yes	2.48 (2.4-2.6)	Type of cook	ing fuel (p<0.001)
22		Antenatal visit	ts during		
23		pregnancy (p<	0.001)	Clean	0.98 (0.8.2-1.2)
24 25		No	5.41 (5.0-5.8)	Unclean	2.92 (2.8-3.0)
25 26		Yes	2.39 (2.3-2.5)	Urbanicity (p	<0.001)
20		Postnatal cheo	k within 2		
28		months (p<0.0	01)	Urban	1.73 (1.6-1.9)
29		No	2.93 (2.8-3.1)	Rural	3.21 (3.1-3.3)
30		Yes	2 42 (2 3-2 6)		, , , , , , , , , , , , , , , , , , ,
31		100	2112 (213 213)		
32					
33					
34 35					
36	~~-				
37	605				
38	606				
39	000				
40					
41					

1

42

43

 BMJ Open

Variable	Base outcom	Base outcome (Ref: Normal)							
	Single and tw	Single and two dimensions			ree-dimensions				
	RRR	ç	95% CI	RRR	9	5% CI			
Age of child (Ref:0)									
1	2.008***	1.93	2.089	3.714***	3.319	4.156			
2	2.624***	2.514	2.739	2.827***	2.48	3.222			
3	2.122***	2.018	2.231	1.464***	1.227	1.748			
4	1.504***	1.417	1.597	1.051	0.84	1.315			
Sex of child (Ref: Ma	ale)								
Female	0.752***	0.731	0.775	0.468***	0.429	0.51			
Birth order (Ref: 1)									
2	0.938**	0.896	0.981	1.002	0.875	1.146			
5 and above	0.969	0.92	1.021	0.995	0.858	1.155			
Perceived size at bir	th (Ref: Large)								
Average	1.32***	1.276	1.365	1.756***	1.574	1.958			
Small	1.931***	1.846	2.02	3.818***	3.383	4.308			
Maternal age (Ref: 1	L5-19)								
20-49	0.834***	0.78	0.891	0.881	0.735	1.056			
Educational attainm	ent (Ref: Higher)								
No education	2.624***	2.305	2.987	3.291***	1.961	5.522			
Primary	2.189***	1.927	2.487	2.381***	1.417 🧹	4.001			
Secondary	1.751***	1.545	1.985	1.617	0.971	2.691			
Working status (Ref	: Yes)								
No	1.018	0.984	1.053	1.195***	1.086	1.314			
Antenatal visits duri	ing pregnancy (Ref: `	Yes)				<0.00			
No	1.139***	1.079	1.201	1.364***	1.208	1.541			
Postnatal check with	hin 2 months (Ref: Y	es)							
No	0.98	0.946	1.015	0.977	0.879	1.086			

Home Other	1 1 2 2 * * *					
Other	1.105	1.137	1.23	1.372***	1.232	1.5
Woalth status (Bafi Dich)	1.046	0.912	1.201	1.047	0.71	1.54
wealth status (ker: kich)						
Poor	1.297***	1.235	1.361	1.408***	1.235	1.6
Middle	1.195***	1.138	1.254	1.214**	1.054	1.3
Age of household head (Re	ef: Young-adult)					
Middle-aged adults	0.954**	0.921	0.987	1.01	0.913	1.1
Old-aged adults	0.974	0.93	1.021	1.065	0.936	1.2
Sex of household head (Re	ef: Male)					
Female	0.977	0.94	1.015	1.035	0.925	1.1
Access to media (tv/radio/	/newspaper) (Ref	f: Yes)				
No	1.079***	1.042	1.117	1.255***	1.144	1.3
Access to electricity (Ref:)	(es)					
No	1.136***	1.083	1.191	1.062	0.922	1.2
Type of toilet facility (Ref:	Improved)					
Unimproved	1.027	0.991	1.065	1.158**	1.032	1.3
Source of drinking water (Ref: Improved)					
Unimproved	0.959**	0.928	0.99	0.968	0.885	1.0
Type of cooking fuel (Ref:	Clean)					
Unclean	1.177***	1.089	1.271	1.316	0.97	1.7
Urbanicity (Ref: Urban)						
Rural	1.05**	1.006	1.095	0.943	0.832	1.0

BMJ Open

Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA

Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA

Supplementary Tables

Appendix 1: Distribution of sample by country

Country	Survey year	n	%
Angola	2015-16	7,318	5.74
Benin	2017-18	15,473	12.14
Burkina Faso	2010	8,908	6.99
Burundi	2016-17	4,172	3.27
Cameroon	2018	2,911	2.28
Chad	2014-2015	5,999	4.71
Comoros	2012	1,320	1.03
Congo	2013	2,609	2.05
Cote d'Ivoire	2011-12	2,174	1.71
Congo DR	2013-14	4,806	3.77
Ethiopia	2016	6,573	5.16
Gabon	2012	1,960	1.54
Gambia	2013	743	0.58
Ghana	2014	1,896	1.49
Guinea	2018	2,237	1.75
Kenya	2014	6,066	4.76
Lesotho	2014	1,012	0.79
Liberia	2013	1,946	1.53
Malawi	2015-16	4,027	3.16
Mali	2018	5,653	4.43
Namibia	2013	905	0.71
Nigeria	2018	7,379	5.79
Rwanda	2014-15	4,408	3.46
Senegal	2010-11	1,944	1.52
Sierra Leone	2019	2,689	2.11
South Africa	2016	855	0.67
Tanzania	2015-16	6,061	4.75
Тодо	2013-14	2,220	1.74
Uganda	2016	2,891	2.27
Zambia	2018	6,347	4.98
Zimbabwe	2015	3,987	3.13

Variable VIF VIF VIF Tolerance Square Age of child 1.05 1.02 0.9547 0.043 Sex of child 1.01 1 0.9948 0.002 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Source of drinking water 1.09 1.04 0.9191 <td< th=""><th>opendix 2: Multicollinearity diagnosis</th><th></th><th></th><th></th></td<>	opendix 2: Multicollinearity diagnosis			
Variable VIF VIF Tolerance Square Age of child 1.05 1.02 0.9547 0.043 Sex of child 1.01 1 0.9948 0.003 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.026 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.207 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Access to media 1.71 1.31 0.5837 0.416	S	QRT		R-
Age of child 1.05 1.02 0.9547 0.044 Sex of child 1.01 1 0.9948 0.009 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9946 0.043 Sex of household head 1.03 1.02 0.9702 0.023 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.204 Access to electricity 1.71 1.31	ariable VIF V	ΊF	Tolerance	Squared
Sex of child 1.01 1 0.9948 0.009 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.023 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.203 Access to electricity 1.71 1.31 0.5837 0.444 Type of toilet facility 1.35 1.16	ge of child 1.05	1.02	0.9547	0.0453
Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.664 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Access to media 1.03 1.02 0.9702 0.025 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653<	ex of child 1.01	1	0.9948	0.0052
Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.71 1.31 0.5837 0.444 Type of toilet facility 1.71 1.31 0.5837 0.449 Sex of household head 1.03 1.02 0.9702 0.209 Access to electricity 1.71 1.31 0.414	rth order 1.36	1.17	0.7366	0.2634
Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to electricity 1.71 1.31 0.5837 0.446 Type of toilet facility 1.26 1.12 0.7913 0.208 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0	erceived size at birth 1.02	1.01	0.9798	0.0202
Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.71 1.31 0.5837 0.446 Type of toilet facility 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.086 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0	ge at child birth 1.22	1.1	0.8224	0.1776
Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.029 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08	lucational attainment 1.51	1.23	0.664	0.336
Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.026 Access to media 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.446 Type of toilet facility 1.35 1.16 0.7404 0.258 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	orking status 1.07	1.03	0.9357	0.0643
Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media	ntenatal visits during pregnancy 1.25	1.12	0.7976	0.2024
Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.025 Access to media 1.03 1.02 0.9702 0.026 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.256 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ostnatal check within 2 months 1.1	1.05	0.9098	0.0902
Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.03 1.02 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ace of delivery 1.31	1.15	0.7617	0.2383
Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ealth status 1.8	1.34	0.5554	0.4446
Sex of household head 1.03 1.02 0.9702 0.029 Access to media	ge of household head 1.05	1.02	0.9546	0.0454
Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	x of household head 1.03	1.02	0.9702	0.0298
(tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.086 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ccess to media			
Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	//radio/newspaper) 1.26	1.12	0.7913	0.2087
Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	cess to electricity	1.31	0.5837	0.4163
Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	pe of toilet facility 1.35	1.16	0.7404	0.2596
Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ource of drinking water 1.09	1.04	0.9191	0.0809
Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	pe of cooking fuel 1.31	1.14	0.7653	0.2347
Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26 <td>banicity 1.58</td> <td>1.26</td> <td>0.6319</td> <td>0.3681</td>	banicity 1.58	1.26	0.6319	0.3681
Mean VIF 1.26	ountry 1.17	1.08	0.8579	0.1421
Mean VIF 1.26				
	ean VIF 1.26			

Appendix 3: Country-level risk of co-existence of stunting, wasting, and underweight

	Base outco	me (Ref: N	ormal)			
	Single and	two dimen	sions	Co-existence	of three-d	imensions
	RRR	95% CI		RRR	9	5% CI
Country (Ref: Angola)						
Benin	0.651***	0.598	0.708	0.625***	0.489	0.798
Burkina Faso	0.952	0.866	1.046	1.946***	1.526	2.481
Burundi	1.580***	1.424	1.753	2.049***	1.545	2.718
Cameroon	0.669***	0.593	0.756	0.398***	0.261	0.609
Chad	0.910	0.823	1.007	1.505**	1.184	1.913
Comoros	0.883	0.745	1.046	0.656	0.378	1.138
Congo	0.674***	0.580	0.783	0.472**	0.279	0.800
Cote d'Ivoire	0.734***	0.638	0.844	0.739	0.492	1.109
DB Congo	1.229***	1,100	1.373	1.351	0.988	1.847
Ethionia	0.810***	0 726	0.904	0.813	0.604	1 095
Gabon	0.010	0.720	0.50	0.319**	0.001	0 796
Gambia	0.732**	0.413	0.35	1 001	0.120	1 620
Chana	0.752	0.005	0.505	0.545**	0.010	0.857
Guinoa	0.433	0.300	0.001	0.345	0.540	1 026
Konyo	0.750	0.705	0.904	0.720	0.309	1.050
Kenya	0.555	0.496	0.015	0.321	0.250	0.449
Lesotho	0.777***	0.654	0.924	0.369	0.177	0.772
Liberia	0.058	0.565	0.768	0.776	0.484	1.243
Malawi	0.794***	0.708	0.889	0.447***	0.291	0.687
Malı	0.600***	0.541	0.664	1.006	0.769	1.316
Namibia	0.680***	0.568	0.815	0.849	0.505	1.426
Nigeria	0.953	0.868	1.046	1.527**	1.183	1.972
Rwanda	1.059	0.954	1.176	1.991***	1.541	2.571
Senegal	0.660***	0.572	0.761	0.643*	0.434	0.952
Sierra Leone	0.641***	0.567	0.725	0.656*	0.447	0.963
South Africa	0.788*	0.634	0.979	0.108***	0.033	0.352
Tanzania	0.772***	0.699	0.851	0.699**	0.512	0.954
Тодо	0.557***	0.490	0.633	0.838	0.590	1.190
Uganda	0.627***	0.556	0.708	0.421***	0.278	0.637
Zambia	0.904*	0.818	0.998	0.519***	0.366	0.736
Zimbabwe	0.693***	0.620	0.775	0.344***	0.214	0.554

BMJ Open

BMJ Open

Risk factors associated with the co-existence of stunting, underweight, and wasting in children under five: Analysis of cross-sectional surveys from 31 sub-Saharan African countries

Journal:	BMJ Open		
Manuscript ID	bmjopen-2021-052267.R3		
Article Type:	Original research		
Date Submitted by the Author:	29-Oct-2021		
Complete List of Authors:	Amadu, Iddrisu; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Seidu, Abdul-Aziz; University of Cape Coast, Department of Population and Health; James Cook University, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Duku, Eric; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Boadu Frimpong, James; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Hagan Jnr., John; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Aboagye, Richard ; University of Health and Allied Sciences, Ho, Ghana Ampah, Belinda; Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7, Esiama, Ghana Adu, Collins; Kwame Nkrumah University of Science and Technology, Department of Health Promotion and Disability Studies Ahinkorah, Bright; University of Technology Sydney, School of Public Health, Faculty of Health, University of Technology Sydney, NSW, Australia.		
Primary Subject Heading :	Public health		
Secondary Subject Heading:	Health services research, Health policy, Global health		
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, Child protection < PAEDIATRICS		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

SCHOLARONE™
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3 ∕	1	Risk factors associated with the co-existence of stunting, underweight, and wasting in
5	2	children under five: Analysis of cross-sectional surveys from 31 sub-Saharan African
6	3	countries
7	4	Iddrisu Amadu ^{1,2,3} , Abdul-Aziz Seidu ^{4,5,6} , Eric Duku ^{1,2} , James Boadu Frimpong ⁷ , John Elvis
0 0	5	Hagan Ir ^{7,8} , Richard Gvan Aboagve ⁹ , Belinda Ampah ¹⁰ , Collins Adu ¹¹ , Bright Opoku
10	6	Abinkorsh ¹²
11	7	
12	/	
13	8	1. Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape
14	9	Coast, Ghana
15 16	10	2. Department of Fisheries and Aquatic Sciences, School of Biological Sciences,
17	11	College of Agriculture and Natural Sciences. University of Cape Coast, Ghana
18	12	3. Emperiks Research, NT0085, Tamale, Ghana
19	13	4. Department of Population and Health. College of Humanities and Legal Studies.
20	1/	Liniversity of Cape Coast, Ghana
21	15	E College of Public Health Medical and Veterinary Sciences, James Cook University
22	10	J. Conege of Fubic freatin, medical and veterinary sciences, sames cook oniversity,
25 74	10	6 Department of Estate Management, Takeradi Technical University, Takeradi
25	1/	6. Department of Estate Management, Takoradi recimical Oniversity, Takoradi,
26	18	
27	19	7. Department of Health, Physical Education, and Recreation, University of Cape
28	20	Coast, Cape Coast, Ghana
29	21	8. Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology
30	22	and Sport Sciences, Bielefeld University, Bielefeld-Germany
32	23	9. School of Public Health, University of Health and Allied Sciences, Ho, Ghana
33	24	10. Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7,
34	25	Esiama, Ghana
35	26	11. Department of Health Promotion, Education and Disability Studies, Kwame
36	27	Nkrumah University of Science and Technology, Kumasi, Ghana
3/	28	12. School of Public Health, Faculty of Health, University of Technology Sydney, NSW,
30 39	29	Australia.
40		
41	30	Email addresses
42	24	14. id drive area du Octumenta du sth
43	31	IA: Iddrisu.amadu@stu.ucc.edu.gn
44 45	32	*AS: abdul-aziz.seidu@stu.ucc.edu.gh
45	33	ED: eric.duku@stu.ucc.edu.gh
47	34	JBF: frimpongboadujames@gmail.com
48	35	JEH: elvis.hagan@ucc.edu.gh
49	36	RGA: raboagye18@sph.uhas.edu.gh
50	37	BA: <u>oyebel@gmail.com</u>
51	38	CA: collinsadu80@yahoo.com
52 53	39	BOA: brightahinkorah@gmail.com
54	40	
55	4.4	
56	41	Correspondence to:
57	42	Abdul-Aziz Seidu, Department of Population and Health, University of Cape Coast. PMB TF0494.
58 50	43	Cape Coast, Ghana, Email:abdul-aziz.seidu@stu.ucc.edu.gh
59 60	-	

44 ABSTRACT

Objective: This study investigated the risk factors associated with the co-existence of 46 stunting, underweight, and wasting among children under age five in sub-Saharan 47 Africa(SSA).

48 Methods: Data from 31 sub-Saharan African countries were pooled from the Demographic
 49 and Health Surveys collected between 2010 and 2019. We examined the risk of co 50 existence of undernutrition using multinomial logistic regression models, with results
 51 presented as relative risk ratios with their respective confidence intervals.

Dutcome measures: The outcome variables were three child anthropometrics: stunting
 (height-for-age z-scores); underweight (weight-for-age z-scores); and wasting (weight-for height z-scores).

Results: The prevalence of co-existence of stunting, underweight, and wasting varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Benin (12.14%) and Gambia (0.58%) respectively. The risk of co-existence of the three undernutrition dimensions was higher among children age 1 year compared to those aged 0. The risk of co-existence of the three dimensions was higher among female children, those with small size at birth, those whose mothers had no education, not working, had no antenatal visits during pregnancy, children delivered at home, those whose mothers were poor, had no access to media and children whose mothers had unimproved toilet facility.

Conclusion: Findings suggest the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions need to be well-tailored considering the compositional characteristics. In the long-term, regional policies and coordinated interventions among governments of SSA countries need to be designed to address the disparate prevalence of the co-existence of stunting, wasting and underweight in under-five children across the four geographic regions.

Keywords: co-existence; stunting; underweight; wasting; children under five; sub-Saharan
 Africa

 The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study. Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stuntin underweight, and wasting) in the concurrent measurement of o outcome variable, compared to the unitary assessment oundernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations an inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, an therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study. 	 The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study. Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stuntir underweight, and wasting) in the concurrent measurement of coutcome variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	Stre	ngth and Limitations
 Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of on outcome variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations and inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restrict causality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	 Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of concurrent variable, compared to the unitary assessment of undernutrition that currently dominates literature. The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restrict causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	•	The use of nationally representative data ensures that our findin are generalizable and replicable in the 31 SSA countries included this study.
 The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations at inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, at therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	 The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations a inferences made from current findings must be limited to or these observed variables. Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes. The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	•	Findings contribute to bridging the gaps identified in the currer research on CNS by including multiple indicators (stunting underweight, and wasting) in the concurrent measurement of o outcome variable, compared to the unitary assessment of undernutrition that currently dominates literature.
 Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	 Also, the DHS employs cross-sectional designs which restricausality on the noted outcomes. The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other social desirability concerns in the present study. 	•	The study relied on secondary data, the analysis was limited to or variables that were in the dataset. Hence, interpretations ar inferences made from current findings must be limited to or these observed variables.
 The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study. 	 The key variables were self-reported by the mothers, a therefore, there is the likelihood of recall bias and other soc desirability concerns in the present study. 	٠	Also, the DHS employs cross-sectional designs which restr causality on the noted outcomes.
		•	The key variables were self-reported by the mothers, and therefore, there is the likelihood of recall bias and other soci desirability concerns in the present study.

BACKGROUND

Undernutrition among children under 5 years remains a major public health problem across many low-and middle-income countries¹⁻³. Factors such as insufficient food intake, diarrhoea, recurring infections, poor sanitation practices, and low parental education have been identified as significant contributors to the high prevalence of undernutrition during childhood^{1,4,5}. Despite the numerous interventions rolled out to address childhood undernutrition especially in sub-Saharan Africa where the phenomenon is quite pervasive, the progress seems to be insignificant^{6,7}. For example, a study reported that child undernutrition accounted for nearly half (45%) of the child mortality rate in low-and middle-income countries⁸. Aside from that, it was reported in 2018 that about 149 million and 49 million children under age 5 were stunted and wasted respectively⁹.

Three main indicators that are often used to represent undernutrition are underweight or low weight for age, stunting or low height for age, and wasting or low weight for height^{2,10-} ¹². Among the three indicators of undernutrition, stunting has been identified as the problem with the greatest magnitude among under 5 children in developing countries^{2,3}. Even though the prevalence of stunting in sub-Saharan Africa is declining, it is worth noting that it is still above 30%¹³ which is undeniably high. Research also indicates that the country-specific prevalence of stunting, underweight and wasting is still high^{2,3}. For instance, in Ethiopia, the prevalence of wasting and stunting were 10% and 38% respectively¹⁴. Additionally, the prevalence of stunting, underweight and wasting among children in South Africa were 35.8%, 20.5%, and 17.2%³. Likewise, Anin et al.² reported 33.2%, 14.1%, 27% and 2.6% of prevalence in stunting, wasting, underweight and overweight among infants (6-23 months) across Northern Ghana.

Previous studies have investigated the compositional and contextual risk factors associated with either stunting, underweight or wasting among children under 5 years and found the age of a child, sex of the child, child's size at birth, mother's age during childbirth, mother's educational level, birth order, place of residence and mother's body mass index (BMI) as associated factors^{1-3,15,16}. Other studies also found a significant linkage between household wealth quintile and maternal short stature, and nutritional status of children under 5^{17,18}. Regarding the sex of a child, for example, female children were found to be less likely to suffer from stunting compared to males^{1,3}.

Apart from studies that have examined the factors associated with either stunting, underweight, and wasting, some scholars have begun looking at predictors of the co-existence of any two or three of the indicators of malnutrition. A study in 84 countries that examined the prevalence and predictors of co-existence of stunting and wasting found sex and age of children as significant predictors¹⁹. Other studies in Ghana²⁰ and India²¹ also examined the co-existence of stunting, underweight, and wasting and found birth interval, birth weight, dietary diversity, place of delivery, wealth index, mother's BMI, mother's educational level, and partners' educational level as associated factors. The need to examine the co-existence of stunting, underweight and wasting is important because not much work has been done on that subject and hence children who concurrently suffer from stunting, underweight, and wasting are less likely to be reached in malnutrition prevention programmes, especially in SSA. For instance, some scholars have indicated that despite evidence that wasting and stunting are global public health problems that frequently co-exist, they are usually separated in terms of policy, guidance, programming

and financing²². This creates a gap in the literature that needs to be filled. Despite the detrimental consequences of undernutrition on the health and wellbeing of children under 5 in SSA, studies utilizing current, and nationally representative data to investigate the risk factors associated with the co-existence of stunting, underweight, and wasting among this age group are absent in the literature. Studies presenting empirical analyses of the co-existence of these three indicators of child undernutritionin SSA are absent in extant literature making it difficult for policymakers and nutritional experts to provide up-to-date trends with appropriate strategies to curb the situation in the sub-region. This research lag presents a void in extant literature which this study seeks to bridge. Therefore, the study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from the Demographic Health Survey (DHS) conducted in 31 countries between 2010 and 2019. The findings of the study could contribute to the formulation of policies and interventions to respond to the nutritional needs of children under 5 years and also suggest pragmatic ways of reducing undernutrition among children in the sub-region.

METHODS

Data Source

The dataset included 127,487 children under the age of 5 years from 31 sub-Saharan African countries (Figure 1) were pooled from the most current Demographic and Health Surveys (DHS) conducted between 2010 and 2019 (Appendix 1). Specifically, the data were pooled from the children's files in each of the countries. The DHS Program has conducted over 400 surveys in over 90 developing countries around the world since 1984 every five years²³. The program implements cross-sectional surveys to gather nationally-representative data, analyze and disseminate accurate information on important demographic and health indicators spanning population, nutrition, and diseases. For all surveys, standardized protocols designed for each target group including children, women, and men at the household level are employed to allow for cross-national comparisons. Stratified two-stage sampling involving first, the listing of enumeration areas and selection of clusters, and then a random selection of households in each cluster. The detailed sampling method can be found in a previous study²⁴. The dataset is freely available for download at: https://dhsprogram.com/data/available-datasets.cfm²⁵. The Strengthening Reporting of Observational Studies in Epidemiology (STROBE) guidelines were followed in writing the manuscript²⁶.

Study Variables

Outcome Variable

The outcome variable considered in this study is derived from three child anthropometric variables including stunting (height-for-age z-scores); underweight (weight-for-age z-scores) and wasting (weight-for-height z-scores). The DHS (2021) specifies categorization for each of these variables following the WHO child growth standard. Each of the three variables we coded into "o" for "Normal" and "1" for "Stunting", "underweight" and "Wasting" respectively.

These three variables were then added to generate the outcome variable "Co-existed undernutrition" with scores (discrete) ranging from 0 to 3 where 0 implies "Normal", that is, children with none of the three conditions; 1 implies "Single burden", that is, the child suffers from one of the three conditions; 2 indicates that child suffers from "Two burdens" out of the three; and 3 shows "Co-existed", that is, the child suffers from all three conditions of undernutrition. For parsimony, children who suffered from "Single burden" and those who suffered from "Two burdens" were added resulting in the variable "Co-existed undernutrition" with three response categories: 0=Normal; 1=One or two burdens; and 3=co-existed.

15 178 Independent Variables

Several risk factors spanning compositional to contextual factors have been associated with child undernutrition. The relevant biosocial characteristics and sociocultural factors related to the child, mother, household head and the household together form compositional factors^{27,28}. Factors that describe location or "place-based" variables are contextual factors^{20,27,29,30}. The relevant compositional factors considered include the age of the child; sex of the child; birth order of child; perceived size at birth; mother's age; educational attainment; working status; antenatal visits during pregnancy; postnatal check within 2 months; and place of delivery. At the household level, relevant variables included are the wealth status; the age of household head; sex of household head (male and female); access to electricity; and access to media which was derived from the three variables "access to television", "radio" and "newspaper". Household basic needs including the type of toilet facility (re-coded into "improved" and unimproved"²⁹; source of drinking water (re-coded as "improved" and "unimproved"²⁹, and type of household cooking fuel (re-coded into "clean" and "unclean"^{29,31} are also considered. The contextual factors considered are urbanicity and the country of origin of the participant.

3536 194 Data Analyses

The statistical analysis of the data was performed using the Stata SE software version 14.2. The "svyset" command was first used to declare the data as survey data to prevent the potential effects of the complex sampling techniques on the analyses. The sample weight variable in the DHS was used to provide weighted samples in the analyses. To understand the distributions of the variables, the data were summarized and presented in tables using descriptive statistics (frequencies, weighted percentages, and 95% confidence intervals (CIs) of percentages). We further integrated the data into a GIS environment and presented the distribution of key variables across the study countries and geographic regions in map images (Figure 1 and Figure 2). This approach enhances the visualization of the data and understanding of the context of the study. The associations between the co-existence of undernutrition and each of the risk factors considered were assessed using the chi-square test of independence, with results presented in a contingency table. The risk factors as independent variables were then subjected to collinearity diagnosis tests, including Variance Inflation Factors (VIF), Square VIF, Tolerance, and R-squared. This was done to ascertain whether the independent variables were actually "independent", that is, are not correlated with one another and will not share variance in the outcome variable. Results from the multicollinearity diagnoses test (See Appendix 2) show that the variables were not correlated (Mean VIF=1.26; Maximum VIF=1.71; Minimum VIF=1.02). To determine

the risk factors associated with the co-existence of undernutrition, a multinomial
regression model was implemented. All statistical tests were conducted at p<0.05.

6 7 215 **Ethical Approval**

This study used secondary data from the DHS Program. Since we neither interacted directly nor indirectly with the study participants, there was no need for ethical approval. Details on the ethical considerations of the DHS Program could be found at https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-

- 13 220 Respondents.cfm.
- 14 15

16

221

222 Patient and public involvement

Patients and the public were not involved in the design and conduct of this research
 Patients and the public were not involved in the design and conduct of this research

19 224 **Results** 20

21 225 **Distribution of sample characteristics**

The study included a total of 127,487 under-five children. It is found that most (30.87%) of 226 22 23 the children were less than a year (Table 1). With regards to sex, both males and females 227 24 constituted approximately half of the sample. A majority of the children (92.87%) were 228 25 born to mothers aged between 20 to 49 years while only 7.13% were born to mothers aged 229 26 15 to 19years. In terms of education, most (41.82%) of the children were born to mothers 230 27 with no formal education. Only 3.10% of the children were born to a mother with a higher 28 231 29 232 level of educational attainment. Further, 42.1% of the children were born in poor 30 233 households while 37.21% were born in rich households. More than half (57.53%) of the 31 234 children lived in a household with unimproved toilet facilities. However, most (65.63%) of 32 235 the children lived in households with access to improved drinking water sources. Similarly, 33 34 a majority (89.76%) of the children lived in households using clean cooking fuel (Table 1). 236 35

As shown in Appendix 2, the prevalence of co-existence of stunting, underweight, and 36 237 37 underweight varied across countries and sub-regions, with the highest and lowest 238 38 prevalence of co-existence of stunting, underweight, and wasting as Rwanda (6.17%) and 239 39 South Africa (0.18%) respectively (Figure 1). In terms of sub-region, the highest prevalence 240 40 of co-existence of stunting, underweight, and wasting was observed in Western Africa 241 41 (3.11%) and the lowest prevalence in Southern Africa (0.88%) (Figure 2). 42 242 43

- Significant associations between all the independent variables and co-existence of
 stunting, wasting, and underweight, except maternal age and age of household head,
 were identified (Table 2).
- ⁴⁸ 246 ***Table 1***
- 49 50 247
- 51 248 ***Figure 1***
- 52 53 249 ***Figure 2***
- 54 250 ***Table 2***

⁵⁶ 251 **Risk factors of the co-existence of stunting, wasting and underweight**

Table 3 shows the results of the multinomial regression analysis of the risk factors of co existence of dimensions of undernutrition (stunting, underweight, and wasting) among

children under five years in the SSA. Age of child, size of the child at birth, sex of the child, birth order, educational level, maternal age, ANC attendance, place of delivery, source of drinking water, sex of household head, wealth index, access to electricity and place of residence were associated with one or two dimensions of undernutrition. See Appendix 3 for country-level risk of co-existence of stunting, wasting, and underweight.

Regarding the co-existence of the three dimensions of undernutrition (stunting, underweight, and wasting), age of the child, sex of the child, perceived birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility were found to be significant risk factors (Table 3).

17 264 *****Table 3*****

19 265 **DISCUSSION**

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the countries with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting were Benin and Gambia respectively. In terms of geographic region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa and the lowest prevalence in Southern Africa. The disparities in the prevalence among the countries and geographical regions could be attributed to the nutritional practices and beliefs practised in the countries and geographical regions. Differences in the health policies provided by governments in the various countries could also account for the disparities noted. This finding implies that countries that have high prevalence should take critical lessons from the countries that are doing well regarding the implementation of nutritional policies and interventions (e.g., increasing dietary supplementation, increasing dietary diversity) that target the reduction of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa².

Similar to previous studies^{1,3}, this study found that children aged 1 year, 2 years, and 3 years were at greater risk of having co-existence of all the three forms of undernutrition compared to those aged o. A plausible reason for this finding could be that as children grow their energy needs also increase¹, increasing their risk of having all three nutritional conditions. Alternatively, since these nutritional conditions may manifest after long durations of improper nutritional practices or undernutrition^{1,3}, older children may be at higher risk of having all three nutritional conditions. The finding suggests that complementary foods given to children as they grow are inadequate. To reduce the risk of co-existence of stunting, underweight, and wasting among under 5 children, the health sectors in the various countries should invest heavily in providing adequate complementary feeding to this category of children.

Corroborating the findings of other studies^{1,3,32,33}, this study also found that children who were females were less likely to have a co-existence of the three dimensions of undernutrition compared to their male counterparts. An acceptable explanation for this finding could be the biological variations in morbidity between males and females at that young age³. It is also possible that since male children have higher birth weight compared to females, they require more energy^{1,34}, which increases the risk of males having all three

nutritional conditions. Moreover, male children are perceived to be hungrier than females, therefore breastfeeding alone could be insufficient or inadequate^{3,35}, increasing their susceptibility to having the three nutritional conditions. The finding suggests that male children should be given critical attention in the development and implementation of nutritional programs (e.g., dietary supplementation) to mitigate the co-existence of stunting, underweight, and wasting among these male children under 5 years.

The study found that the risk of co-existence of the three dimensions of undernutrition was higher among children with the average size at birth and small size at birth compared to children with large size at birth. It has been proven that undernutrition in children is partly influenced by maternal nutrition practices. Hence, mothers' appropriate nutritional behaviours during the prenatal and postnatal periods are key to improve child growth. Conversely, maternal undernutrition causes low maternal BMI, which in turn affects the foetus to poor development often associated with small birth size and low birth weight^{1,3,21,36}. This finding indicates that mothers of children under 5 should continuously be educated on the best nutritional practices such as exclusive breastfeeding, complementary feeding, and dietary supplementation. These strategies will help ameliorate the risk of acquiring health conditions associated with undernutrition among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no education and primary education compared to those whose mothers had higher education. Mothers who have attained higher education are better informed about improved childcare practices³⁷, are more empowered to make health decisions³⁸, practice good personal hygiene³⁸, are more likely to use the health facility³⁹, proper feeding practices³⁶ and childcare in times of illness^{36,40}. This finding suggests that mothers with no formal or little education are neglected in nutritional programs that help to eliminate stunting, underweight, and wasting. Hence, they should be given the needed consideration to deal with this persistent health issue.

This study also found that the risk of co-existence of the three dimensions was higher among children whose mothers were not working compared to those whose mothers were working. Women's employment status indicates their ability to afford proper nutritional products and health care services^{36,40}. Therefore, if mothers are not employed, the children become highly susceptible or vulnerable because mothers are unlikely to meet their nutritional needs or requirements. Mothers with children under 5 with such disadvantaged backgrounds should be given subsidies on children's nutritional products and perhaps, free access to health care services by governmental and non-governmental organizations. This step will be significant in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.

The risk of co-existence of the three dimensions was higher among children whose mothers had no antenatal visits during pregnancy compared to those whose mothers had antenatal visits during pregnancy. Specifically, mothers who attend antenatal services are usually educated on the best practices of nutrition and general healthcare, which hitherto would not be known by these mothers³⁸. Therefore, mothers who did not have antenatal visits may lack some knowledge about proper nutritional practices, increasing their children's risk of having these undernutrition-related challenges. Regular antenatal visits could reduce children's risk of stunting, being underweight, and wasting, therefore,

3 343 mothers should continuously be encouraged to go for antenatal care services in their
 344 countries.

Children who were delivered at home compared to children who were delivered at a health facility were found to have a higher risk of co-existence of the three dimensions. Since mothers who deliver at home do not receive any expert nutritional advice from a qualified health practitioner³⁷, the children of such mothers are at higher risk of having these conditions because of poor and/ or inadequate dietary practices. This finding shows that facility delivery may help reduce the risk of co-existence of stunting, underweight, and wasting among children under 5. Therefore, mothers should regularly be educated on the need to opt for facility delivery because of its positive implications on children's growth.

- The risk of co-existence of the three dimensions was higher among children whose mothers were poor and had middle wealth status compared to those whose mothers were rich. Usually, mothers who have an average income may lack the financial capacity to feed themselves and their children properly and adequately^{3,17,36}, increasing the children's risk of being stunted, underweight or wasted. Likewise, mothers from poor and middle wealth quintiles may not have access to quality nutritional products and health care systems^{36,40}, making their children more susceptible to having all three nutritional conditions. This finding implies that women from poor economic backgrounds should be assisted with nutritional products and services to facilitate the reduction in the risks of the co-existence of stunting, underweight, and wasting among children under 5.
- The risk of co-existence of the three dimensions was higher among children whose mothers had no access to media compared to those whose mothers had access to media. Since many people are educated about proper nutritional practices through the mass media^{10,11}, mothers who have no access to the media may lack certain important nutritional information they need. This information gap could increase children's risk of having all three nutritional conditions through improper dietary practices from their mothers. For instance, mothers' access to appropriate information from the media would help them decide on which proper diets or food commodities are readily available on market for their children. More pragmatic ways of reaching mothers who have no access to media are encouraged. Regular outreach or sensitization programs to target women without access to media for example could help in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.
- Children whose mothers had unimproved toilet facilities were found to have a higher risk of co-existence of the three dimensions of child undernutrition compared to those whose mothers had improved toilet facilities. Insanitary or unhygienic toilet conditions may increase mother-child-environment interactions that may result in increased exposure to childhood diseases and other opportunistic infections (e.g., diarrhoeal episodes, fever) either through consumption of contaminated foods, drinking water or poor environmental sanitation²¹. These conditions have been shown to cause growth retardation in children. Government and non-governmental organizations should support the provision of improved household toilet facilities for poorer communities to help minimize the risks of the co-existence of child undernutrition indicators.
- S85 Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having
 S86 the co-existence of the three dimensions compared to those from Angola. On the other
 S86

hand, countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho, Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa had a lower risk among their children having co-existence of the three undernutrition dimensions. The sub-regional and country-specific variations in socio-economic, agro-ecological and geographical characteristics may strongly influence the nutritional status of children because of inadequate food supplies, limited access to arable land for agriculture, unfavourable climatic conditions (e.g., desertification), rapid population growth, and increasing cost of living may determine food access, availability and production in studied countries in SSA^{41,42}. Governmental priorities should intensify efforts to minimize the risk of co-existence of stunting, underweight, and wasting among children under age 5 with sound socio-economic and sustainable human capital development.

Conclusions and implications

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the prevalence of co-existence of stunting, underweight, and wasting ranged from 0.58 % in the Gambia to 12.14% in Benin. The study also found that the prevalence of co-existence of stunting, underweight, and wasting was high in Western Africa (41.78%) but low in Southern Africa (5.3%). The significant findings show that the disadvantaged have more risks of the co-existence of stunting, underweight, and wasting among under 5 children in selected SSA countries. These findings demonstrate the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions needs to be well-tailored considering the compositional characteristics including child's age, sex, birth size; maternal education, working status, place of delivery, antenatal visit; and household's wealth status, access to media and improved toilet facility are required. For instance, such programs could be geared towards improving females' access to education, reducing unemployment, expanding access to the media and using it to promote education on the need for antenatal care. In the long-term, regional policies and coordinated interventions among governments of SSA countries need to be designed to address the disparate prevalence of the co-existence of stunting, wasting and underweight in under-five children across the four geographic regions. The implementation of these at the local-level should consider rural-urban differences in the prevalence of the condition and the risk factors elicited.

Acknowledgements: The authors thank the MEASURE DHS project for their support and free access to the original data

Contributors: IA and BOA developed the study concept. IA performed the data analysis. AS, ED, JBF, JEH, RGA, BA, CA and BOA drafted and revised the manuscript critically for its intellectual content. All authors read and approved the final manuscript. AS had the final responsibility to submit the manuscript.

Funding: This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors

2		
3	431	Competing interests: None
4 5	432	
5	433	Patient consent for publication: No consent to publish was needed for this study
7	434	as we did not use any details, images or videos related to individual participants. In
8	/35	addition data used are available in the public domain
9	126	
10	430	Ethics Approval and concent to participate
11	437	Ethics Approval and consent to participate
12	438	This study used secondary data from the DHS Program. Since we neither interacted
13 14	439	directly nor indirectly with the study participants, there was no need for ethical approval.
14	440	Details on the ethical considerations of the DHS Program could found at
16	441	https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-
17	442	Respondents.cfm.
18	443	
19	444	Provenance and peer review: Not commissioned; externally peer reviewed.
20	445	
21	446	Data availability statement: Data are available in a public, open access repository.
22	447	
24		
25	448	References
26	440	4 Amore 7V Abroad ME Mabari AD Determinants of putritional status among
27	449	1. Amare ZY, Anmed ME, Menan AB. Determinants of nutritional status among
28	450	children under age 5 in Ethiopia: further analysis of the 2016 Ethiopia demographic
29	451	and health survey. Global Health 2019;15(1):1–11.
30	452	2. Anin SK, Saaka M, Fischer F, Kraemer A. Association between Infant and Young
32	453	Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23
33	454	Months) in Northern Ghana. Nutrients 2020; 12, 2565.
34	455	https://doi.org/10.3390/nu12092565
35	456	3. Madiba S, Chelule PK, Mokgatle MM. Attending informal preschools and daycare
36	457	centers is a risk factor for underweight, stunting and wasting in children under the
3/ 38	458	age of five years in underprivileged communities in South Africa. International
39	459	Journal of Environmental Research and Public Health 2019; 16(14), 2589.
40	460	4. Yalew BM, Amsalu F, Bikes D. Prevalence and factors associated with stunting.
41	461	underweight and wasting: a community based cross sectional study among
42	162	children age 6-50 months at Lalibela Town Northern Ethionia I Nutr Disorders Ther
43	462	
44 45	405	- WHO Nutrition Landscape Information System (NLIS) Country Profile Indicators:
45 46	404	5. Who. Nutrition Editascape Information System (NEIS) Country Frome indicators.
47	465	Interpretation Guide; wond Health Organization: Geneva, Switzenand, 2010.
48	466	6. Akombi BJ, Agno KE, Hali JJ, Wali N, Renzano A, Merom D. Stunting, wasting and
49	467	underweight in sub-Saharan Africa: a systematic review. International Journal of
50	468	Environmental Research and Public Health 2017; 14(8), 863.
51	469	7. WHO. Global nutrition targets 2025: policy brief series (WHO/NMH/NHD/14.2).
52 52	470	Geneva: World Health Organization; 2014.
55 54	471	https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_e
55	472	ng.pdf
56	473	8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,
57	474	Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition
58	475	Study Group. Maternal and child undernutrition and overweight in low-income and
59	476	middle-income countries. The lancet 2013: $382(9890)$. 427-451.
60		

1		
2 3		
4	477	9. World Health Organization. Levels and trends in child mainutrition: key findings of
5	4/8	the 2019 edition (No. WHO/NMH/NHD/19.20). World Health Organization. 2019.
6	479	10. De Onis M, Onyango A, Borgni E, Siyam A, Biossner M, Lutter C. Worldwide
/ 8	480	implementation of the WHO child growth standards. Public Health Nutrition
9	481	2012; 15(9), 1603-1610.
10	482	11. De Onis M, Biossner M, Borgni E. Prevalence and trends of stunting among pre-
11	483	school children, 1990–2020. Public Health Nutrition 2012; 15(1), 142-148.
12	484	12. World Health Organization. Community-based management of severe acute
13	485	mainutrition: a joint statement by the world Health Organization, the world Food
15	486	Programme, the United Nations System Standing Committee on Nutrition and the
16	487	United Nations Children's Fund. 2007.
17	488	13. UNICEF. Levels and trends in child mainutrition, United Nations Children's fund
18 19	489	(UNICEF), World Health Organization, international Bank for Reconstruction and
20	490	Development/ the world Bank. Levels and trends in child mainutrition: key indings
21	491	Or the 2019 edition of the joint child mainutrition estimates. Geneva: world Health
22	492	Organization; 2019 Licence: CC DY-NC-SA 3.0 100; 2019.
23 24	493	health survey Addis Ababa Ethiopia and Calverten Manuland USA 2016
25	494 405	15 Vava S. Lithman OA. Ekholuonetalo M. Bichwaiit C. Adiiwanou V. Effocts of birth
26	495	spacing on advorse childhood health outcomes: ovidence from 24 countries in sub
27	490	Spacing off adverse childhood freath outcomes, evidence from 34 councies in sub-
28 20	497	16 Armah EA Ekumah B. Vawson DO Odoi 10 Afitiri A Nyioku EE ot al Prodictivo
30	490	Probabilities of Access to Clean Cooking: Evidence from the Demographic and
31	499 500	Hoalth Surveys in 24 Countries in Sub Sabaran Africa, 2010;12(2):220, 2
32	500	17 Mamabolo RI Alberts M Stovn NP Delemarro van de Waal HA Levitt NS
33	502	Prevalence and determinants of stunting and overweight in a vear-old black South
34 35	502	African children residing in the Central Region of Limpone Province South
36	504	Africa Public Health Nutrition 2005: $8(5)$ 501-508
37	505	18 Novignon I Aboagye F Agyemang OS Arveetev C Socioeconomic-related
38	506	inequalities in child malnutrition: evidence from the Chana multiple indicator
39 40	507	cluster survey. Health Economics Review 2015: 5(1) 1-11
41	508	10 Khara T. Mwangome M. Ngari M. Dolan C. Children concurrently wasted and
42	500	stunted: A moto analysis of provalence data of children 6 50 menths from 84
43	509	scurited. A meta-analysis of prevalence data of children 6–59 months from 64
44 45	510	countries. Maternal & child nutrition. 2018 Apr;14(2):e12516.
46	511	20. Boah M, Azupogo F, Amportro DA, Abada LA. The epidemiology of undernutrition
47	512	and its determinants in children under five years in Ghana. Plos one. 2019 Jul
48	513	31;14(7):e0219665.
49 50	514	21. Khan RE, Raza MA. Determinants of malnutrition in Indian children: new evidence
50	515	from IDHS through CIAF. Quality & Quantity, 2016 Jan 1:50(1):299-316.
52	516	22 Angood C Khara T Dolan C Berkley JA WaSt Technical Interest Group Research
53	510	priorities on the relationship between wasting and stunting. Disc and again
54 55	21/	priorities on the relationship between wasting and stunting. Plos one, 2016 May
56	518	9;11(5):e0153221.
57	519	23. Corsi DJ, Neuman M, Finlay JE, Subramanian SV. Demographic and health surveys:
58	520	a protile. International Journal of Epidemiology 2012; 41(6), 1602-1613.
59 60		
00		

BMJ Open

- 3
4
552124. Aliaga A, Ruilin R. Cluster optimal sample size for demographic and health surveys.4
5522In 7th International Conference on Teaching Statistics–ICOTS (Vol. 7, pp. 2-7). 2006.
- 523 [dataset] 25. DHS. DHS data source <u>https://dhsprogram.com/data/available-</u>
 524 <u>datasets.cfm</u>
 - 525 26. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe
 526 Initiative. The Strengthening the Reporting of Observational Studies in
 527 Epidemiology (STROBE) Statement: guidelines for reporting observational
 528 studies. International journal of surgery. 2014; 12(12), 1495-1499.
 - 27. Collins J, Ward BM, Snow P, Kippen S, Judd F. Compositional, Contextual, and Collective Community Factors in Mental Health and Well-Being in Australian Rural Communities. Qualitative Health Research 2017; 27(5), 677–687. https://doi.org/10.1177/1049732315625195
 - 28. Pol LG, Thomas RK. The demography of health and health care. Springer Science & Business Media. 2001.
 - 29. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri AR, Nyieku F.E. Access to improved water and sanitation in sub-Saharan Africa in a quarter century. *Heliyon* 2018; 4(11), e00931. https://doi.org/10.1016/j.heliyon.2018.e00931
 - 30. Ross CE, Mirowsky J. Neighborhood socioeconomic status and health: context or composition? City & Community 2008; 7(2), 163–179.
 - 31. Amegah AK, Boachie J, Näyhä S, Jaakkola JJK. Association of biomass fuel use with reduced body weight of adult Ghanaian women. *J Expo Sci Environ Epidemiol* 2019;1.
 - 32. Alemayehu M, Tinsae F, Haileslassie K, Seid O, Gebregziabher G, Yebyo H. Undernutrition status and associated factors in under-5 children, in Tigray, Northern Ethiopia. *Nutrition* 2015; 31(7-8), 964-970.
 - 33. Mya KS, Kyaw AT, Tun T. Feeding practices and nutritional status of children age 6-23 months in Myanmar: A secondary analysis of the 2015-16 Demographic and Health Survey. PloS one 2019; 14(1), e0209044.
 - 34. Bork KA, Diallo A. Boys are more stunted than girls from early infancy to 3 years of age in rural Senegal. *The Journal of Nutrition* 2017; 147(5), 940-947.
 - 35. Tumilowicz A, Habicht JP, Pelto G, Pelletier DL. Gender perceptions predict sex differences in growth patterns of indigenous Guatemalan infants and young children. The American Journal of Clinical Nutrition 2015; 102(5), 1249-1258.

36. Mukabutera A, Thomson DR, Hedt-Gauthier BL, Basinga P, Nyirazinyoye L, Murray M. Risk factors associated with underweight status in children under five: an analysis of the 2010 Rwanda Demographic Health Survey (RDHS). BMC Nutrition 2016; 2(1), 1-12.

- 37. Oyekale AS. Factors explaining acute malnutrition among under-five children in Sub-Sahara Africa (SSA). *Life Sci J* 2012; 9, 2101-7.
- 38. Keats A. Women's schooling, fertility, and child health outcomes: Evidence from Uganda's free primary education program. *Journal of Development Economics* 2018; 135, 142-159.
- 39. Sunguya BF, Poudel KC, Mlunde LB, Urassa DP, Yasuoka J, Jimba M. Poor nutrition
 status and associated feeding practices among HIV-positive children in a food
 secure region in Tanzania: a call for tailored nutrition training. *PloS one* 2014; 9(5),
 e98308.

1		
2		
4	566	40. Iannotti LL, Dulience SJL, Green J, Joseph S, François J, Antenor ML, Nickerson
5	567	NM. Linear growth increased in young children in an urban slum of Haiti: a
6	568	randomized controlled trial of a lipid-based nutrient supplement. The American
7	569	Journal of Clinical Nutrition 2014; 99(1), 198-208.
8	570	41. Lopriore C, Muehlhoff E. Food security and nutrition trends in West Africa—
9 10	571	Challenges and the way forward. In Proceedings of the 2nd International Workshop
10	572	on Food-based Approaches for a Healthy Nutrition, Ouagadougou, Burkina. 2003;
12	573	23-28.
13	574	42. Salami A, Kamara AB, Brixiova Z. Smallholder Agriculture in East Africa: Trends,
14	575	Constraints and Opportunities: African Development Bank: Tunis, Tunisia, 2010.
15		
16 17	576	
17	577	Figures
19	577	
20	578	Figure 1: Percentage distribution of co-existence of stunting, underweight, and
21	579	wasting (SUW) in children from the 31 study countries in SSA
22	500	Figure 2. Descentage distribution of convictories of stunting underweight and
23 24	580	rigure 2: Percentage distribution of co-existence of stunting, underweight, and
25	581	wasting (SUW) in children by regions of SSA
26	582	
27		
28	583	
29	58/	
30 31	504	
32	585	
33	500	
34	580	
35	587	
30 37		
38	588	
39	589	
40	505	
41	590	
42	504	
45 44	591	
45	592	
46		
47	593	
48		
49 50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

595 Tables

Table 1: Distribution of the relevant variables and characteristics of under-five children in SSA

597						
	Variable	%	Variable	%		
	Age of child		Urbanicity			
	0	30.87	Urban	33.21		
	1	28.42	Rural	66.79		
	2	20.22	Place of delivery			
	3	12.40	, Home	31.33		
	4	8.09	Health facility	67.51		
	Sex of child		Other	1.16		
	Male	50.47	Wealth status			
	Female	49 53	Poor	42 41		
	Birth order	+5.55	Middle	20.28		
	1	10 52	Bich	20.20		
	1	19.52	Age of household	57.51		
	2 to 4	48.09	head			
	5 and above	32.30	Young-adults	13 08		
	Barcaived size at hirth	52.55	Middle-aged adults	43.00		
		22 71	Old agod adults	43.70		
	Large	35.71	Old-aged adults	15.10		
	Average	49.74	Sex of household head	70 77		
	Small	16.54		/9.//		
	Mother's characteristics		Female	20.23		
	Maternal age		Access to electricity			
	15-19	7.13	No	69.20		
	20-49	92.87	Yes	30.80		
	Educational attainment					
	No education	41.82	Type of toilet facility			
	Primary	31.26	Improved	42.47		
	Secondary	23.82	Unimproved	57.53		
			Source of drinking			
	Higher	3.10	water			
	Working status		Improved	65.63		
	No	35.49	Unimproved	34.37		
	Yes	64.51	Type of cooking fuel			
	Antenatal visits during pregnar	ncy	Clean	89.76		
	No	10.76	Unclean	10.24		
	Yes	89.24	Geographic region			
	Postnatal check within 2 mont	hs	Western	41.78		
	Νο	58.49	Eastern	32.84		
	Yes	41.51	Central	20.08		
	Access to media (tv/radio/new	(spaper)	South Africa	5.30		
	Yes	35.33		5.50		
	No	64.67		(NI-107 407)		
BMJ Open

3 599 4 5 5 600

 600 Table 2: Prevalence and association of the co-existence of stunting, underweight and wasting with independent variables

Variable	Co-existed Weighted %	Variable	Co-existed Weighted % (95%	Variable	Co-existed
	(95% CI)		CI)		Weighted % (95% CI)
				Country	
Age of child (p<0.001)	Place of deliv	/ery (p<0.001)	(p<0.001)	
<1	1.75 (1.6-1.9)	Home Health	4.36 (4.2-4.6)	Angola	2.46 (2.1-2.8)
1	4.44 (4.2-4.7	facility	1.96 (1.9-2.1)	Benin Burkina	2.04 (1.8-2.2)
2	3.01 (2.8-3.2)	Other	2.45 (1.7-3.3)	Faso	5.31 (4.9-5.8)
3	1.62 (1.4-1.8)	Wealth statu	ıs (p<0.001)	Burundi	3.76 (3.2-4.4)
4	1.33 (1.1-1.6)	Poor	3.46 (3.3-3.6)	Cameroon	1.27 (0.9-1.7)
Sex of child (p<0.001)	Middle	2.74 (2.5-2.9)	Chad	5.86 (5.2-6.5)
Male	3.43 (3.3-3.6)	Rich	1.86 (1.7-2.0)	Comoros	1.98 (1.3-2.9)
		Age of house	hold head (p =		
Female	1.99 (1.9-2.1)	0.2760 Young-		Congo Cote	0.98 (0.7-1.5)
Birth order (p	<0.001)	adults Middle-	2.65 (2.5-2.8)	d'Ivoire	2.28 (1.7-3.0)
1	2.25 (2.1-2.4)	aged adults Old-aged	2.76 (2.6-2.9)	DR Congo	2.66 (2.2-3.2)
2 to 4	2.56 (2.4-2.7)	adults	2.8 (2.6-3.1)	Ethiopia	3.64 (3.2-4.1)
5 and above	3.23 (3.1-3.4)	Sex of house	hold head (p<0.001)	Gabon	0.63 (0.3-1.0)
Perceived size at birth				The	
(p<0.001)		Male	2.82 (2.7-2.9)	Gambia	3.61 (2.4-5.2)
Large	1.78 (1.7-1.9)	Female	2.33 (2.1-2.5)	Ghana	1.37 (0.9-2.0)
Average	2.6 (2.5-2.7)	Access to ele	ctricity (p<0.001)	Guinea	2.26 (1.7-2.9)
Small	4.98 (4.7-5.3)	No	3.21 (3.1-3.3)	Kenya	0.94 (0.7-1.2)

0.86 (0.7-1.0)

Lesotho

1.61 (1.5-1.7)

2					
3		Maternal age	(P = 0.080)	Yes	1.0
4 5				Access to me	dia
6		15-19	2.78 (2.5-3.1)	(tv/radio/nev	vspa
7		20-49	2.71 (2.6-2.8)	Yes	2.1
8		Educational at	tainment		
9		(p<0.001)		No	3.7
10		No education	4,19 (4,0-4,4)	Type of toilet	fac
11		Primary	2 09 (2 0-2 2)	Improved	1 -
12		Fillidiy	2.09(2.0-2.2)	Unimproved	1.1 2
13		Secondary	1.22 (1.1-1.3)	Unimproved	3.4
14 15				Source of dri	nkin
16		Higner	0.66 (0.4-1.0)	(p<0.001)	
17			- (0.001)	line in the second	2.1
18		working statu	s (p<0.001)	Improved	2.5
19		NI-	2 4 2 (2 0 2 2)		2.0
20		NO	3.13 (3.0-3.3)	Unimproved	3.(
21		Yes	2.48 (2.4-2.6)	Type of cook	ing f
22		Antenatal visit	ts during		
23		pregnancy (p<	0.001)	Clean	0.9
24 25		No	5.41 (5.0-5.8)	Unclean	2.9
25		Yes	2.39 (2.3-2.5)	Urbanicity (p	<0.0
27		Postnatal chec	k within 2		
28		months (p<0.0	01)	Urban	1.
29		No	2.93 (2.8-3.1)	Rural	3.2
30		Yes	2.42 (2.3-2.6)		
31		100	2112 (213 210)		
32					
33					
34 25					
36		. <u></u>			
37	601				
38	602				
39	002				
40					
41					
42					
43				Form	005

1

(tv/radio/nev	vspaper) (p<0.001)	Liberia	2.37 (1.7-3.1)
Yes	2.14 (2.0-2.2)	Malawi	1.03 (0.7-1.4)
No	3.78 (3.6-4.0)	Mali	3.62 (2.5-4.1)
Type of toilet	facility (p<0.001)	Namibia	1.99 (1.2-3.1)
Improved	1.76 (1.6-1.9)	Nigeria	4.1 (3.7-4.6)
Unimproved	3.43 (3.3-3.6)	Rwanda	6.17 (5.5-6.9)
Source of drin	nking water		
(p<0.001)		Senegal Sierra	2.43 (1.8-3.2)
Improved	2.54 (2.4-2.6)	Leone South	1.94 (1.4-2.5)
Unimproved	3.06 (2.9-3.2)	Africa	0.18 (0.02-0.8)
Type of cooki	ng fuel (p<0.001)	Tanzania	1.86 (2.1-3.5)
Clean	0.98 (0.8.2-1.2)	Togo	2.72 (2.1-3.4)
Unclean	2.92 (2.8-3.0)	Uganda	1.2 (0.8-1.7)
Urbanicity (p	<0.001)	Zambia	1.22 (1.0-1.5)
Urban	1.73 (1.6-1.9)	Zimbabwe	0.78 (0.5-1.1)
Rural	3.21 (3.1-3.3)	Geographic	region (p<0.0010
	, , , , , , , , , , , , , , , , , , ,	Western	3.11 (3.0-2.3)
		Eastern	2.43 (2.3-2.6)
		Central	2.87 (2.7-3.1)
		South	
		Africa	0.88 (0.66-1.1)

 BMJ Open

Variable	Base outcome (Ref: Normal)								
	Single and tw	o dimension	S	Co-existence of th	ree-dimensions				
	RRR	ç	95% CI	RRR	9	5% CI			
Age of child (Ref:0)									
1	2.008***	1.93	2.089	3.714***	3.319	4.156			
2	2.624***	2.514	2.739	2.827***	2.48	3.222			
3	2.122***	2.018	2.231	1.464***	1.227	1.748			
4	1.504***	1.417	1.597	1.051	0.84	1.315			
Sex of child (Ref: Ma	ale)								
Female	0.752***	0.731	0.775	0.468***	0.429	0.51			
Birth order (Ref: 1)									
2	0.938**	0.896	0.981	1.002	0.875	1.146			
5 and above	0.969	0.92	1.021	0.995	0.858	1.155			
Perceived size at bir	th (Ref: Large)								
Average	1.32***	1.276	1.365	1.756***	1.574	1.958			
Small	1.931***	1.846	2.02	3.818***	3.383	4.308			
Maternal age (Ref: 2	15-19)								
20-49	0.834***	0.78	0.891	0.881	0.735	1.056			
Educational attainm	ent (Ref: Higher)								
No education	2.624***	2.305	2.987	3.291***	1.961	5.522			
Primary	2.189***	1.927	2.487	2.381***	1.417 <	4.001			
Secondary	1.751***	1.545	1.985	1.617	0.971	2.691			
Working status (Ref	: Yes)								
No	1.018	0.984	1.053	1.195***	1.086	1.314			
Antenatal visits dur	ing pregnancy (Ref: `	Yes)				<0.00			
No	1.139***	1.079	1.201	1.364***	1.208	1.541			
Postnatal check wit	hin 2 months (Ref: Y	es)							
No	0.98	0.946	1.015	0.977	0.879	1.086			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Othor						
Other	1.046	0.912	1.201	1.047	0.71	1.5
Wealth status (Ref: Ric	ch)					
Poor	1.297***	1.235	1.361	1.408***	1.235	1.6
Middle	1.195***	1.138	1.254	1.214**	1.054	1.3
Age of household head	d (Ref: Young-adu	lt)				
Middle-aged adults	0.954**	0.921	0.987	1.01	0.913	1.1
Old-aged adults	0.974	0.93	1.021	1.065	0.936	1.2
Sex of household head	l (Ref: Male)					
Female	0.977	0.94	1.015	1.035	0.925	1.1
Access to media (tv/ra	dio/newspaper) (Ref: Yes)				
No	1.079***	1.042	1.117	1.255***	1.144	1.3
Access to electricity (R	ef: Yes)					
No	1.136***	1.083	1.191	1.062	0.922	1.2
Type of toilet facility (Ref: Improved)					
Unimproved	1.027	0.991	1.065	1.158**	1.032	1.3
Source of drinking wat	er (Ref: Improved	1)				
Unimproved	0.959**	0.928	0.99	0.968	0.885	1.0
Type of cooking fuel (F	Ref: Clean)					
Unclean	1.177***	1.089	1.271	1.316	0.97	1.
Urbanicity (Ref: Urban)					
Rural	1.05**	1.006	1.095	0.943	0.832	1.0

BMJ Open

Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA

Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA

Supplementary Tables

Appendix 1: Distribution of sample by country

Country	Survey year	n	%
Angola	2015-16	7,318	5.74
Benin	2017-18	15,473	12.14
Burkina Faso	2010	8,908	6.99
Burundi	2016-17	4,172	3.27
Cameroon	2018	2,911	2.28
Chad	2014-2015	5,999	4.71
Comoros	2012	1,320	1.03
Congo	2013	2,609	2.05
Cote d'Ivoire	2011-12	2,174	1.71
Congo DR	2013-14	4,806	3.77
Ethiopia	2016	6,573	5.16
Gabon	2012	1,960	1.54
Gambia	2013	743	0.58
Ghana	2014	1,896	1.49
Guinea	2018	2,237	1.75
Kenya	2014	6,066	4.76
Lesotho	2014	1,012	0.79
Liberia	2013	1,946	1.53
Malawi	2015-16	4,027	3.16
Mali	2018	5,653	4.43
Namibia	2013	905	0.71
Nigeria	2018	7,379	5.79
Rwanda	2014-15	4,408	3.46
Senegal	2010-11	1,944	1.52
Sierra Leone	2019	2,689	2.11
South Africa	2016	855	0.67
Tanzania	2015-16	6,061	4.75
Тодо	2013-14	2,220	1.74
Uganda	2016	2,891	2.27
Zambia	2018	6,347	4.98
Zimbabwe	2015	3,987	3.13

Variable VIF VIF VIF Tolerance Square Age of child 1.05 1.02 0.9547 0.043 Sex of child 1.01 1 0.9948 0.002 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Access to media 1.26 1.12 0.7913 0.208 <th colspan="5">Appendix 2: Multicollinearity diagnosis</th>	Appendix 2: Multicollinearity diagnosis				
Variable VIF VIF Tolerance Square Age of child 1.05 1.02 0.9547 0.043 Sex of child 1.01 1 0.9948 0.003 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.026 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.094 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Access to media 1.71 1.31 0.5837 0.416	SQRT R-				
Age of child 1.05 1.02 0.9547 0.044 Sex of child 1.01 1 0.9948 0.009 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9946 0.043 Sex of household head 1.03 1.02 0.9702 0.023 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.204 Access to electricity 1.71 1.31	ariable VIF V	ΊF	Tolerance	Squared	
Sex of child 1.01 1 0.9948 0.009 Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.023 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.203 Access to electricity 1.71 1.31 0.5837 0.444 Type of toilet facility 1.35 1.16	ge of child 1.05	1.02	0.9547	0.0453	
Birth order 1.36 1.17 0.7366 0.263 Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.664 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.03 1.02 0.9702 0.025 Access to media 1.03 1.02 0.9702 0.025 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653<	ex of child 1.01	1	0.9948	0.0052	
Perceived size at birth 1.02 1.01 0.9798 0.020 Age at child birth 1.22 1.1 0.8224 0.17 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.71 1.31 0.5837 0.444 Type of toilet facility 1.71 1.31 0.5837 0.449 Sex of household head 1.03 1.02 0.9702 0.209 Access to electricity 1.71 1.31 0.414	rth order 1.36	1.17	0.7366	0.2634	
Age at child birth 1.22 1.1 0.8224 0.177 Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to electricity 1.71 1.31 0.5837 0.446 Type of toilet facility 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.086 Type of cooking fuel 1.31 1.14	erceived size at birth 1.02	1.01	0.9798	0.0202	
Educational attainment 1.51 1.23 0.664 0.33 Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.203 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.71 1.31 0.5837 0.446 Type of toilet facility 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.086 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0	ge at child birth 1.22	1.1	0.8224	0.1776	
Working status 1.07 1.03 0.9357 0.064 Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.029 Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08	lucational attainment 1.51	1.23	0.664	0.336	
Antenatal visits during pregnancy 1.25 1.12 0.7976 0.202 Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.026 Access to media 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.446 Type of toilet facility 1.35 1.16 0.7404 0.258 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	orking status 1.07	1.03	0.9357	0.0643	
Postnatal check within 2 months 1.1 1.05 0.9098 0.090 Place of delivery 1.31 1.15 0.7617 0.233 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media	ntenatal visits during pregnancy 1.25	1.12	0.7976	0.2024	
Place of delivery 1.31 1.15 0.7617 0.238 Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.045 Sex of household head 1.03 1.02 0.9702 0.025 Access to media 1.03 1.02 0.9702 0.026 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.256 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ostnatal check within 2 months 1.1	1.05	0.9098	0.0902	
Wealth status 1.8 1.34 0.5554 0.444 Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media 1.03 1.02 0.9702 0.029 Access to media 1.03 1.02 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ace of delivery 1.31	1.15	0.7617	0.2383	
Age of household head 1.05 1.02 0.9546 0.049 Sex of household head 1.03 1.02 0.9702 0.029 Access to media 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ealth status 1.8	1.34	0.5554	0.4446	
Sex of household head 1.03 1.02 0.9702 0.029 Access to media	ge of household head 1.05	1.02	0.9546	0.0454	
Access to media (tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ex of household head 1.03	1.02	0.9702	0.0298	
(tv/radio/newspaper) 1.26 1.12 0.7913 0.208 Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.086 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ccess to media				
Access to electricity 1.71 1.31 0.5837 0.416 Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	//radio/newspaper) 1.26	1.12	0.7913	0.2087	
Type of toilet facility 1.35 1.16 0.7404 0.259 Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	cess to electricity	1.31	0.5837	0.4163	
Source of drinking water 1.09 1.04 0.9191 0.080 Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	pe of toilet facility 1.35	1.16	0.7404	0.2596	
Type of cooking fuel 1.31 1.14 0.7653 0.234 Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	ource of drinking water 1.09	1.04	0.9191	0.0809	
Urbanicity 1.58 1.26 0.6319 0.368 Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26	pe of cooking fuel 1.31	1.14	0.7653	0.2347	
Country 1.17 1.08 0.8579 0.142 Mean VIF 1.26 <td>banicity 1.58</td> <td>1.26</td> <td>0.6319</td> <td>0.3681</td>	banicity 1.58	1.26	0.6319	0.3681	
Mean VIF 1.26	ountry 1.17	1.08	0.8579	0.1421	
Mean VIF 1.26					
	ean VIF 1.26				

Appendix 3: Country-level risk of co-existence of stunting, wasting, and underweight

	Base outco	me (Ref: N	ormal)				
	Single and	two dimen	sions	Co-existence	Co-existence of three-dimensions		
	RRR	9	5% CI	RRR	9	5% CI	
Country (Ref: Angola)							
Benin	0.651***	0.598	0.708	0.625***	0.489	0.798	
Burkina Faso	0.952	0.866	1.046	1.946***	1.526	2.481	
Burundi	1.580***	1.424	1.753	2.049***	1.545	2.718	
Cameroon	0.669***	0.593	0.756	0.398***	0.261	0.609	
Chad	0.910	0.823	1.007	1.505**	1.184	1.913	
Comoros	0.883	0.745	1.046	0.656	0.378	1.138	
Congo	0.674***	0.580	0.783	0.472**	0.279	0.800	
Cote d'Ivoire	0.734***	0.638	0.844	0.739	0.492	1.109	
DB Congo	1.229***	1,100	1.373	1.351	0.988	1.847	
Ethionia	0.810***	0 726	0.904	0.813	0.604	1 095	
Gabon	0.010	0.720	0.50	0.319**	0.001	0 796	
Gambia	0.732**	0.413	0.35	1 001	0.120	1 620	
Chana	0.752	0.005	0.505	0.545**	0.010	0.857	
Guinoa	0.433	0.300	0.001	0.345	0.540	1 026	
Guillea	0.750	0.705	0.904	0.720	0.309	1.050	
Kenya	0.555	0.496	0.015	0.321	0.250	0.449	
Lesotho	0.777***	0.654	0.924	0.369	0.177	0.772	
Liberia	0.058	0.565	0.768	0.776	0.484	1.243	
Malawi	0.794***	0.708	0.889	0.447***	0.291	0.687	
Malı	0.600***	0.541	0.664	1.006	0.769	1.316	
Namibia	0.680***	0.568	0.815	0.849	0.505	1.426	
Nigeria	0.953	0.868	1.046	1.527**	1.183	1.972	
Rwanda	1.059	0.954	1.176	1.991***	1.541	2.571	
Senegal	0.660***	0.572	0.761	0.643*	0.434	0.952	
Sierra Leone	0.641***	0.567	0.725	0.656*	0.447	0.963	
South Africa	0.788*	0.634	0.979	0.108***	0.033	0.352	
Tanzania	0.772***	0.699	0.851	0.699**	0.512	0.954	
Тодо	0.557***	0.490	0.633	0.838	0.590	1.190	
Uganda	0.627***	0.556	0.708	0.421***	0.278	0.637	
Zambia	0.904*	0.818	0.998	0.519***	0.366	0.736	
Zimbabwe	0.693***	0.620	0.775	0.344***	0.214	0.554	

BMJ Open

BMJ Open

Risk factors associated with the co-existence of stunting, underweight, and wasting in children under five from 31 sub-Saharan African countries

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052267.R4
Article Type:	Original research
Date Submitted by the Author:	11-Nov-2021
Complete List of Authors:	Amadu, Iddrisu; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Seidu, Abdul-Aziz; University of Cape Coast, Department of Population and Health; James Cook University, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia Duku, Eric; University of Cape Coast, Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, Department of Fisheries and Aquatic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana Boadu Frimpong, James; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Hagan Jnr., John; University of Cape Coast, Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana Aboagye, Richard ; University of Health and Allied Sciences, School of Public Health, University of Health and Allied Sciences, No, Ghana Ampah, Belinda; Nursing and Midwifery Training College, Department of Academics, Nursing and Midwifery Training College, P.O.Box, 7, Esiama, Ghana Adu, Collins; Kwame Nkrumah University of Science and Technology, Department of Health Promotion and Disability Studies Ahinkorah, Bright; University of Technology Sydney, School of Public Health, Faculty of Health, University of Technology Sydney, NSW, Australia.
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health services research, Health policy, Global health
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < TROPICAL MEDICINE, Child protection < PAEDIATRICS

1	
2	
4	
5	
6 7	SCHOLARONE™
8	Manuscripts
9	
10	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34	
36	
37	
38 30	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

2		
3	1	Risk factors associated with the co-existence of stunting, underweight, and wasting in
4 5	2	children under five from 31 sub-Saharan African countries
6	2	Idduine America 123 Abdul Aria Caide 456 Evic Dule 12 Jamera Deade Evice and 7 Jahr Elvic
7	3	Iddrisu Amadu ^{1,2,5} , Abdul-Aziz Seldu ^{4,5,5} , Eric Duku ^{1,2} , James Boadu Frimpong ⁷ , John Elvis
8	4	Hagan Jr ⁵ , Richard Gyan Aboagye ⁹ , Belinda Ampan ¹⁰ , Collins Adu ¹¹ , Bright Opoku
9	5	Ahinkorah ¹²
10	6	
12	7	1. Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape
13	8	Coast. Ghana
14	9	2. Department of Fisheries and Aquatic Sciences, School of Biological Sciences,
15	10	College of Agriculture and Natural Sciences. University of Cape Coast. Ghana
10	11	3. Emperiks Research, NT0085, Tamale, Ghana
18	12	4. Department of Population and Health. College of Humanities and Legal Studies.
19	13	University of Cape Coast, Ghana.
20	14	5 College of Public Health Medical and Veterinary Sciences James Cook University
21	15	Townsville Queensland Australia
22	16	6 Department of Estate Management Takoradi Technical University Takoradi
24	17	Ghana
25	18	7 Department of Health Physical Education and Recreation University of Cape
26	10	Cost Cape Cost Chana
2/	20	8 Neurocognition and Action-Biomechanics-Besearch Group, Faculty of Psychology
20 29	20	and Sport Sciences Bielefeld University Bielefeld Cermany
30	21	 School of Public Health University of Health and Allied Sciences, Ho. Chana
31	22	10 Department of Academics, Nursing and Midwifery Training College, P.O. Box, 7
32	23	Esiama Chana
33 34	24	11 Department of Health Promotion Education and Disability Studies Kwame
35	25	Nkrumah University of Science and Technology Kumasi Chana
36	20	12 School of Public Health, Faculty of Health, University of Technology Sydney, NSW
37	27	Australia
38	20	
39 40	29	Email addresses
41		
42	30	IA: Iddrisu.amadu@stu.ucc.edu.gh
43	31	*AS: abdul-aziz.seidu@stu.ucc.edu.gn
44 45	32	ED: eric.duku@stu.ucc.edu.gh
46	33	JBF: frimpongboadujames@gmail.com
47	34	JEH: elvis.hagan@ucc.edu.gh
48	35	RGA: raboagye18@spn.unas.edu.gn
49 50	36	BA: <u>oyebel@gmail.com</u>
50 51	37	CA: collinsadu80@yanoo.com
52	38	BOA: prightaninkoran@gmail.com
53	39	
54	40	Correspondence to:
55 56		
57	41	Abdul-Aziz Seidu, Department of Population and Health, University of Cape Coast, PMB TF0494,
58	42	Cape Coast, Ghana, Email:abdul-aziz.seidu@stu.ucc.edu.gh
59	43	
60		

44 ABSTRACT

 Objective: This study investigated the risk factors associated with the co-existence of
stunting, underweight, and wasting among children under age five in sub-Saharan Africa
(SSA).

48 Design: Data of 127,487 under-five children from 31 sub-Saharan African countries were
 49 pooled from the Demographic and Health Surveys collected between 2010 and 2019. We
 50 examined the risk of co-existence of undernutrition using multinomial logistic regression
 51 models, with results presented as relative risk ratios (RRR).

- 15 52 Setting: Thirty-one sub-Saharan African countries.
 16
- 17 53 **Participants:** Children under age five

Outcome measures: The outcome variables were three child anthropometrics: stunting
 (height-for-age z-scores); underweight (weight-for-age z-scores); and wasting (weight-for height z-scores).

Results: The prevalence of co-existence of stunting, underweight, and wasting varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Benin (12.14%) and Gambia (0.58%) respectively. The risk of co-existence of the three undernutrition dimensions was higher among children aged 1 year (RRR=3.714; 95%CI 3.319-4.156) compared to those aged 0. The risk of co-existence of the three dimensions was lower among female children (RRR=0.468 95% CI 0.420-0.51) but higher for those with small size at birth (RRR=3.818; CI 3.383-4.308), those whose mothers had no education (RRR=3.291; 95% CI 1.961-5.522), not working (RRR=1.195; 95% CI 1.086-1.314), had no antenatal visits during pregnancy (RRR=1.364; 95% CI 1.20-1.541), children delivered at home (RRR=1.372; CI 1.232-1.529), those from poor households (RRR=1.408; 95% CI 1.235-1.605), those whose mothers had no access to media (RRR=1.255; 95% CI 1.144-1.377), and living in households with an unimproved toilet facility (RRR=1.158; 95% CI 1.032-1.300).

Conclusions: Findings suggest the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions need to be well-tailored considering the compositional characteristics.

- 75 Keywords: co-existence; stunting; underweight; wasting; children under five; sub-Saharan
 76 Africa

2 3 4	77	
5 6		Strength and Limitations
7 8 9 10 11		• Nationally representative data of under-five children from 31 SSA countries were analysed.
12 13 14 15 16 17 18		 Multinomial logistic regression was used to assess the risks factors to the co-existence of stunting, wasting and underweight in children.
19 20 21 22 23		 A broad range of potential risk factors a various levels were considered.
24 25 26 27 28		 Also, the DHS employs cross-sectional designs which restrict causality on the noted outcomes.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46		 Self-reported variables used are susceptible to biases from recall and other social desirability issues.
40 47 48	78	
49 50	79	
51 52	80	
53 54	81	
55 56	82	
57 59	83	
58 59 60	84	

INTRODUCTION

Undernutrition among children under 5 years remains a major public health problem across many low-and middle-income countries¹⁻³. Factors such as insufficient food intake, diarrhoea, recurring infections, poor sanitation practices, and low parental education have been identified as significant contributors to the high prevalence of undernutrition during childhood^{1,4,5}. Despite the numerous interventions rolled out to address childhood undernutrition especially in sub-Saharan Africa where the phenomenon is quite pervasive, the progress seems to be insignificant^{6,7}. For example, a study reported that child undernutrition accounted for nearly half (45%) of the child mortality rate in low-and middle-income countries⁸. Aside from that, it was reported in 2018 that about 149 million and 49 million children under age 5 were stunted and wasted respectively⁹.

Three main indicators that are often used to represent undernutrition are underweight or low weight for age, stunting or low height for age, and wasting or low weight for height^{2,10-} ¹². Among the three indicators of undernutrition, stunting has been identified as the problem with the greatest magnitude among under 5 children in developing countries^{2,3}. Even though the prevalence of stunting in sub-Saharan Africa is declining, it is worth noting that it is still above 30%¹³ which is undeniably high. Research also indicates that the country-specific prevalence of stunting, underweight and wasting is still high^{2,3}. For instance, in Ethiopia, the prevalence of wasting and stunting were 10% and 38% respectively¹⁴. Additionally, the prevalence of stunting, underweight and wasting among children in South Africa were 35.8%, 20.5%, and 17.2%³. Likewise, Anin et al.² reported 33.2%, 14.1%, 27% and 2.6% of prevalence in stunting, wasting, underweight and overweight among infants (6-23 months) across Northern Ghana.

Previous studies have investigated the compositional and contextual risk factors associated with either stunting, underweight or wasting among children under 5 years and found the age of a child, sex of the child, child's size at birth, mother's age during childbirth, mother's educational level, birth order, place of residence and mother's body mass index (BMI) as associated factors^{1-3,15,16}. Other studies also found a significant linkage between household wealth quintile and maternal short stature, and nutritional status of children under 5^{17,18}. Regarding the sex of a child, for example, female children were found to be less likely to suffer from stunting compared to males^{1,3}.

Apart from studies that have examined the factors associated with either stunting, underweight, and wasting, some scholars have begun looking at predictors of the co-existence of any two or three of the indicators of malnutrition. A study in 84 countries that examined the prevalence and predictors of co-existence of stunting and wasting found sex and age of children as significant predictors¹⁹. Other studies in Ghana²⁰ and India²¹ also examined the co-existence of stunting, underweight, and wasting and found birth interval, birth weight, dietary diversity, place of delivery, wealth index, mother's BMI, mother's educational level, and partners' educational level as associated factors. The need to examine the co-existence of stunting, underweight and wasting is important because not much work has been done on that subject and hence children who concurrently suffer from stunting, underweight, and wasting are less likely to be reached in malnutrition prevention programmes, especially in SSA. For instance, some scholars have indicated that despite evidence that wasting and stunting are global public health problems that frequently co-exist, they are usually separated in terms of policy, guidance, programming

and financing²². This creates a gap in the literature that needs to be filled. Despite the detrimental consequences of undernutrition on the health and wellbeing of children under 5 in SSA, studies utilizing current, and nationally representative data to investigate the risk factors associated with the co-existence of stunting, underweight, and wasting among this age group are absent in the literature. Studies presenting empirical analyses of the co-existence of these three indicators of child undernutrition in SSA are absent in extant literature making it difficult for policymakers and nutritional experts to provide up-to-date trends with appropriate strategies to curb the situation in the sub-region. This research lag presents a void in extant literature which this study seeks to bridge. Therefore, the study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from the Demographic Health Survey (DHS) conducted in 31 countries between 2010 and 2019. The findings of the study could contribute to the formulation of policies and interventions to respond to the nutritional needs of children under 5 years and also suggest pragmatic ways of reducing undernutrition among children in the sub-region.

METHODS

Data Source

The dataset included 127,487 children under the age of 5 years from 31 sub-Saharan African countries (Figure 1) were pooled from the most current Demographic and Health Surveys (DHS) conducted between 2010 and 2019 (Appendix 1). Specifically, the data were pooled from the children's files in each of the countries. The DHS Program has conducted over 400 surveys in over 90 developing countries around the world since 1984 every five years²³. The program implements cross-sectional surveys to gather nationally-representative data, analyze and disseminate accurate information on important demographic and health indicators spanning population, nutrition, and diseases. For all surveys, standardized protocols designed for each target group including children, women, and men at the household level are employed to allow for cross-national comparisons. Stratified two-stage sampling involves first, the listing of enumeration areas and selection of clusters, and then a random selection of households in each cluster. The detailed sampling method can be found in a previous study²⁴. The dataset is freely available for download at: https://dhsprogram.com/data/available-datasets.cfm²⁵. The Strengthening Reporting of Observational Studies in Epidemiology (STROBE) guidelines were followed in writing the manuscript²⁶.

Study Variables

Outcome Variable

The outcome variable considered in this study is derived from three child anthropometric variables including stunting (height-for-age z-scores); underweight (weight-for-age z-scores) and wasting (weight-for-height z-scores). The DHS (2021) specifies categorization for each of these variables following the WHO child growth standard. Each of the three variables we coded into "o" for "Normal" and "1" for "Stunting", "underweight" and "Wasting" respectively.

These three variables were then added to generate the outcome variable "Co-existed undernutrition" with scores (discrete) ranging from 0 to 3 where 0 implies "Normal", that is, children with none of the three conditions; 1 implies "Single burden", that is, the child suffers from one of the three conditions; 2 indicates that child suffers from "Two burdens" out of the three; and 3 shows "Co-existed", that is, the child suffers from all three conditions of undernutrition. For parsimony, children who suffered from "Single burden" and those who suffered from "Two burdens" were added resulting in the variable "Co-existed undernutrition" with three response categories: 0=Normal; 1=One or two burdens; and 3=co-existed.

15 181 Independent Variables

Several risk factors spanning compositional to contextual factors have been associated with child undernutrition. The relevant biosocial characteristics and sociocultural factors related to the child, mother, household head and the household together form compositional factors^{27,28}. Factors that describe location or "place-based" variables are contextual factors^{20,27,29,30}. The relevant compositional factors considered include the age of the child; sex of the child; birth order of child; perceived size at birth; mother's age; educational attainment; working status; antenatal visits during pregnancy; postnatal check within 2 months; and place of delivery. At the household level, relevant variables included are the wealth status; the age of household head; sex of household head (male and female); access to electricity; and access to media which was derived from the three variables "access to television", "radio" and "newspaper". Household basic needs include the type of toilet facility (re-coded into "improved" and unimproved"²⁹; source of drinking water (re-coded as "improved" and "unimproved"²⁹, and type of household cooking fuel (re-coded into "clean" and "unclean" ^{29,31} are also considered. The contextual factors considered are urbanicity and the country of origin of the participant.

3536 197 Data Analyses

The statistical analysis of the data was performed using the Stata SE software version 14.2. The "svyset" command was first used to declare the data as survey data to prevent the potential effects of the complex sampling techniques on the analyses. The sample weight variable in the DHS was used to provide weighted samples in the analyses. To understand the distributions of the variables, the data were summarized and presented in tables using descriptive statistics (frequencies, weighted percentages, and 95% confidence intervals (CIs) of percentages). We further integrated the data into a GIS environment and presented the distribution of key variables across the study countries and geographic regions in map images (Figure 1 and Figure 2). This approach enhances the visualization of the data and understanding of the context of the study. The associations between the co-existence of undernutrition and each of the risk factors considered were assessed using the chi-square test of independence, with results presented in a contingency table. The risk factors as independent variables were then subjected to collinearity diagnosis tests, including Variance Inflation Factors (VIF), Square VIF, Tolerance, and R-squared. This was done to ascertain whether the independent variables were actually "independent", that is, are not correlated with one another and will not share variance in the outcome variable. Results from the multicollinearity diagnoses test (See Appendix 2) show that the variables were not correlated (Mean VIF=1.26; Maximum VIF=1.71; Minimum VIF=1.02). To determine

the risk factors associated with the co-existence of undernutrition, a multinomial regression model was implemented. All statistical tests were conducted at p<0.05. **Ethical Approval** This study used secondary data from the DHS Program. Since we neither interacted

directly nor indirectly with the study participants, there was no need for ethical approval.
 Details on the ethical considerations of the DHS Program could be found at https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-

- 13 223 Respondents.cfm.

225 Patient and public involvement

Patients and the public were not involved in the design and conduct of this research
 Patients and the public were not involved in the design and conduct of this research

19 227 **Results** 20

21 228 **Distribution of sample characteristics**

The study included a total of 127,487 under-five children. It is found that most (30.87%) of the children were less than a year (Table 1). With regards to sex, both males and females constituted approximately half of the sample. A majority of the children (92.87%) were born to mothers aged between 20 to 49 years while only 7.13% were born to mothers aged 15 to 19years. In terms of education, most (41.82%) of the children were born to mothers with no formal education. Only 3.10% of the children were born to a mother with a higher level of educational attainment. Further, 42.1% of the children were born in poor households while 37.21% were born in rich households. More than half (57.53%) of the children lived in a household with unimproved toilet facilities. However, most (65.63%) of the children lived in households with access to improved drinking water sources. Similarly, a majority (89.76%) of the children lived in households using clean cooking fuel (Table 1).

As shown in Appendix 2, the prevalence of co-existence of stunting, underweight, and underweight varied across countries and sub-regions, with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting as Rwanda (6.17%) and South Africa (0.18%) respectively (Figure 1). In terms of sub-region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa (3.11%) and the lowest prevalence in Southern Africa (0.88%) (Figure 2).

- Significant associations between all the independent variables and co-existence of
 stunting, wasting, and underweight, except maternal age and age of household head,
 were identified (Table 2).
- ⁴⁸ 249 ***Table 1***
- 50 250
- 51 251 ***Figure 1***
- 53 252 ***Figure 2***
- 54 253 ***Table 2***

⁵⁶ 254 **Risk factors of the co-existence of stunting, wasting and underweight**

Table 3 shows the results of the multinomial regression analysis of the risk factors of co existence of dimensions of undernutrition (stunting, underweight, and wasting) among

children under five years in the SSA. Age of child, size of the child at birth, sex of the child, birth order, educational level, maternal age, ANC attendance, place of delivery, source of drinking water, sex of household head, wealth index, access to electricity and place of residence were associated with one or two dimensions of undernutrition. See Appendix 3 for country-level risk of co-existence of stunting, wasting, and underweight.

Regarding the co-existence of the three dimensions of undernutrition (stunting, underweight, and wasting), age of the child, sex of the child, perceived birth size, maternal educational attainment, working status, antenatal visits during pregnancy, place of delivery, wealth status, access to media, and type of toilet facility were found to be significant risk factors (Table 3).

17 267 *****Table 3*****

19 268 **DISCUSSION**

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the countries with the highest and lowest prevalence of co-existence of stunting, underweight, and wasting were Benin and Gambia respectively. In terms of geographic region, the highest prevalence of co-existence of stunting, underweight, and wasting was observed in Western Africa and the lowest prevalence in Southern Africa. The disparities in the prevalence among the countries and geographical regions could be attributed to the nutritional practices and beliefs practised in the countries and geographical regions. Differences in the health policies provided by governments in the various countries could also account for the disparities noted. This finding implies that countries that have high prevalence should take critical lessons from the countries that are doing well regarding the implementation of nutritional policies and interventions (e.g., increasing dietary supplementation, increasing dietary diversity) that target the reduction of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa².

Similar to previous studies^{1,3}, this study found that children aged 1 year, 2 years, and 3 years were at greater risk of having co-existence of all the three forms of undernutrition compared to those aged o. A plausible reason for this finding could be that as children grow their energy needs also increase¹, increasing their risk of having all three nutritional conditions. Alternatively, since these nutritional conditions may manifest after long durations of improper nutritional practices or undernutrition^{1,3}, older children may be at higher risk of having all three nutritional conditions. The finding suggests that complementary foods given to children as they grow are inadequate. To reduce the risk of co-existence of stunting, underweight, and wasting among under 5 children, the health sectors in the various countries should invest heavily in providing adequate complementary feeding to this category of children.

Corroborating the findings of other studies^{1,3,32,33}, this study also found that children who were females were less likely to have a co-existence of the three dimensions of undernutrition compared to their male counterparts. An acceptable explanation for this finding could be the biological variations in morbidity between males and females at that young age³. It is also possible that since male children have higher birth weight compared to females, they require more energy^{1,34}, which increases the risk of males having all three

nutritional conditions. Moreover, male children are perceived to be hungrier than females, therefore breastfeeding alone could be insufficient or inadequate^{3,35}, increasing their susceptibility to having the three nutritional conditions. The finding suggests that male children should be given critical attention in the development and implementation of nutritional programs (e.g., dietary supplementation) to mitigate the co-existence of stunting, underweight, and wasting among these male children under 5 years.

The study found that the risk of co-existence of the three dimensions of undernutrition was higher among children with the average size at birth and small size at birth compared to children with large size at birth. It has been proven that undernutrition in children is partly influenced by maternal nutrition practices. Hence, mothers' appropriate nutritional behaviours during the prenatal and postnatal periods are key to improving child growth. Conversely, maternal undernutrition causes low maternal BMI, which in turn affects the foetus to poor development often associated with a small birth size and low birth weight^{1,3,21,36}. This finding indicates that mothers of children under 5 should continuously be educated on the best nutritional practices such as exclusive breastfeeding, complementary feeding, and dietary supplementation. These strategies will help ameliorate the risk of acquiring health conditions associated with undernutrition among children under 5.

The risk of co-existence of the three dimensions was higher among children whose mothers had no education and primary education compared to those whose mothers had higher education. Mothers who have attained higher education are better informed about improved childcare practices³⁷, are more empowered to make health decisions³⁸, practice good personal hygiene³⁸, are more likely to use the health facility³⁹, proper feeding practices³⁶ and childcare in times of illness^{36,40}. This finding suggests that mothers with no formal or little education are neglected in nutritional programs that help to eliminate stunting, underweight, and wasting. Hence, they should be given the needed consideration to deal with this persistent health issue.

This study also found that the risk of co-existence of the three dimensions was higher among children whose mothers were not working compared to those whose mothers were working. Women's employment status indicates their ability to afford proper nutritional products and health care services^{36,40}. Therefore, if mothers are not employed, the children become highly susceptible or vulnerable because mothers are unlikely to meet their nutritional needs or requirements. Mothers with children under 5 with such disadvantaged backgrounds should be given subsidies on children's nutritional products and perhaps, free access to health care services by governmental and non-governmental organizations. This step will be significant in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.

The risk of co-existence of the three dimensions was higher among children whose mothers had no antenatal visits during pregnancy compared to those whose mothers had antenatal visits during pregnancy. Specifically, mothers who attend antenatal services are usually educated on the best practices of nutrition and general healthcare, which hitherto would not be known by these mothers³⁸. Therefore, mothers who did not have antenatal visits may lack some knowledge about proper nutritional practices, increasing their children's risk of having these undernutrition-related challenges. Regular antenatal visits could reduce children's risk of stunting, being underweight, and wasting, therefore,

3 346 mothers should continuously be encouraged to go for antenatal care services in their
 347 countries.

Children who were delivered at home compared to children who were delivered at a health facility were found to have a higher risk of co-existence of the three dimensions. Since mothers who deliver at home do not receive any expert nutritional advice from a qualified health practitioner³⁷, the children of such mothers are at higher risk of having these conditions because of poor and/ or inadequate dietary practices. This finding shows that facility delivery may help reduce the risk of co-existence of stunting, underweight, and wasting among children under 5. Therefore, mothers should regularly be educated on the need to opt for facility delivery because of its positive implications on children's growth.

- The risk of co-existence of the three dimensions was higher among children whose mothers were poor and had middle wealth status compared to those whose mothers were rich. Usually, mothers who have an average income may lack the financial capacity to feed themselves and their children properly and adequately^{3,17,36}, increasing the children's risk of being stunted, underweight or wasted. Likewise, mothers from poor and middle wealth quintiles may not have access to quality nutritional products and health care systems^{36,40}, making their children more susceptible to having all three nutritional conditions. This finding implies that women from poor economic backgrounds should be assisted with nutritional products and services to facilitate the reduction in the risks of the co-existence of stunting, underweight, and wasting among children under 5.
- The risk of co-existence of the three dimensions was higher among children whose mothers had no access to media compared to those whose mothers had access to media. Since many people are educated about proper nutritional practices through the mass media^{10,11}, mothers who have no access to the media may lack certain important nutritional information they need. This information gap could increase children's risk of having all three nutritional conditions through improper dietary practices from their mothers. For instance, mothers' access to appropriate information from the media would help them decide on which proper diets or food commodities are readily available on market for their children. More pragmatic ways of reaching mothers who have no access to media are encouraged. Regular outreach or sensitization programs to target women without access to media for example could help in reducing the risks of the co-existence of stunting, underweight, and wasting among children under 5 years.
- Children whose mothers had unimproved toilet facilities were found to have a higher risk of co-existence of the three dimensions of child undernutrition compared to those whose mothers had improved toilet facilities. Insanitary or unhygienic toilet conditions may increase mother-child-environment interactions that may result in increased exposure to childhood diseases and other opportunistic infections (e.g., diarrhoeal episodes, fever) either through consumption of contaminated foods, drinking water or poor environmental sanitation²¹. These conditions have been shown to cause growth retardation in children. Government and non-governmental organizations should support the provision of improved household toilet facilities for poorer communities to help minimize the risks of the co-existence of child undernutrition indicators.
- S88 Children from Burkina Faso, Burundi, Chad, Nigeria, and Rwanda had a higher risk of having
 S89 the co-existence of the three dimensions compared to those from Angola. On the other
 S80

hand, countries such as Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Kenya, Lesotho,

Malawi, Senegal, Zambia, Uganda, Tanzania, Sierra Leone, Zimbabwe, and South Africa

had a lower risk among their children having co-existence of the three undernutrition

dimensions. The sub-regional and country-specific variations in socio-economic, agro-

ecological and geographical characteristics may strongly influence the nutritional status of

children because of inadequate food supplies, limited access to arable land for agriculture,

unfavourable climatic conditions (e.g., desertification), rapid population growth, and

increasing cost of living may determine food access, availability and production in studied

countries in SSA^{41,42}. Governmental priorities should intensify efforts to minimize the risk

of co-existence of stunting, underweight, and wasting among children under age 5 with

401 Strength and limitations

The use of relative large nationally representative data of under-five children from 31 SSA countries is the main strength of the study. We also employed rigorous statistical analytical techniques to analyse the data. A broad range of potential risk factors a various levels were considered in our analysis. Despite these, the DHS employs cross-sectional designs which restrict causality on the noted outcomes. Self-reported variables used are, therefore, susceptible to biases from recall and other social desirability issues. The surveys were also conducted in different years.

sound socio-economic and sustainable human capital development.

29 409

410 Conclusions and implications

The study investigated the risk factors of the co-existence of stunting, underweight, and wasting among children under age 5 in sub-Saharan Africa using data from DHS conducted in 31 countries between 2010 and 2019. The study found that the prevalence of co-existence of stunting, underweight, and wasting ranged from 0.58 % in the Gambia to 12.14% in Benin. The study also found that the prevalence of co-existence of stunting, underweight, and wasting was high in Western Africa (41.78%) but low in Southern Africa (5.3%). The significant findings show that the disadvantaged have more risks of the co-existence of stunting, underweight, and wasting among under 5 children in selected SSA countries. These findings demonstrate the urgent need for consideration of the co-existence of stunting, wasting and underweight among under-five children in policy design and programming of interventions to eradicate child malnutrition in SSA. In the short-term, national-level policies and interventions needs to be well-tailored considering the compositional characteristics including child's age, sex, birth size; maternal education, working status, place of delivery, antenatal visit; and household's wealth status, access to media and improved toilet facility are required. For instance, such programs could be geared towards improving females' access to education, reducing unemployment, expanding access to the media and using it to promote education on the need for antenatal care. In the long-term, regional policies and coordinated interventions among governments of SSA countries need to be designed to address the disparate prevalence of the co-existence of stunting, wasting and underweight in under-five children across the four geographic regions. The implementation of these at the local level should consider rural-urban differences in the prevalence of the condition and the risk factors elicited.

2		
3 4	434 425	Acknowledgements: The authors thank the MEASURE DHS project for their support and free access to the original data
5	435	
6 7	436	Contributors: IA and BOA developed the study concept. IA performed the data analysis.
8	437	AS, ED, JBF, JEH, RGA, BA, CA and BOA drafted and revised the manuscript critically for its
9	438	intellectual content. All authors read and approved the final manuscript. AS had the final
10	439	responsibility to submit the manuscript.
11	440	· •••• • · •••••••••••••••••••••••••••
12	110	Funding: This research received no specific grant from any funding agency in the public
13	442	commercial or not for profit sectors
14 15	44Z	commercial of not-for-profit sectors
16	443	Competing interests: None
17	444	
18	445	Patient consent for publication: No consent to publish was needed for this study
19	446	as we did not use any details, images or videos related to individual participants. In
20	447	addition the data used are available in the public domain
21	110	addition, the data used are available in the public domain.
22	440	Ethics approval and concent to participate
24	449	This study used accordery data from the DUC Program. Since we neither interacted
25	450	This study used secondary data from the DHS Program. Since we neither interacted
26	451	directly nor indirectly with the study participants, there was no need for ethical approval.
27	452	Details on the ethical considerations of the DHS Program could be found at
28	453	https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-
29	454	Respondents.cfm.
30 31	455	
32	456	Provenance and peer review: Not commissioned; externally peer-reviewed.
33	457	
34	458	Data availability statement: Data are available in a public, open access repository.
35	459	
36		
37 38	460	References
39	461	1. Amare 7Y. Ahmed MF. Mehari AB. Determinants of nutritional status among
40	462	children under age 5 in Ethionia: further analysis of the 2016 Ethionia demographic
41	462	and health survey. Clobal Health 2010 :15(1):1-11
42	405	Anin SK, Saaka M, Fischer F, Kraemer A, Association between Infant and Young
43	404	2. Allin SK, Saaka M, Fischer F, Kraemer A. Association between infant and foung
44 45	465	Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23
45 46	466	Months) in Northern Ghana. Nutrients 2020; 12, 2565.
47	467	https://doi.org/10.3390/nu12092565
48	468	3. Madiba S, Chelule PK, Mokgatle MM. Attending informal preschools and daycare
49	469	centers is a risk factor for underweight, stunting and wasting in children under the
50	470	age of five years in underprivileged communities in South Africa. International
51 52	471	Journal of Environmental Research and Public Health 2019; 16(14), 2589.
52 53	472	4. Yalew BM, Amsalu F, Bikes D. Prevalence and factors associated with stunting,
55		underweight and wasting, a community based cross sectional study among
54	473	underweight and wasting, a community based closs sectional study among
54 55	473 474	children age 6-59 months at Lalibela Town, Northern Ethiopia. J Nutr Disorders Ther
54 55 56	473 474 475	children age 6-59 months at Lalibela Town, Northern Ethiopia. J Nutr Disorders Ther 2014; 4(147), 2161-0509.
54 55 56 57	473 474 475 476	children age 6-59 months at Lalibela Town, Northern Ethiopia. J Nutr Disorders Ther 2014; 4(147), 2161-0509. 5. WHO. Nutrition Landscape Information System (NLIS) Country Profile Indicators:
54 55 56 57 58 50	473 474 475 476 477	 children age 6-59 months at Lalibela Town, Northern Ethiopia. J Nutr Disorders Ther 2014; 4(147), 2161-0509. 5. WHO. Nutrition Landscape Information System (NLIS) Country Profile Indicators: Interpretation Guide; World Health Organization: Geneva, Switzerland, 2010.

1		
2 3	470	C Alexandri DI Arba KE Hall II Makin Danasha A Manana D. Stunting supering and
4	478	6. AKOMDI BJ, Agno KE, Hall JJ, Wall N, Renzano A, Merom D. Stunting, wasting and
5	479	underweight in sub-Sanaran Africa: a systematic review. International Journal of
6	480	Environmental Research and Public Health 2017; 14(8), 863.
/ 8	481	7. WHO. Global nutrition targets 2025: policy brief series (WHO/NMH/NHD/14.2).
9	482	Geneva: World Health Organization; 2014.
10	483	https://apps.who.int/iris/bitstream/handle/10665/149018/WHO_NMH_NHD_14.2_e
11	484	ng.pdf
12	485	8. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M,
13	486	Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition
15	487	Study Group. Maternal and child undernutrition and overweight in low-income and
16	488	middle-income countries. The lancet 2013; 382(9890), 427-451.
17	489	9. World Health Organization. Levels and trends in child malnutrition: key findings of
18	490	the 2019 edition (No. WHO/NMH/NHD/19.20). World Health Organization. 2019.
19	491	10. De Onis M, Onyango A, Borghi E, Siyam A, Blössner M, Lutter C. Worldwide
20	492	implementation of the WHO child growth standards. Public Health Nutrition
22	493	2012; 15(9), 1603-1610.
23	494	11. De Onis M, Blössner M, Borghi E. Prevalence and trends of stunting among pre-
24	495	school children, 1990–2020. Public Health Nutrition 2012; 15(1), 142-148.
25	496	12. World Health Organization. Community-based management of severe acute
20 27	497	malnutrition: a joint statement by the World Health Organization, the World Food
28	498	Programme, the United Nations System Standing Committee on Nutrition and the
29	499	United Nations Children's Fund. 2007.
30	500	13. UNICEF. Levels and trends in child malnutrition, United Nations Children's fund
31	501	(UNICEF), World Health Organization, International Bank for Reconstruction and
32 33	502	Development/The World Bank. Levels and trends in child malnutrition: key findings
34	503	of the 2019 edition of the joint child malnutrition estimates. Geneva: World Health
35	504	Organization; 2019 Licence: CC BY-NC-SA 3.0 IGO; 2019.
36	505	14. Central Statistical Agency (CSA)[Ethiopia] and ICF. Ethiopia demographic and
37	506	health survey, Addis Ababa, Ethiopia and Calverton, Maryland, USA, 2016.
38 20	507	15. Yava S. Uthman OA. Ekholuenetale M. Bishwaiit G. Adiiwanou V. Effects of birth
40	508	spacing on adverse childhood health outcomes: evidence from 34 countries in sub-
41	509	Saharan Africa, 1 Matern & Neonatal Med 2020:33(20):3501–8.
42	510	16. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri A, Nyieku FE, et al. Predictive
43	511	Probabilities of Access to Clean Cooking: Evidence from the Demographic and
44 45	512	Health Surveys in 31 Countries in Sub-Sabaran Africa, 2010;12(3):320–2
45 46	512	17 Mamabolo BL Alberts M Stevn NP Delemarre-van de Waal HA Levitt NS
47	517	Prevalence and determinants of stunting and overweight in 2-year-old black South
48	515	African children residing in the Central Region of Limpono Province, South
49	515	Africa Dublic Health Nutrition 2005; 8(5) 501 508
50		Anica. Fublic Health Nathlion 2005, 8(5), 501-508.
51	517	inequalities in child malnutritions widence from the Chana multiple indicator
53	518	inequalities in child mainutrition: evidence from the Ghana multiple indicator
54	519	cluster survey. Health Economics Review 2015; 5(1), 1-11.
55	520	19. Khara I, Mwangome M, Ngari M, Dolan C. Children concurrently wasted and
56	521	stunted: A meta-analysis of prevalence data of children 6–59 months from 84
57 58	522	countries. Maternal & child nutrition. 2018 Apr;14(2):e12516.
59		
60		

3	523	20. Boah M, Azupogo F, Amporfro DA, Abada LA. The epidemiology of undernutrition
4 5	524	and its determinants in children under five years in Ghana. Plos one. 2019 Jul
6	525	31;14(7):e0219665.
7	526	21. Khan RE, Raza MA. Determinants of malnutrition in Indian children: new evidence
8 9	527	from IDHS through CIAF. Quality & Quantity, 2016 Jan 1:50(1):299-316.
10	528	22. Angood C. Khara T. Dolan C. Berkley JA. WaSt Technical Interest Group, Research
11	520	priorities on the relationship between wasting and stunting. PloS one 2016 May
12	525	
14	530	9,11(5):e0153221.
15	531	23. Corsi DJ, Neuman M, Finiay JE, Subramanian SV. Demographic and health surveys:
16	532	a prome. International Journal of Epidemiology 2012; 41(6), 1602-1613.
17	533	24. Allaga A, Rullin R. Cluster optimal sample size for demographic and health surveys.
19	534	in /th international conference on reaching statistics=icOTS (vol. /, pp. 2-/). 2006.
20	535	[dataset] 25. DHS. DHS data source <u>https://dhsprogram.com/data/available-</u>
21 22	536	<u>datasets.cfm</u>
22	537	26. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, Strobe
24	538	Initiative. The Strengthening the Reporting of Observational Studies in
25	539	Epidemiology (STROBE) Statement: guidelines for reporting observational
26 27	540	studies. International journal of surgery. 2014; 12(12), 1495-1499.
27	541	27. Collins J, Ward BM, Snow P, Kippen S, Judd F. Compositional, Contextual, and
29	542	Collective Community Factors in Mental Health and Well-Being in Australian Rural
30	543	Communities. Qualitative Health Research 2017; 27(5), 677–687.
31	544	https://doi.org/10.1177/1049732315625195
32 33	545	28. Pol LG, Thomas RK. The demography of health and health care. Springer Science &
34	546	Business Media. 2001.
35	547	29. Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri AR, Nyieku F.E. Access to
36	548	improved water and sanitation in sub-Saharan Africa in a quarter century. Heliyon
37 20	549	2018; 4(11), e00931. https://doi.org/10.1016/j.heliyon.2018.e00931
30 39	550	30. Ross CE, Mirowsky J. Neighborhood socioeconomic status and health: context or
40	551	composition? City & Community 2008; 7(2), 163–179.
41	552	31. Amegah AK, Boachie J, Näyhä S, Jaakkola JJK. Association of biomass fuel use with
42	553	reduced body weight of adult Ghanaian women. J Expo Sci Environ Epidemiol 2019;1.
45 44	554	32. Alemayehu M, Tinsae F, Haileslassie K, Seid O, Gebregziabher G, Yebyo H.
45	555	Undernutrition status and associated factors in under-5 children, in Tigray,
46	556	Northern Ethiopia. Nutrition 2015; 31(7-8), 964-970.
47	557	33. Mya KS, Kyaw AT, Tun T. Feeding practices and nutritional status of children age 6-
48 70	558	23 months in Myanmar: A secondary analysis of the 2015-16 Demographic and
50	559	Health Survey. PloS one 2019; 14(1), e0209044.
51	560	34. Bork KA, Diallo A. Boys are more stunted than girls from early infancy to 3 years of
52	561	age in rural Senegal. The Journal of Nutrition 2017; 147(5), 940-947.
53	562	35. Tumilowicz A, Habicht JP, Pelto G, Pelletier DL. Gender perceptions predict sex
54 55	563	differences in growth patterns of indigenous Guatemalan infants and young
56	564	children. The American Journal of Clinical Nutrition 2015; 102(5), 1249-1258.
57	565	36. Mukabutera A, Thomson DR, Hedt-Gauthier BL, Basinga P, Nyirazinyoye L, Murray
58	566	M. Risk factors associated with underweight status in children under five: an
59 60		
00		

1		
2		
4	567	analysis of the 2010 Rwanda Demographic Health Survey (RDHS). BMC Nutrition
5	568	2016; 2(1), 1-12.
6	569	37. Oyekale AS. Factors explaining acute malnutrition among under-five children in
7	570	Sub-Sahara Africa (SSA). Life Sci J 2012; 9, 2101-7.
8	571	38. Keats A. Women's schooling, fertility, and child health outcomes: Evidence from
9 10	572	Uganda's free primary education program. Journal of Development Economics
11	573	2018; 135, 142-159.
12	574	39. Sunguya BF, Poudel KC, Mlunde LB, Urassa DP, Yasuoka J, Jimba M. Poor nutrition
13	575	status and associated feeding practices among HIV-positive children in a food
14	576	secure region in Tanzania: a call for tailored nutrition training. PloS one 2014; 9(5),
15 16	577	e98308.
10	578	40. Jannotti LL, Dulience SJL, Green J, Joseph S, François J, Antenor ML, Nickerson
18	579	NM. Linear growth increased in young children in an urban slum of Haiti: a
19	580	randomized controlled trial of a lipid-based nutrient supplement. The American
20	581	Journal of Clinical Nutrition 2014: 99(1), 198-208
21	582	41 Lopriore C Muehlhoff E Food security and nutrition trends in West Africa-
22	582	Challenges and the way forward. In Proceedings of the and International Workshop
25 24	505	on Eard based Approaches for a Healthy Nutrition Quagadourou, Burkina 2002:
25		solution, ouagadougod, burkina. 2005,
26	505	23-20.
27	580	42. Salalili A, Nalilara AB, Brixlova Z. Sinaliloider Agriculture III East Africa: Trends,
28	587	Constraints and Opportunities; African Development Bank: Tunis, Tunisia, 2010.
29 30	588	
21		
21	F00	
32	589	Figures
32 33	589 590	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and
32 33 34	589 590 591	Figures Figure 1 : Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA
32 33 34 35 36	589 590 591	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA
32 33 34 35 36 37	589 590 591 592	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and
32 33 34 35 36 37 38	589 590 591 592 593	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39	589 590 591 592 593 594	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40	589 590 591 592 593 594	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41	589 590 591 592 593 594 595	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43	589 590 591 592 593 594 595	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44	589 590 591 592 593 594 595 596	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45	589 590 591 592 593 594 595 596 597	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	589 590 591 592 593 594 595 596 597	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 42	589 590 591 592 593 594 595 596 596 597 598	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	589 590 591 592 593 594 595 596 597 598 599	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	589 590 591 592 593 594 595 596 597 598 599	 Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	589 590 591 592 593 594 595 596 596 597 598 598 599 600	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	589 590 591 592 593 594 595 596 597 598 599 600	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53	589 590 591 592 593 594 595 596 597 598 599 600 601	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	589 590 591 592 593 594 595 596 597 598 599 600 601 601	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 30 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56	589 590 591 592 593 594 595 596 597 598 599 600 601 601	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57	589 590 591 592 593 594 595 596 597 598 599 600 601 601 602 603	Figures Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 51 52 54 55 56 57 58	589 590 591 592 593 594 595 596 597 598 599 600 601 601 602 603 604	Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA
31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58 92	589 590 591 592 593 594 595 596 597 598 599 600 601 601 602 603 604	Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA

Tables

Table 1: Distribution of the relevant variables and characteristics of under-five children in SSA

609				
	Variable	%	Variable	%
	Age of child		Urbanicity	
	0	30.87	Urban	33.21
	1	28.42	Rural	66.79
	2	20.22	Place of delivery	
	3	12.40	Home	31.33
	4	8.09	Health facility	67.51
	Sex of child	0.00	Other	1.16
	Male	50 47	Wealth status	0
	Female	20.47 29 53	Poor	42 41
	Birth order	49.55	Middle	20.28
		10 52	Rich	20.20
	1	19.52	Age of household	57.51
	2 to 4	48.09	head	
	5 and above	22 20	Young-adults	13.08
	Perceived size at hirth	52.55	Middle-aged adults	43.00
		22 71		43.70
	Large	35.71	Old-aged adults	15.10
	Average	49.74	Sex of household head	70 77
	Small	16.54	Male	/9.//
	Mother's characteristics		Female	20.23
	Maternal age		Access to electricity	
	15-19	7.13	No	69.20
	20-49	92.87	Yes	30.80
	Educational attainment			
	No education	41.82	Type of toilet facility	
	Primary	31.26	Improved	42.47
	Secondary	23.82	Unimproved	57.53
			Source of drinking	
	Higher	3.10	water	
	Working status		Improved	65.63
	No	35.49	Unimproved	34.37
	Yes	64.51	Type of cooking fuel	
	Antenatal visits during pregnancy		Clean	89.76
	No	10.76	Unclean	10.24
	Yes	89.24	Geographic region	
	Postnatal check within 2 months		Western	41.78
	Νο	58.49	Eastern	32.84
	Yes	41.51	Central	20.08
	Access to media (ty/radio/newspan	er)	South Africa	5.30
	Yes	35 22		5.50

BMJ Open

1 2				
3	611			
4 5	C12			an aftha
6	612	Table 2: Prevale	nce and associati	on of the
7 8 9		Variable	Co-existed Weighted % (95% CI)	Variabl
10 11				
12		Age of child (o<0.001)	Place o
13		<1	1.75 (1.6-1.9)	Home
14				Health
15		1	4.44 (4.2-4.7	facility
16				
17 18		2	3.01 (2.8-3.2)	Other
19		3	1.62 (1.4-1.8)	Wealth
20		4	1.33 (1.1-1.6)	Poor
21		Sex of child (p	<0.001)	Middle
22		Male	3.43 (3.3-3.6)	Rich
23			(/	Age of
24 25		Female	1.99 (1.9-2.1)	0.2760
26			, , , , , , , , , , , , , , , , , , ,	Young-
27		Birth order (p·	<0.001)	adults
28				Middle
29		1	2.25 (2.1-2.4)	aged ac
30				Old-age
37		2 to 4	2.56 (2.4-2.7)	adults
33		5 and above	3.23 (3.1-3.4)	Sex of h
34		Perceived size	e at birth	
35		(p<0.001)		Male
36		Large	1.78 (1.7-1.9)	Female
37		Average	2.6 (2.5-2.7)	Access
38 30		Small	4.98 (4.7-5.3)	No
40			. ,	
41				
42				
43			For peer	r review or
44			. o. pee	

Table 2: Prevalence and association of the co-existence of stunting, underweight and wasting with independent variables

Variable	Co-existed	Variable	Co-existed	Variable	Co-existed
	Weighted %		Weighted % (95%		
	(95% CI)		CI)		Weighted % (95% CI)
				Country	
Age of child (p	<0.001)	Place of deliv	very (p<0.001)	(p<0.001)	
<1	1.75 (1.6-1.9)	Home	4.36 (4.2-4.6)	Angola	2.46 (2.1-2.8)
		Health			
1	4.44 (4.2-4.7	facility	1.96 (1.9-2.1)	Benin	2.04 (1.8-2.2)
				Burkina	
2	3.01 (2.8-3.2)	Other	2.45 (1.7-3.3)	Faso	5.31 (4.9-5.8)
3	1.62 (1.4-1.8)	Wealth statu	s (p<0.001)	Burundi	3.76 (3.2-4.4)
4	1.33 (1.1-1.6)	Poor	3.46 (3.3-3.6)	Cameroon	1.27 (0.9-1.7)
Sex of child (p	<0.001)	Middle	2.74 (2.5-2.9)	Chad	5.86 (5.2-6.5)
Male	3.43 (3.3-3.6)	Rich	1.86 (1.7-2.0)	Comoros	1.98 (1.3-2.9)
		Age of house	hold head (p = 🛛 🗸		
Female	1.99 (1.9-2.1)	0.2760		Congo	0.98 (0.7-1.5)
		Young-		Cote	
Birth order (p<	:0.001)	adults	2.65 (2.5-2.8)	d'Ivoire	2.28 (1.7-3.0)
		Middle-			
1	2.25 (2.1-2.4)	aged adults	2.76 (2.6-2.9)	DR Congo	2.66 (2.2-3.2)
		Old-aged			
2 to 4	2.56 (2.4-2.7)	adults	2.8 (2.6-3.1)	Ethiopia	3.64 (3.2-4.1)
5 and above	3.23 (3.1-3.4)	Sex of house	hold head (p<0.001)	Gabon	0.63 (0.3-1.0)
Perceived size	at birth			The	
(p<0.001)		Male	2.82 (2.7-2.9)	Gambia	3.61 (2.4-5.2)
Large	1.78 (1.7-1.9)	Female	2.33 (2.1-2.5)	Ghana	1.37 (0.9-2.0)
Average	2.6 (2.5-2.7)	Access to ele	ctricity (p<0.001)	Guinea	2.26 (1.7-2.9)
Small	4.98 (4.7-5.3)	No	3.21 (3.1-3.3)	Kenya	0.94 (0.7-1.2)

Maternal age	(P = 0.080)	Yes	1.61 (1.5-1.7)	Lesotho	0.86 (0.7-1.0)
		Access to me	dia		
15-19	2.78 (2.5-3.1)	(tv/radio/nev	wspaper) (p<0.001)	Liberia	2.37 (1.7-3.1)
20-49	2.71 (2.6-2.8)	Yes	2.14 (2.0-2.2)	Malawi	1.03 (0.7-1.4)
Educational at	tainment				
(p<0.001)		No	3.78 (3.6-4.0)	Mali	3.62 (2.5-4.1)
No education	4.19 (4.0-4.4)	Type of toile	t facility (p<0.001)	Namibia	1.99 (1.2-3.1)
Primary	2.09 (2.0-2.2)	Improved	1.76 (1.6-1.9)	Nigeria	4.1 (3.7-4.6)
Secondary	1.22 (1.1-1.3)	Unimproved	3.43 (3.3-3.6)	Rwanda	6.17 (5.5-6.9)
		Source of dri	nking water		
Higher	0.66 (0.4-1.0)	(p<0.001)		Senegal	2.43 (1.8-3.2)
				Sierra	
Working statu	s (p<0.001)	Improved	2.54 (2.4-2.6)	Leone	1.94 (1.4-2.5)
				South	
No	3.13 (3.0-3.3)	Unimproved	3.06 (2.9-3.2)	Africa	0.18 (0.02-0.8)
Yes	2.48 (2.4-2.6)	Type of cook	ing fuel (p<0.001)	Tanzania	1.86 (2.1-3.5)
Antenatal visit	ts during				
pregnancy (p<	0.001)	Clean	0.98 (0.8.2-1.2)	Togo	2.72 (2.1-3.4)
No	5.41 (5.0-5.8)	Unclean	2.92 (2.8-3.0)	Uganda	1.2 (0.8-1.7)
Yes	2.39 (2.3-2.5)	Urbanicity (p	<0.001)	Zambia	1.22 (1.0-1.5)
Postnatal cheo	ck within 2				
months (p<0.0	001)	Urban	1.73 (1.6-1.9)	Zimbabwe	0.78 (0.5-1.1)
No	2.93 (2.8-3.1)	Rural	3.21 (3.1-3.3)	Geographic	region (p<0.0010)
Yes	2.42 (2.3-2.6)			Western	3.11 (3.0-2.3)
				Eastern	2.43 (2.3-2.6)
				Central	2.87 (2.7-3.1)
				South	
				Africa	0.88 (0.66-1.1)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 36 613

_

Page 21 of 28

 BMJ Open

Variable	Base outcom	e (Ref: Norma	al)			
	Single and tw	o dimensions	5	Co-existence of the	ree-dimensions	
	RRR	ç	95% CI	RRR	9	5% CI
Age of child (Ref:0)						
1	2.008***	1.93	2.089	3.714***	3.319	4.156
2	2.624***	2.514	2.739	2.827***	2.48	3.222
3	2.122***	2.018	2.231	1.464***	1.227	1.748
4	1.504***	1.417	1.597	1.051	0.84	1.315
Sex of child (Ref: Male						
Female	0.752***	0.731	0.775	0.468***	0.429	0.51
Birth order (Ref: 1)						
2	0.938**	0.896	0.981	1.002	0.875	1.146
5 and above	0.969	0.92	1.021	0.995	0.858	1.155
Perceived size at birth	(Ref: Large)					
Average	1.32***	1.276	1.365	1.756***	1.574	1.958
Small	1.931***	1.846	2.02	3.818***	3.383	4.308
Maternal age (Ref: 15-	-19)					
20-49	0.834***	0.78	0.891	0.881	0.735	1.056
Educational attainmer	nt (Ref: Higher)					
No education	2.624***	2.305	2.987	3.291***	1.961	5.522
Primary	2.189***	1.927	2.487	2.381***	1.417	4.001
Secondary	1.751***	1.545	1.985	1.617	0.971	2.691
Working status (Ref: Y	'es)					
No	1.018	0.984	1.053	1.195***	1.086	1.314
Antenatal visits during	g pregnancy (Ref: `	Yes)				<0.00
No	1.139***	1.079	1.201	1.364***	1.208	1.541
Postnatal check withir	n 2 months (Ref: Y	es)				
No	0.98	0.946	1.015	0.977	0.879	1.086
Place of delivery (Ref:	Health facility)					

Home	1.183***	1.137	1.23	1.372***	1.232	1.529
Other	1.046	0.912	1.201	1.047	0.71	1.543
Wealth status (Ref: Ri	ch)					
Poor	1.297***	1.235	1.361	1.408***	1.235	1.605
Middle	1.195***	1.138	1.254	1.214**	1.054	1.397
Age of household hea	d (Ref: Young-adu	lt)				
Middle-aged adults	0.954**	0.921	0.987	1.01	0.913	1.118
Old-aged adults	0.974	0.93	1.021	1.065	0.936	1.213
Sex of household head	d (Ref: Male)					
Female	0.977	0.94	1.015	1.035	0.925	1.159
Access to media (tv/ra	adio/newspaper) (Ref: Yes)				
No	1.079***	1.042	1.117	1.255***	1.144	1.377
Access to electricity (F	Ref: Yes)					
No	1.136***	1.083	1.191	1.062	0.922	1.225
Type of toilet facility (Ref: Improved)					
Unimproved	1.027	0.991	1.065	1.158**	1.032	1.300
Source of drinking wa	ter (Ref: Improved	I)				
Unimproved	0.959**	0.928	0.99	0.968	0.885	1.058
Type of cooking fuel (Ref: Clean)					
Unclean	1.177***	1.089	1.271	1.316	0.97	1.787
Urbanicity (Ref: Urbar	ו)					
Rural	1.05**	1.006	1.095	0.943	0.832	1.069

BMJ Open

Figure 1: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children from the 31 study countries in SSA

Figure 2: Percentage distribution of co-existence of stunting, underweight, and wasting (SUW) in children by regions of SSA

Supplementary Tables

Appendix 1: Distribution of sample by country

Country	Survey year	n	%
Angola	2015-16	7,318	5.74
Benin	2017-18	15,473	12.14
Burkina Faso	2010	8,908	6.99
Burundi	2016-17	4,172	3.27
Cameroon	2018	2,911	2.28
Chad	2014-2015	5,999	4.71
Comoros	2012	1,320	1.03
Congo	2013	2,609	2.05
Cote d'Ivoire	2011-12	2,174	1.71
Congo DR	2013-14	4,806	3.77
Ethiopia	2016	6,573	5.16
Gabon	2012	1,960	1.54
Gambia	2013	743	0.58
Ghana	2014	1,896	1.49
Guinea	2018	2,237	1.75
Kenya	2014	6,066	4.76
Lesotho	2014	1,012	0.79
Liberia	2013	1,946	1.53
Malawi	2015-16	4,027	3.16
Mali	2018	5,653	4.43
Namibia	2013	905	0.71
Nigeria	2018	7,379	5.79
Rwanda	2014-15	4,408	3.46
Senegal	2010-11	1,944	1.52
Sierra Leone	2019	2,689	2.11
South Africa	2016	855	0.67
Tanzania	2015-16	6,061	4.75
Тодо	2013-14	2,220	1.74
Uganda	2016	2,891	2.27
Zambia	2018	6,347	4.98
Zimbabwe	2015	3,987	3.13

Appendix 2: Multicollinearity diagnosis				
	SQRT			
Variable	VIF	VIF	Tolerance	Squared
Age of child	1.05	1.02	0.9547	0.0453
Sex of child	1.01	1	0.9948	0.0052
Birth order	1.36	1.17	0.7366	0.2634
Perceived size at birth	1.02	1.01	0.9798	0.0202
Age at child birth	1.22	1.1	0.8224	0.1776
Educational attainment	1.51	1.23	0.664	0.336
Working status	1.07	1.03	0.9357	0.0643
Antenatal visits during pregnancy	1.25	1.12	0.7976	0.2024
Postnatal check within 2 months	1.1	1.05	0.9098	0.0902
Place of delivery	1.31	1.15	0.7617	0.2383
Wealth status	1.8	1.34	0.5554	0.4446
Age of household head	1.05	1.02	0.9546	0.0454
Sex of household head	1.03	1.02	0.9702	0.0298
Access to media				
(tv/radio/newspaper)	1.26	1.12	0.7913	0.2087
Access to electricity	1.71	1.31	0.5837	0.4163
Type of toilet facility	1.35	1.16	0.7404	0.2596
Source of drinking water	1.09	1.04	0.9191	0.0809
Type of cooking fuel	1.31	1.14	0.7653	0.2347
Urbanicity	1.58	1.26	0.6319	0.3681
Country	1.17	1.08	0.8579	0.1421
Mean VIF	1.26			
Appendix 3: Country-level risk of co-existence of stunting, wasting, and underweight

	Base outco	me (Ref: N	ormal)			
	Single and	wo dimen	sions	Co-existence	of three-d	imensions
	RRR	9	5% CI	RRR	9	5% CI
Country (Ref: Angola)						
Benin	0.651***	0.598	0.708	0.625***	0.489	0.798
Burkina Faso	0.952	0.866	1.046	1.946***	1.526	2.481
Burundi	1.580***	1.424	1.753	2.049***	1.545	2.718
Cameroon	0.669***	0.593	0.756	0.398***	0.261	0.609
Chad	0.910	0.823	1.007	1.505**	1.184	1.913
Comoros	0.883	0.745	1.046	0.656	0.378	1.138
Congo	0.674***	0.580	0.783	0.472**	0.279	0.800
Cote d'Ivoire	0.734***	0.638	0.844	0.739	0.492	1.109
DR Congo	1.229***	1.100	1.373	1.351	0.988	1.847
Ethiopia	0.810***	0.726	0.904	0.813	0.604	1.095
Gabon	0.495***	0.415	0.59	0.319**	0.128	0.796
Gambia	0.732**	0.603	0.889	1.001	0.618	1.620
Ghana	0.453***	0.386	0.531	0.545**	0.346	0.857
Guinea	0.798***	0.705	0.904	0.726	0.509	1.036
Kenva	0.553***	0.498	0.615	0.321***	0.230	0.449
Lesotho	0.777**	0.654	0.924	0.369***	0.177	0.772
Liberia	0.658***	0.565	0.768	0.776	0.484	1.243
Malawi	0.794***	0.708	0.889	0.447***	0.291	0.687
Mali	0.600***	0.541	0.664	1.006	0.769	1.316
Namibia	0.680***	0.568	0.815	0.849	0.505	1.426
Nigeria	0.953	0.868	1 046	1 527**	1 183	1 972
Bwanda	1 059	0.954	1 176	1 991***	1 541	2 571
Senegal	0.660***	0.551	0.761	0.643*	0.434	0 952
Sierra Leone	0.600	0.572	0.701	0.656*	0.434	0.952
South Africa	0.788*	0.507	0.979	0.108***	0.033	0.303
Tanzania	0.700	0.004	0.575	0.500	0.000	0.352
	0.772	0.099	0.633	0.838	0.512	1 100
Ilganda	0.557	0.450	0.055	0.030	0.350	1.150
Oganua Zambia	0.027	0.350	0.700	0.421	0.270	0.057
Zallibia Zimbabwa	0.904	0.010	0.990	0.213	0.500	0.750
ZIIIDabwe	0.093	0.020	0.775	0.544	0.214	0.354

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5	
Objectives	3	State specific objectives, including any prespecified hypotheses	5	
Methods				
Study design	4	Present key elements of study design early in the paper	5	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5	
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6	
Bias	9	Describe any efforts to address potential sources of bias	6	
Study size	10	Explain how the study size was arrived at	5	

Continued on next page

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	6
methods		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	7
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		Case-control study-If applicable, explain how matching of cases and controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling	
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined	8
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	8
		exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	N/A
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	6-10
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous variables were categorized	6-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	N/A
		period	

Other analyses	1/	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14/11
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	11
		both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	11
		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other informati	on	<u> </u>	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	12
		original study on which the present article is based	
hecklist is best us hecklist is best us	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at strobe-statement.org.
hecklist is best us ttp://www.annals	.org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at strobe-statement.org.
hecklist is best us ttp://www.annals	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at r.strobe-statement.org.
necklist is best us	.org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at strobe-statement.org.
necklist is best us	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at strobe-statement.org.
necklist is best us	aed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	ne.org/, Annals of Internal Medicine at r.strobe-statement.org.
necklist is best us tp://www.annals	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	aniples of transparent reporting. The STROBE ne.org/, Annals of Internal Medicine at .strobe-statement.org.
necklist is best us hecklist is best us hecklist is best us	aed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicin and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	anples of transparent reporting. The STROBE ne.org/, Annals of Internal Medicine at e.strobe-statement.org.
necklist is best us hecklist is best us hecklist is best us	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedici and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	aniples of transparent reporting. The STROBE ne.org/, Annals of Internal Medicine at .strobe-statement.org.
necklist is best us hecklist is best us hecklist is best us	aed in .org/,	conjunction aftere discusses each eleckrist frem and gives includeological background and pathished ex conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedici and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	anples of transparent reporting. The STROBE ne.org/, Annals of Internal Medicine at .strobe-statement.org.
hecklist is best us ttp://www.annals	ed in .org/,	conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicii and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www	Incorg/, Annals of Internal Medicine at strobe-statement.org.