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SUMMARY
Inter-areal coherence between field potentials is a widespread phenomenon in cortex. Coherence has been
hypothesized to reflect phase-synchronization between oscillators and flexibly gate communication accord-
ing to behavioral and cognitive demands. We reveal an alternative mechanism where coherence is not the
cause but the consequence of communication and naturally emerges because spiking activity in a sending
area causes post-synaptic potentials both in the same and in other areas. Consequently, coherence depends
in a lawful manner on power and phase-locking in the sender and connectivity. Changes in oscillatory power
explained prominent changes in fronto-parietal and LGN-V1 coherence across behavioral conditions. Opto-
genetic experiments and excitatory-inhibitory network simulations identified afferent synaptic inputs rather
than spiking entrainment as the principal determinant of coherence. These findings suggest that unique
spectral profiles of different brain areas automatically give rise to large-scale coherence patterns that follow
anatomical connectivity and continuously reconfigure as a function of behavior and cognition.
INTRODUCTION

Behavior and cognition depend on coordinated interactions be-

tween brain areas (Buzsáki, 2006; Miller andWilson, 2008; Engel

et al., 2001; Nicolelis et al., 1995). Phase synchronization has

been hypothesized to be a mechanism for coordinating these in-

teractions and gating information transmission according to

cognitive demands (Varela et al., 2001; Bressler et al., 1993;

Bressler and Kelso, 2001; Roelfsema et al., 1997; Chrobak and

Buzsáki, 1998). To test this hypothesis, studies have measured

functional connectivity between brain areas using techniques

like coherence and Granger causality. To circumvent the nee-

dle-in-the-haystack problem posed by examining spike-spike

correlations, these analyses are most frequently based on

meso- or macroscale field potentials (e.g., LFP, EEG), which

are among the most widely used signals to relate brain activity

to behavior (Buzsáki, 2006; Pesaran et al., 2018). Inter-areal

coherence between field potentials correlates with many cogni-

tive and behavioral processes (Grothe et al., 2012; Salazar et al.,

2012; Fries, 2015; Colgin et al., 2009; Buschman and Miller,

2007; Bressler et al., 1993; Roelfsema et al., 1997). Evidence

suggests that distinct oscillation bands play specific roles in in-

ter-areal communication, e.g., gamma (30–80 Hz) and alpha/
4050 Neuron 109, 4050–4067, December 15, 2021 ª 2021 The Autho
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beta-frequencies (10–30 Hz) in feedforward and feedback

communication, respectively (Buschman and Miller, 2007; Bas-

tos et al., 2015; van Kerkoerle et al., 2014; Bressler et al.,

2006). Yet, it is unclear to what extent coherence itself is of

causal relevance for communication as, e.g., proposed by the

Communication-through-Coherence (CTC) hypothesis (Fries,

2005; Chrobak and Buzsáki, 1998; Varela et al., 2001; Bressler

and Kelso, 2001), and whether it is indeed a measure of effective

communication and information transmission.

The functional relevance of coherence naturally depends on

the mechanisms through which it arises, which remain not fully

understood. In some cases, coherence may reflect bidirectional

coupling between oscillators or synchronization by a common

pacemaker, e.g., the thalamus, as in the case of sleep spindles

(Lowet et al., 2017; Palmigiano et al., 2017; Timofeev and Ster-

iade, 1996; Karbowski and Kopell, 2000). Phase synchronization

may, in this case, align windows of excitability between areas

and boost information transmission (Palmigiano et al., 2017).

Yet, inter-areal LFP coherence might also result from a simpler,

generic mechanism: cortical neurons form synaptic contacts

both with other cells in their own area and through long-range

connections with cells in target areas. Consequently, spiking ac-

tivity in a sending area will cause synaptic potentials in the same
r(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Long-range beta coherence between macaque F5 and 7B in the absence of beta spike phase locking within F5

(A) Illustration of floating microelectrode array (FMA) recordings (total 128 channels).

(B) Power spectra during memory period.

(C and D) Spike-field phase locking within 7B and F5 (C) and between F5 and 7B (D). Locking was quantified with the PPC, which is unbiased and proportional to

the squared spike-field coherence (Vinck et al., 2012). Phase-locking values were averaged over all electrodes in the corresponding grid. Spikes were pooled

across all neurons in a session. Average number of neurons per session was 22.3 (7B) and 17.9 (F5). Standard error was computed across 4 conditions 3 6

recording sessions.

(E and G) Coherence and WPLI (weighted phase lag index) between 7B and F5. See Figure S1 for dependence of coherence on 7B beta power.

(F and H) Coherence and WPLI between medial and lateral 7B grids.

See also Figure S1.
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area and highly correlated synaptic potentials in another

receiving area at a delay. These synaptic activities will generate

transmembrane currents that give rise to LFP signals. In the

sender area, these reflect local activity, and in the receiver

area, the consequences of the sender’s activity. Consequently,

sender and receiver LFPs may naturally exhibit coherence and

Granger causality (Pesaran et al., 2018; Buzsáki and Schom-

burg, 2015). Importantly, this should be the case even if afferent

activity remains subthreshold in the target region.

Here, we describe a generic mechanism and mathematical

model explaining the emergence of coherence from the dy-

namics of neuronal interactions in a sending area and the

strength of the anatomical connections to a receiver. To test pre-

dictions of this model and dissociate the contributions of spiking

entrainment and afferent synaptic inputs to coherence, we

analyze simultaneous recordings of spikes and LFPs from multi-

ple brain areas, perform optogenetic perturbation experiments,

and simulate excitatory/inhibitory (E/I) networks.

RESULTS

Beta coherence between areas F5 and 7B
We first analyzed data from two macaque brain areas showing

clear LFP beta-coherence during a visually cued delayed

grasping task. During motor holding and working memory pe-

riods, parietal cortex contains a prominent source of beta oscil-

lations (Scherberger et al., 2005; Hagan et al., 2012; Murthy and

Fetz, 1996; Donoghue et al., 1998), with strong Granger-causal-

ity influences toward visual and frontal areas (Brovelli et al., 2004;

Bastos et al., 2015; Vezoli et al., 2020). These long-range interac-
tions in the beta band are thought to play a role in working mem-

ory, attention, and predictive processing (Salazar et al., 2012;

Buschman and Miller, 2007; Bastos et al., 2015; Roelfsema

et al., 1997; Brovelli et al., 2004).

We recorded spikes and LFPs from areas 7B (parietal) and F5

(premotor) (Figure 1A), which are involved in tasks such as reach-

ing and grasping objects (Dann et al., 2016). F5 is one of themain

projection targets of area 7B. The 7B-to-F5 projection is strong

and long range, as area F5 lies several centimeters away from

area 7B (Johnson et al., 1996; Luppino et al., 1999; Markov

et al., 2014).

During the memory period, 7B LFP power spectra showed a

clear beta peak around 20 Hz (Figures 1B and S1). LFP beta ac-

tivity within 7B was coherent between the medial and lateral

grids (Figures 1F and 1H). To analyze locking between spikes

and LFPs, we computed the unbiased PPC (pairwise phase con-

sistency), which is proportional to the squared spike-field coher-

ence (Vinck et al., 2012). Consistent with the LFP beta peak, 7B

cells showed prominent spike phase locking with 7B LFPs in the

beta band (Figures 1C and S1).

We then examined the coherence between areas 7B and F5.

7B LFPs showed relatively strong and narrow-band beta coher-

ence with F5 LFPs (Figures 1E and S1). This suggests, prima fa-

cie, oscillatory coupling between 7B and F5. To rule out volume

conduction, we computed the WPLI (weighted phase lag index),

a synchronization measure that is not spuriously increased by

volume conduction (see STAR Methods; Vinck et al., 2011).

The WPLI spectrum showed beta synchronization between 7B

and F5 LFPs, suggesting that LFP-LFP coherence was not due

to volume conduction (Figures 1G and S1), consistent with the
Neuron 109, 4050–4067, December 15, 2021 4051
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Figure 2. Inter-areal coherence is predicted by connectivity and power

(A) In the Synaptic-Source-Mixing model, the receiver LFP is modeled as a linear superposition of intrinsic activity and afferent inputs from the sender, weighted

by w. Shown are power, coherence, Granger-causality spectra, and the transfer function.

(B and C) Coherence as a function of the SOS (sender oscillation strength) and coupling weight.

(C) Data: dashes. Model: solid.

(D) Effect of coupling weight and SOS on coherence.

(E) SSM model fit of 7B-F5 coherence, with w = 0.069.
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large physical distance between 7B and F5. Because of the beta

coherence between 7B and F5 LFPs, we expected to also find

beta oscillations in area F5, and inter-areal beta synchronization

between spikes and LFPs. Surprisingly, we did not detect signif-

icant beta-band phase locking of F5 spikes with either F5 or 7B

LFPs (Figures 1C, 1D, and S1). Furthermore, LFP-power in F5

was dominated by the 1=fn component and showed only a small

peak in the beta band (Figures 1B and S1).

Thus, there was clear beta oscillatory activity in area 7B and

long-range beta coherence between 7B and F5 LFPs, but no

beta synchronization within F5. How can this discrepancy be

explained?
Coherence predicted from connectivity and power
To explain these observations, we developed the Synaptic-

Source-Mixing (SSM) model of inter-areal coherence between

field potentials (see STAR Methods). In this model, coherence it-

self has no functional consequence and arises as a product of

communication, with a lawful dependence on connectivity and

power. The model neither assumes coupling between oscilla-

tors, nor does it require that spiking in a receiver is phase-locked

to the sender’s activity. We first explain the basic properties of

the spectral coherence measure. (Magnitude) squared coher-

ence is the frequency-domain equivalent of explained variance

in linear regression. It can be understood as the fraction of vari-
4052 Neuron 109, 4050–4067, December 15, 2021
ance in the power spectral density (PSD) that one signal explains

about another signal at a frequency f. Coherence is a strictly

linear measure and only captures relationships between signals

at a given frequency. Frequency-resolved Granger causality

(Geweke, 1982) can also be understood as explained variance

of the PSD but, additionally, identifies directional influences by

regressing out the extent to which one signal predicts itself.

However, in the unidirectional case, Granger causality is approx-

imately equal to squared coherence (see STAR Methods). The

basic intuition of the SSM model is that the signal that is pro-

jected from a sender to a receiver will, by default, be correlated

with the activity in the sender. Thus, the receiver’s LFP signal will

result from the mixture of both local and afferent synaptic inputs,

and part of the variance in this LFP signal can be explained by the

sender activity. Starting from its basic definition, we will show

that coherence depends on three main factors:

(1) Inter-areal connectivity (w; Figure 2A), which is influenced

by the number of active synapses and their conduc-

tances. Specifically, the larger the number of active

afferent synaptic inputs, the larger the contribution of

the sender to the receiver LFP, and the higher the ex-

plained variance.

(2) The shape of the PSDs in the sender and the receiver. In

particular, consider a case where the receiver’s PSD

has a 1=fn structure, but where at some frequency the
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sender exhibits oscillatory synchronization. Because the

sender contains high power at that frequency, it makes

a relatively strong contribution to the receiver signal.

Consequently, the sender will also explain more variance

in the receiver signal at that frequency (i.e., high coher-

ence). Thus, even when connectivity is weak, a sender

might explain a large fraction of variance at frequencies

where it contains high power. This is not prevented by

the fact that the coherence normalizes for signal power.

(3) The coherence between (1) the LFP signal in the sender

and (2) the signal that is projected from the sender to

the receiver. We call this the source-projection coher-

ence. The projections from a sending to a receiving area

may originate from a relatively small subset of projection

neurons (Markov et al., 2011, 2014). Hence, the projected

signal may not be a fully coherent copy of the sender LFP

(i.e., source-projection coherence lower than 1). We will

show that the coherence between a sender and receiver

scales with the source-projection coherence, and that

the latter is determined by two factors: (1) The number

of projecting neurons Np. If more neurons in the sender

project to the receiver, then the projected signal will be

more coherent with the sender. In the limit where Np

equals the total number of neurons in the sender, then

the signal will be fully coherent. (2) The coherence be-

tween the spiking of individual projecting neurons and

the sender LFP. If individual projection neurons are highly

coherent with the sender LFP, then the summed activity of

a few projection neurons may already be highly coherent

with the LFP (Vinck et al., 2011; Lepage et al., 2011).

Consequently, inter-areal coherence can be suppressed

at frequencies where a sender does not exhibit synchro-

nized activity.

These dependencies are captured by twomain analytical results.

First, the squared coherence between a sender and receiver

equals

C2ðfÞzw2ðaðfÞ + 1ÞC2
source;projðfÞ : (1)

(see STAR Methods: Theoretical analysis of SSM model without

source-projection coherence and Theoretical analysis of SSM

model with source-projection coherence for exact expression).

Here, aðfÞ is the intrinsic power in the sender signal relative

to the intrinsic power in the receiver signal. In case of

unidirectional communication where only a sender exhibits os-

cillations, aðfÞ is the SOS (sender oscillation strength), defined

as the oscillation power relative to the background 1= fn fluctu-

ations in the signal. Second, the source-projection coherence

equals

C2
source;projectionzNp f

2ðfÞ: (2)

(see STAR Methods: Theoretical analysis of source-projection

coherence based on phase locking of projection neurons for

exact expression). Here, f2 is the squared spike-field coherence

of the projection neurons, and Np is the number of projection

neurons.
To further investigate the dependence of coherence on power,

connectivity, and source-projection coherence, we performed

numerical simulations. In the first simulations, we varied the fac-

tor aðfÞ and the connection weight w and set the source-projec-

tion coherence to 1 for all frequencies. The sender signal was

modeled as the sum of an oscillatory process and a broad-

band process, e.g., 1=fn pink noise. We generated beta oscilla-

tions in the sender using dampened harmonic oscillators (AR(2);

see STAR Methods), which are equivalent to a linear E/I circuit

driven by stochastic noise (Spyropoulos et al., 2020). Yet, the

precise model by which oscillations are generated does not mat-

ter for this simulation because only the PSD and connectivity are

relevant. In contrast to the sender, the receiver’s intrinsic signal

had no oscillatory component but only a 1=fn component.

Despite the absence of a beta peak in the receiver’s PSD, we

found clear beta peaks in the coherence and Granger-causality

spectra (Figure 2A). These peaks occurred although the transfer

function from sender to receiver was flat, i.e., inputs at all fre-

quencies impacted the receiver in the same manner. We further

observed that the coherence was precisely predicted by our

analytical expressions (Figures 2B and 2C). The SSM model

shows that changes in coherence can either come from changes

in connectivity or power in the sender area (Figure 2D).

We used the SSM model with a source-projection coherence

of 1 to fit the coherence between 7B and F5 LFPs. Area 7B beta

oscillations were modeled as dampened harmonic oscillators

and the background processes as 1=fn spectra (see STAR

Methods). The model produced an LFP coherence spectrum

with a clear beta peak. However, the model predicted stronger

coherence outside the beta band than observed in the 7B-F5

data (Figure 2E). Below, we will show that this can be accounted

for by the source-projection coherence.

Next, we performed simulations in which the source-projec-

tion coherence was included, which had three important conse-

quences: (1) Coherence at frequencies outside the oscillation

bands, where the source-projection coherence is weak, was

strongly suppressed (Figures 3A and 3B). (2) Changes in coher-

ence with inter-areal connectivity occurred in a very narrow fre-

quency range at the oscillation frequency of the sender (Fig-

ure 3D). (3) A peak in the coherence spectrum emerged even

when the sender and receiver had identical oscillation strengths

(Figure 3E). Without the inclusion of the source-projection coher-

ence, this would not be predicted if aðfÞ= 1 for all f. Thus, the

observation of coherence between two brain areas that both

show oscillations does not require oscillatory coupling. Finally,

simulations showed a close match with the analytical expression

for the source-projection coherence (Figure 3C; Equation 2; see

STARMethods: Theoretical analysis of source-projection coher-

ence based on phase locking of projection neurons).

Predicting bidirectional influences
Next, we used the SSM model to study bidirectional influences.

Among visuo-parietal areas, feedforward and feedback

Granger-causal influences are, respectively, strong at gamma

and beta frequencies (Bressler et al., 2006; Bastos et al., 2015;

van Kerkoerle et al., 2014; Richter et al., 2018). Importantly, early

visual areas and parietal cortex exhibit prominent gamma- and

beta-oscillations, respectively (Bastos et al., 2015; Brovelli
Neuron 109, 4050–4067, December 15, 2021 4053
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Figure 3. The source-projection coherence and its effect on inter-areal coherence

(A) Illustration of different factors contributing to coherence. Inset plots show a simulation where the subset of area-1-to-2 projecting neurons is most coherent

with the area-1 LFP at the oscillation frequency.

(B) LFP signals were generated as an oscillatory AR(2) process and modulated the activity of neurons according to inhomogeneous Poisson processes. 1,500/

5,000 neurons were projection neurons. The activity of the projecting neurons (‘‘projection’’) and the entire population (‘‘source’’) were summed up. The resulting

signals were used to calculate the source-projection coherence.

(C) Dependence of source-projection coherence on the number (Np) and phase locking (PPC) of projection neurons. Dashed: analytical fits. Solid: simulations, in

which an AR(2) signal modulated spiking probability in 10,000 neurons according to inhomogeneous Poisson processes.

(D) Increases in coupling weight and SOS cause a narrow-band increase in inter-areal coherence.

(E) Coherence between two areas that have identical power spectra.

(F and G) Power and Granger-causality spectra for two bidirectionally coupled areas oscillating at gamma and beta frequencies.

See also Figures S2 and S3.
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et al., 2004; Spyropoulos et al., 2020; Vezoli et al., 2021). Thus,

the SSMmodel predicts that frequency-specific Granger causal-

ity is a byproduct of the presence of distinct oscillation bands in

different cortical areas and not of frequency-specific transfer

functions.

Indeed, the SSM model accurately reproduced previously re-

ported feedforward and feedback Granger-causality spectra

(Figures 3F and 3G). Similar findings were obtained in bidirec-

tionally coupled networks of E/I neurons (Figure S2). To further
4054 Neuron 109, 4050–4067, December 15, 2021
test SSM model predictions, we reanalyzed the Bastos et al.

(2015) data. We hypothesized that the strong gamma Granger

causality from V1 to higher areas is due to the presence of a

strong V1 gamma source. This predicts that gamma Granger

values from V1 to other areas should increase by the same factor

if V1 gamma power increases. It is known that V1 gamma power

increases after the presentation of an attentional cue (post-cue

period) (Richter et al., 2019; Bosman et al., 2012). Consistent

with SSM model predictions, Granger-causal influences from
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V1 to higher areas increased by approximately the same factor

across all areas in the post-cue period (1.76; Pearson’s R =

0.99; Figure S3).
Explaining task-related differences in 7B-F5 beta
coherence
In Figure 2E, we showed that the coherence between 7B and F5

LFPs was not fully reproduced by the basic SSM model. Hence,

we wondered if 7B-F5 coherence could be reproduced by

including the source-projection coherence. Furthermore, we

wished to determine if the SSM model explains task-related

changes in long-range beta coherence, which is thought to

play a role in cognitive functions like working memory and atten-

tion (Salazar et al., 2012; Buschman and Miller, 2007; Bastos

et al., 2015). During our recordings, monkeys were cued to grasp

a handle with one of two different grip types. Motor maintenance

(hand in resting position) started during the fixation period. Sub-

sequently, the monkey was visually instructed before the work-

ing memory period and had to execute a grip type in the move-

ment period (for power and phase locking in the movement

period, see Figure S1).

In both monkeys, beta coherence was most prominent during

the fixation period, decreased during the memory period, and

was strongly reduced during the movement period. This was

accompanied by a corresponding decrease in beta power that

was clearly visible in 7B but not in F5 LFPs (Figures 4A–4D). To

infer the synaptic connectivity parameter w for both monkeys

and all three task periods, we fitted the SSM model including

the source-projection coherence (see STAR Methods). This

analysis revealed three main findings:

(1) Based on beta synchronization within area 7B, the model

was able to explain the observed beta coherence be-

tween 7B and F5 (Figures 4C and 4D), including the

absence of coherence at high frequencies. This held

true for the different task periods and both monkeys.

(2) In both monkeys, we found comparable connectivity

weights around 0.05–0.07. Thus, despite large differ-

ences in coherence, the fitted connectivity weights were

comparable between monkeys.

(3) Connectivity weights did not differ significantly between

task periods (Figures 4G and 4H).

We further modeled the inter-areal coherence based on spike-

LFP PPC within area 7B, by using the analytical expression for

the source-projection coherence based on spike-LFP PPC and

the number of projecting neurons. This model accurately repro-

duced 7B-F5 LFP coherence (Figures 4E and 4F) and required

fewer projection neurons than reported by Markov et al.

(2011), 2014.

These findings suggest that: (1) 7B-F5 LFP beta coherence re-

sults from the synchronization of 7B spiking in the beta band, not

because F5 neurons selectively respond to beta-rhythmic in-

puts; (2) differences in beta synchronization within 7B explain

the state-dependent changes in LFP beta coherence between

7B and F5; and (3) changes in inter-areal beta coherence do

not require changes in effective synaptic gain and can be pre-

dicted as a physiological consequence of 7B-to-F5 projections.
Laminar organization of LGN-V1 gamma coherence
Next, we analyzed LGN-V1 gamma coherence in mice. During

locomotion and periods of high arousal, area V1 contains a nar-

row-band LFP peak in the 45–65 Hz gamma frequency range

(Niell and Stryker, 2010; Storchi et al., 2017; Saleem et al.,

2017). Evidence suggests that this gamma rhythm propagates

from the LGN to V1 in a feedforward manner (Saleem et al.,

2017). Furthermore, gamma-rhythmic excitatory postsynaptic

currents in V1 layer-4 (L4) neurons are only weakly perturbed

by silencing the activity of V1 excitatory neurons by activating

GABAergic interneurons (Saleem et al., 2017). Here, we ask (1)

whether the projection from LGN to V1, carrying gamma-rhyth-

mic afferent synaptic inputs, can explain LGN-V1 gamma coher-

ence; (2) whether state-dependent changes in LGN-V1 coher-

ence are determined by LGN phase locking; and (3) whether

LGN-V1 gamma coherence requires V1 spike phase locking.

We analyzed Neuropixels recordings from LGN and V1 in

awake, head-fixed mice placed on a radial treadmill (Allen Brain

Observatory Data). Note that the LGN does not generate a

meaningful LFP due to its geometric arrangement of principal

neurons. We therefore generated a ‘‘surrogate LFP’’ (sLFP) for

the LGN by superimposing all the LGN spikes together, similar

to Okun et al. (2015) (see STAR Methods: Recordings from

LGN and V1 in mice). V1 layers were identified based on depth

and the laminar current source density (CSD) to visual flashes

(Figure 5A).

The LGN sLFPs showed narrow-band gamma coherence with

the LFP in L4 of V1, consistent with the anatomical arrangement

of LGNafferents (Figure 5B-C). This coherence tapered off slowly

outside L4, most likely due to field spread of extracellular return

currents. To identify the currents contributing to LGN-V1 gamma

coherence,weanalyzed the laminarCSDprofile of V1activity.We

detectedgammapeaks in LGNsignals andcomputedanaverage

V1CSDaround thesepeaks (vanKerkoerle et al., 2014). Thepeak

in LGNfiringwas followedbyaL4current-sinkandaL2/3current-

source in V1, with a clear alternating sink-source pattern in L4

(Figure 5D). (Note that a L2/3 current source is consistent with

the observation that L5 principal cells have dendrites extending

into L2/3 [Scala et al., 2019].)

Individual LGN neurons showed strong gamma phase locking

to LGN population activity (Figure 5E). Individual V1 neurons only

showed weak gamma phase locking to V1 population activity

(Figure 5E) and were, on average, weakly phase locked to LGN

population activity as compared to LGN spikes. V1 gamma

phase locking was mostly restricted to L4 (9.8% of neurons sig-

nificant), weaker in L5/6 (only 3.8% significant), and not signifi-

cantly different from zero in L2/3 (Figures 5F and 5G).

These findings suggest that afferent synaptic inputs from LGN

generate extracellular currents that give rise to LFP coherence

between LGN and V1 and that, additionally, there is weak V1

phase locking to LGN afferents that is mostly restricted to L4.

Modeling state-dependent changes in LGN-V1
coherence
How does LGN-V1 coherence depend on different behavioral

states?We first analyzed changes in LGN-V1 gamma coherence

with pupil diameter, a measure of arousal (McGinley et al., 2015;

Figure 6A). LGN-V1 coherence showed a strong increase with
Neuron 109, 4050–4067, December 15, 2021 4055
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Figure 4. 7B-F5 coherence is predicted by 7B power

(A and B) Power spectra during different behavioral periods.

(C and D) 7B-F5 LFP coherence and the SSM model fits. Connectivity fits are shown in (G) and (H).

(E and F) SSM model predictions including estimates for the source-projection coherence based on the spike-LFP PPC within area 7B and using the coupling

weights w of the model in (C) and (D).

(G and H) Coupling weights w for the different model fits in (C) and (D). Weights did not significantly differ between periods.

Significance of the coupling weights in (G) and (H) was estimated using Wilcoxon signed-rank test. Note that in (E) and (F), the model underestimates the low-

frequency coherence in the movement period. The reason is that we modeled 7B-F5 coherence based only on the spike-field locking in 7B and ignored the

locking in F5, which shows strong low-frequency phase locking and power. All error bars denote SEMs.
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arousal (Figure 6B). This increase could suggest enhanced

LGN-V1 communication or, alternatively, that during high

arousal, the energy of LGN spiking is focused in the gamma fre-

quency band.

To investigate this, we quantified changes in local LGN

gamma phase locking, which showed a strong increase with

arousal (Figure 6C). The SSM model predicts that the increase

in local LGN phase locking (sender) should lead to a proportional

increase in LGN-V1 coherence (sender and receiver). In partic-

ular, it predicts that when the source-projection coherence is

1, the change in squared spike-field coherence within LGN
4056 Neuron 109, 4050–4067, December 15, 2021
should lead to a proportional change in squared coherence be-

tween LGN and V1. Indeed, the increase in LGN-V1 coherence

was proportional to the increase in LGN-LGN phase locking

(slope 1.30; Figure 6D). Based on the local LGN-LGNphase lock-

ing and the LGN-V1 coherence, we then used the SSMmodel to

infer inter-areal connectivity weights, which did not significantly

differ between low and high arousal (Figure 6E). These findings

indicate that the increase in LGN-V1 coherence with arousal

was determined by an increase in LGN-LGN phase synchroniza-

tion and occurred in the absence of a change in effective synap-

tic connectivity between LGN and V1.
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Figure 5. Layer-specific LGN-V1 gamma coherence

(A) Neuropixels recordings from V1 and LGN and the average V1 CSD.

(B) LGN-V1 coherence versus cortical depth. For LGN, we computed a surrogate LFP (sLFP) from the population LGN spiking activity.

(C) sLFP-LFP coherence between LGN and V1 versus the number of recorded LGN neurons. LGN-V1 coherence (dots) was underestimated because it was

computed using a relatively small set of LGN neurons (compared to all LGN neurons). We directly quantified this by analytically deriving the asymptotic coherence

between LGN and V1 (dashed line). Shaded area indicates 95% confidence interval.

(D) Average V1 CSD and LGN firing rates around detected gamma peaks in the LGN sLFP.

(E) Within-areal spike-sLFP phase locking (PPC), separately for LGN and V1 (LGN and V1: 1,219 and 1,912 neurons, respectively). To compare phase locking, we

used the sLFP for both areas.

(F) PPC between spikes in different V1 layers and the LGN sLFP.

(G) Average gamma PPC values from (E). ***p < 0.001; WilcoxonMann-Whitney test, comparisons between areas or layers. Error bars and shadings in (E), (F), and

(G) indicate SEMs.
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Next, we asked how LGN-V1 gamma coherence depends on

visual stimulation (Figure 6F). The LGN-V1 gamma coherence

decreased during stimulation with natural movies as compared

to a gray screen and shifted to a higher frequency. Single-unit

V1 phase locking to LGN population activity decreased and

was only significant for L4 (4.9% of neurons; Figures 6H and

6I). The decrease in LGN-V1 gamma coherence could indicate

a decrease in transmission between LGN and V1, which seems

difficult to reconcile with the fact that it occurred during stimula-

tion with natural movies. Alternatively, the SSM model predicts

that it results from a decrease in local LGN-LGN gamma phase

synchronization. Consistent with the latter possibility, we found

that the decrease in LGN-LGN gamma phase locking was pro-

portional to the decrease in squared coherence between LGN

and V1 (slope 0.98; Figures 6J–6M). Inferred LGN-V1 connectiv-

ity weights did not significantly differ between natural movie and

gray screen periods (Figure 6N).

Finally, we wondered if communication between LGN and V1

depended on the ongoing gamma phase, as has been sug-

gested in previous work for V1-V1 and V1-V4 communication

(Womelsdorf et al., 2012, 2007; Rohenkohl et al., 2018; Ni

et al., 2016). To analyze this, we performed reduced rank regres-

sion (Izenman, 1975; Semedo et al., 2019), predicting V1 from

LGN firing rates. Similar to Womelsdorf et al. (2012), we created

two ‘‘virtual’’ sets of spike trains from LGN activity, consisting of
spikes that occurred during either the most or the least excitable

phase of the LGN gamma cycle. We found that the prediction ac-

curacy of V1 firing rates by LGN firing rates did not differ between

the sets of spikes occurring during excitable and non-excitable

gamma phases (Figure S4).

Dependence of LGN-V1 coherence on V1 spiking activity
We then wished to isolate the contribution of LGN synaptic affer-

ents to inter-areal coherence, because the weak spike phase

locking of V1 neurons to the LGN gamma may have contributed

to LGN-V1 coherence. To investigate this, we first analyzed local

V1 DOWN-states, which occur spontaneously and during which

V1 spiking activity is strongly suppressed. Importantly, LGN ac-

tivity decreases only slightly during V1 DOWN states (Figures 7A

and 7B), i.e., the UP and DOWN states are only weakly coordi-

nated between V1 and LGN. We found that LGN-V1 gamma

coherence had a similar magnitude during UP and DOWN states

(Figure 7C), indicating that it was mainly determined by afferent

synaptic inputs.

Next, we recorded from LGN and V1 using Neuropixels and

optogenetically activated somatostatin-positive (SST+) inter-

neurons (Figure 7D). These SST interneurons inhibit both fast-

spiking PV+ interneurons and excitatory neurons and receive

only a weak input from LGN (Cruikshank et al., 2010;

Pfeffer et al., 2013). Optogenetic activation (laser-on) of SST
Neuron 109, 4050–4067, December 15, 2021 4057
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Figure 6. Changes in LGN-V1 gamma coherence with arousal states and visual stimulation explained by LGN gamma synchrony

(A) Histogram of pupil diameter, a measure of arousal (McGinley et al., 2015).

(B) LGN-V1 coherence for low and high arousal (n = 8 mice, p < 0.05; Wilcoxon signed-rank test).

(C) LGN-LGN phase locking for low and high arousal (n = 8 mice, p < 0.05; Wilcoxon signed-rank test).

(D) Arousal-related change in LGN-LGN spike-field locking versus change in LGN-V1 coherence. Regression R2: 0.68.

(E) Coupling weights w of the SSM model fits to the data in (B)–(D) (p > 0.05; Wilcoxon signed-rank test).

(F) V1 and LGN Neuropixels recordings during natural movie periods.

(G) As Figure 5E, but during natural movie periods.

(H) As Figure 5F, but during natural movie periods.

(I) As Figure 5G, but during natural movie periods (*p < 0.05; **p < 0.01; ***p < 0.001; Wilcoxon Mann-Whitney test, comparisons between areas or layers).

(J) Distribution of pupil diameters.

(K) LGN-V1 coherence for gray screen and natural movie periods (n = 7 mice,p < 0.05; Wilcoxon signed-rank test).

(L) LGN-LGN phase locking for gray screen and natural movie (n = 7 mice, p < 0.05; Wilcoxon signed-rank test).

(M) Stimulus-related change in LGN-LGN spike-field locking versus change LGN-V1 coherence. Regression R2: 0.28.

(N) As (E), but now for natural movie and gray screen periods (p > 0.05; Wilcoxon signed-rank test).

See also Figure S4. Error bars and shadings indicate SEMs.
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interneurons silenced almost completely the spiking of V1 neu-

rons (Figures 7E and 7F). Activation of SST interneurons only

weakly affected firing in the LGN (Figure 7F). The LFP power

spectrum in L4 of V1 showed only a slight decrease in gamma

power during laser-on periods, whereas higher frequencies

showed a strong decrease (Figure 7G).

Both during laser-on and -off periods, LGN-V1 gamma coher-

ence showed a characteristic peak around L4 of V1. Coherence

was still observed when V1 activity was silenced and attained

comparable values (Figures 7H and 7I). Finally, we observed

that the CSD profile showed a similar structure during laser-on

and -off periods (Figure 7J). We further expected that during op-

togenetic silencing of V1 spiking, the dependence of LGN-V1

coherence on LGN gamma power should be preserved. To
4058 Neuron 109, 4050–4067, December 15, 2021
test this, we split the laser-on trials into two groups based on

the gamma power in LGN. Indeed, LGN-V1 gamma coherence

increased with LGN gamma power (Figure 7K).

Thus, LGN-V1 coherence exhibited several characteristic fea-

tures that are consistent with the SSM model: (1) Inter-areal

coherence and CSD sink-sources were maximal in the anatom-

ical location where synaptic (LGN) afferents terminate (L4 of V1)

(Figures 5 and 7). (2) The state-dependence of inter-areal coher-

ence could be explained by a change in the dynamics (i.e., phase

locking) of the sending population (Figure 6). (3) Coherence was

only weakly perturbed during periods where V1 neurons were

spontaneously silent or optogenetically silenced, indicating

that afferent synaptic inputs were themain determinant of coher-

ence (Figure 7).
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Figure 7. Dissociating contributions of spiking activity and synaptic inputs to LGN-V1 gamma coherence

(A) Example of spontaneously occurring UP and DOWN states in area V1, with raster plots of simultaneously recorded units in LGN and V1 and LFPs in L4 of V1.

(B) Mean V1 and LGN firing rates for UP and DOWN states (LGN: N = 762 neurons, p < 0.001; V1: N = 1596 neurons, p < 0.001; Wilcoxon signed-rank test).

(C) Top: example of LGN-V1 gamma coherence during UP and DOWN states. Bottom: average gamma coherence during UP and DOWN states (n = 23 mice,

p > 0.05; Wilcoxon signed-rank test).

(D) Simultaneous LGN-V1 Neuropixels recordings, together with optogenetic activation (laser-on) of V1 SST+ interneurons.

(E) Average firing activity of V1 neurons during laser-on and -off trials.

(F) Average firing rate changes in V1 and LGN neurons during laser-on trials (V1: N = 104; V1-SST+ opto-tagged: N = 15; LGN: N = 428 neurons; p < 0.001 for all

groups; Wilcoxon signed-rank test).

(G) LFP power spectra in L4 of V1 for laser-on and -off.

(H) Average coherence between LGN and L4 of V1 for laser-on and -off (n = 4 sessions, p > 0.05).

(I) Top: phase locking (PPC) in LGN for laser-on and -off (n = 4 sessions, p > 0.05; Wilcoxon signed-rank test). Bottom: 40 Hz versus 57 Hz LGN-V1 coherence,

separately for laser-on and -off. The weak suppression of LGN-V1 coherence may have been caused by the reduction in gamma phase locking of LGN neurons.

This reduction was also observed in Saleem et al. (2017), who activated all subtypes of GABAergic interneurons. Hence LGN firing rates (F) and gamma-band

activity may depend partially on corticothalamic feedback, which is unlikely to be gamma-rhythmic given the laminar phase-locking profile of V1 (Figure 5).

(J) Average CSD profile triggered on LGN gamma cycles, together with the concurrent firing rate modulation of the LGN.

(K) Median trial split based on the gamma-power of the LGN sLFP signal, showing LGN power and coherence between LGN and the LFP in L4 of V1 (power:

p < 0.05; coherence LGN-V1, p < 0.05; paired t test). Error bars and shadings indicate SEMs.
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Dissociating the contribution of spike phase locking and
afferent synaptic inputs in E/I networks
To further isolate the contribution of afferent synaptic inputs to

LFP-LFP coherence, we modeled biophysically plausible net-

works of E/I neurons. In these networks, rhythmswere not super-

imposed on background activity but were intrinsically, locally

generated in both sender and receiver (stochastic Wilson-

Cowan equations; see STAR Methods). The areas exhibited

intrinsic noisy oscillations that mimic oscillatory behavior in the

brain (Spyropoulos et al., 2020; Wallace et al., 2011; Mejias

et al., 2016). The E/I networks did not contain dendritic low-

pass filtering, which would have diminished the influence of

E-E connections at higher frequencies (Buzsáki and Schomburg,

2015; Pike et al., 2000). By using these E/I network models, we

performed an ‘‘in silico experiment’’ where we rendered the

afferent synaptic inputs invisible to the receiver neurons. We

compared two scenarios:

1. No entrainment + synaptic conduction. Sender spikes

generated afferent synaptic inputs and field potentials in

the receiving area, but receiver neurons were ‘‘blind’’ to

the afferent synaptic inputs (Figure 8A, left). That is, the

spiking of receiver neurons was exclusively driven by local

E/I interactions, which generated intrinsic oscillations.

Thus, coherence should arise exclusively due to afferent

synaptic inputs and follow the SSM model.

2. Entrainment + synaptic conduction. Receiver neurons

were now driven both by local and afferent synaptic inputs

and could thus phase-lock to afferent inputs (Figure 8A,

right). In this case, LFP-LFP coherence is not exclusively

due to afferent synaptic inputs. Instead, afferent synaptic

inputs influence the spiking of receiver neurons, which

can in turn generate local synaptic currents that are

coherent with the activity in the sender.

In both simulations, the sender and receiver areas could have a

non-matching (e.g., gamma and beta) or a matching (gamma

and gamma) oscillation frequency. In Figure 8, we only show

coherence since Granger causality yielded qualitatively similar

results (Figure S2).

We first analyzed the case in which the sender and receiver

had non-matching intrinsic oscillation frequencies (gamma and

beta). As predicted from the SSM model, we already observed

strong LFP-LFP coherence when spike phase locking in the

receiver was prohibited (Figures 8B and 8C, left). This coherence

was maximal at the oscillation frequency of the sender. Coher-

ence showed the stereotypical sigmoidal increase as a function

of inter-areal connection strength that is predicted by the SSM

model (Figure 8E). Including spike phase locking in the receiver

only made a minor contribution to inter-areal LFP-LFP coher-

ence (Figures 8B, 8C, right, and 8E).

This behavior changed when the sender and receiver had

matching oscillation frequencies (Figure 8D). Without spike

phase locking in the receiver, LFP-LFP gamma coherence was

now weak (Figure 8D, left). This is predicted by the SSM model,

because the oscillation strength (power) was now matched be-

tween sender and receiver, i.e., aðfÞ= 1 for all f. However, with

spike phase locking in the receiver, we observed a strong in-
4060 Neuron 109, 4050–4067, December 15, 2021
crease in LFP-LFP gamma coherence (Figure 8D, right). This re-

flects the resonant properties of the receiving area, by which

afferent oscillatory inputs are amplified through recurrent dy-

namics. Overall, the relative contribution of spike phase locking

to LFP-LFP coherence decreased when there was a larger differ-

ence in oscillation frequency between sender and receiver (Fig-

ure 8G). In the presence of resonant interactions, spike phase

locking explained more than 50% of the squared coherence.

However, in the absence of resonance, spike phase locking

made a minor contribution to inter-areal coherence, and afferent

synaptic inputs explained the bulk of coherence.

To further understand the dependence of spike phase locking

on connectivity in the gamma-to-gamma case, we computed

phase locking of receiver spikes to the local and afferent gamma

rhythms. Phase locking between receiver spikes and sender

LFPs was initially weak, indicating that most spikes in the

receiver were triggered by its local rhythm. With an increase in

inter-areal connectivity, spike-field phase locking to the sender

gradually increased (Figure 8F). Thus, there was no sudden

phase transition where the local rhythm of the receiver was fully

entrained by the sender.

Finally, we examined a scenario in which the receiver con-

sisted out of two laminar compartments (L4 and L2/3). We found

that there was essentially no propagation of the sender’s input

rhythm to L2/3 in the receiver and that coherence was restricted

to the ‘‘granular’’ compartment of the receiver. This occurred

even in the case of communication with a resonant receiver (Fig-

ure S5). This is explained by the fact that the sender explains only

a relatively small fraction of variance in the L4 receiver, which

then subsequently explains only a relatively small fraction of vari-

ance in the L2/3 receiver.

Together, these findings show that the peak frequency of

coherence and Granger causality is determined by the oscilla-

tory properties of the sending area, not the receiving area (Fig-

ure 8). By contrast, the frequency at which spike phase locking

(i.e., actual information transfer) will be prominent is determined

by the resonant properties of the receiver (Figure S8). Yet,

LFP-LFP coherence provided little information as to whether

the sender frequency matched the resonant frequency of the

receiver or not (compare gamma to beta with gamma to gamma

in Figures 8B–8D). The reason for this is that when the sender

oscillation is relatively large (non-matching frequencies), LFP-

LFP coherence is dominated by afferent synaptic inputs (Fig-

ure S8). When the sender and receiver oscillation frequencies

match, the direct contribution of afferent synaptic inputs de-

creases, and the contribution of phase-locked spikes increases

(Figure S8).

Distinct contributions of spike phase locking and
afferent synaptic inputs to coherence
In the previous figures, we showed how afferent (remote) synap-

tic inputs give rise to inter-areal LFP-LFP coherence according

to the SSM model. However, as we showed, neurons in a

receiver can, in addition, phase-lock to afferent synaptic inputs.

Phase locking does not demonstrate that coherence itself has

a functional consequence. Rather, it simply implies that the

afferent synaptic inputs have a functional consequence and

that neurons in the receiver integrate these inputs to some extent
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Figure 8. Distinct contributions of spiking activity and synaptic inputs to inter-areal coherence in E/I network models

(A) Each area consisted of a population of spiking neurons (stochastic Wilson-Cowan equations). Columns 1 and 2: neurons in area 2 were ‘‘blind’’ to the synaptic

inputs from area 1, i.e., spiking entrainment was prohibited. Columns 3 and 4: inputs from area 1 could entrain the area-2 neurons.

(B–D) Power and coherence spectra for different sender-receiver oscillation frequencies.

(E) Coherence versus the ratio of inter- to intra-regional connections.

(F) Phase locking of receiver neurons to area-1 and area-2 oscillations versus connectivity weight.

(G) Percentage of coherence explained by spiking entrainment versus the frequency difference between sender and receiver oscillations.

See also Figures S2 and S5–S8.
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in a linear manner (since coherence is a linear measure). The

phase-locked spikes in the receiver can in turn generate synaptic

inputs in the receiving area, which can further increase the inter-

areal LFP-LFP coherence. Thus, LFP coherence is determined

by two factors, namely: (1) Coherence due to the direct contribu-
tion of afferent synaptic inputs, and (2) coherence between the

sender LFP and the summed population spiking activity in the

receiver.

Importantly, spike phase locking of receiver neurons to

afferent synaptic inputs does not demonstrate intrinsic
Neuron 109, 4050–4067, December 15, 2021 4061
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oscillatory activity in the receiver. We find that in the absence of

resonance, the coherence between the sending area and the re-

ceiver’s spiking activity can be predicted by the SSM model

equations. Hence it follows the inter-areal connectivity and oscil-

lation power in the sender (Figures S6 and S7; see STAR

Methods: Extension of SSM model to spike-field coherence).

However, the coherence between sender and the receiver’s

spiking activity will be reduced because neurons have non-linear

input-output functions (see simulations using LIF or Poisson neu-

rons in Figures S6 and S7). Hence, we generally expect that the

sender will explain less variance in the receiver’s spiking activity

than in the receiver’s synaptic activity (Figure S6). By extension,

the same holds for the synaptic inputs that are in turn caused by

the receiver’s spiking activity inside the receiver area through

recurrent activity and thereby contribute to the LFP. Thus,

afferent synaptic inputs should generally make a larger contribu-

tion to the inter-areal LFP coherence than spike phase locking in

the receiver. This provides a theoretical explanation for our

experimental findings and model results (Figure 8).

DISCUSSION

We identified a generic mechanism for neuronal coherence, in

which it is a consequence and not a cause of communication.

Through mathematical analysis, we showed that coherence de-

pends in a lawful manner on connectivity strength and oscillation

power and does not require oscillatory coupling or spike phase

locking in a receiver. The SSM model explained prominent

changes in fronto-parietal and LGN-V1 coherence across

behavioral conditions. Furthermore, we isolated the contribution

of afferent synaptic inputs to inter-areal coherence by optoge-

netic perturbation of spiking activity and analysis of DOWN-

states in a receiving area, as well as simulations of E/I networks.

We found that afferent synaptic inputs rather than spike phase

locking in a receiver area were the main determinant of inter-

areal coherence. Finally, we showed that LFP coherence and

Granger causality primarily reflect the dynamics of neuronal in-

teractions in the sender. Yet, the extent to which the receiver is

driven by the inputs of the sender, which is the relevant variable

for communication, cannot be deduced from LFP coherence.

Rather, the frequency at which the receiver will respond most

strongly to synaptic inputs is determined by the resonant proper-

ties of the receiver.

Functional consequences for communication and
information transmission
Our findings have several implications for the relationship be-

tween communication and coherence: (1) Because coherence

results as a natural consequence of the oscillatory synchroniza-

tion of afferent synaptic inputs, it does not require phase syn-

chronization between the local rhythms in a sending and

receiving area. (2) Coherence can emerge despite a flat transfer

function (i.e., in the absence of any resonance) and does not by

itself indicate that communication is more effective at a coherent

frequency. (3) In the SSMmodel, coherence is not a mechanism

for communication. Rather, it is a consequence of communica-

tion without having direct functional relevance for transmis-

sion gain.
4062 Neuron 109, 4050–4067, December 15, 2021
Phase synchronization has been hypothesized to be a gen-

eral mechanism for the gating of selective communication ac-

cording to cognitive and behavioral demands (Chrobak and

Buzsáki, 1998; Bressler and Kelso, 2001; Varela et al., 2001;

Fries, 2005). This hypothesis is based on the basic observation

that oscillatory coupling between local rhythms in a sender and

receiver causes the inputs from a sender to consistently arrive

at excitable phases of the receiver’s rhythm (Volgushev et al.,

1998; Burchell et al., 1998; Buzsáki, 2006). Consequently,

studies have taken coherence and Granger causality as proxies

for the phase synchronization between local oscillators. How-

ever, coherence and Granger causality are strictly linear mea-

sures of frequency-resolved correlation and therefore show

spectral peaks in the absence of phase synchronization be-

tween oscillators. In particular in the SSM model, coherence

arises because the rhythmic activity in the sending area will

by default be coherent with the synaptic inputs that the sender

causes in the receiver. Importantly, this means that the

sender’s synaptic inputs do not arrive at excitable phases of

a local rhythm in the receiver. Rather, the sender spikes are

simply coherent with the synaptic inputs that they cause them-

selves (source-projection coherence). Hence, the resulting

coherence does not cause effective communication, but the

communication causes coherence. The notion of communica-

tion that we adhere to is very basic and comprises the approx-

imately linear transmission of a signal as an input to a receiver

prior to further non-linear computation on the input and conver-

sion to spiking outputs.

Coherence (andGranger causality) entails that the spectral en-

ergy from a sending region is focused in a specific frequency

band and that the synaptic activity in a receiver has a relatively

strong contribution from a sender at the coherent frequency.

There are prominent differences between brain areas in the dis-

tribution of spectral energy and its modulation by behavior,

which may reflect increases in intrinsic timescales across hierar-

chical levels (Murray et al., 2014; Gao et al., 2020; Buzsáki, 2006;

Siegel et al., 2012). Hence, the unique power-spectral profiles of

different brain areas will automatically give rise to large-scale in-

ter-areal coherence and Granger-causality patterns that follow

anatomical connectivity and continuously reconfigure as a func-

tion of behavior and cognition. Distinct coherence patterns may

entail the separation of distinct input sources into a receiving

area and thereby shape the way in which these sources interact

in the local circuit. In the hippocampus, distinct inputs to dentate

gyrus from medial and lateral entorhinal cortex, and from lateral

entorhinal and CA3 to CA1, are carried by distinct gamma

rhythms (Fernández-Ruiz et al., 2021; Schomburg et al., 2014;

Colgin et al., 2009). In the visuo-parietal system, feedforward

and feedback projections carry relatively strong energy in the

gamma- and beta-frequency bands, respectively (Bastos et al.,

2015; van Kerkoerle et al., 2014). In this sense, there is an inter-

esting analogy with anatomy in that feedforward and feedback

projections originate from different populations of neurons and

layers and also target different layers and dendritic compart-

ments (Vezoli et al., 2021). Distinct feedforward and feedback

Granger-causality patterns may thus entail further separation

of multiple input streams by occupying different frequency

bands. This separation could, e.g., be important for a local
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recurrent circuit to process sensory evidence as distinct from

sensory predictions (Bastos et al., 2012).

Yet, it remains unclear what kind of information is precisely

carried by oscillatory activity and, by extension, the coherence

and Granger causality that it gives rise to. Correlations can be in-

formation limiting in sensory systems (Ecker et al., 2010), and

rhythms may emerge especially under stationary conditions

and for low-dimensional sensory inputs. For example, beta

coherence and power were most prominent during the fixation,

rather than thememory andmovement, period in which themon-

key had to plan and execute sensorimotor transformations. LGN

gammawas particularly strong when neurons were driven by the

same stimulus (a uniform gray screen) but decreased for natural

movies, which provided more heterogeneous and high-dimen-

sional visual stimulation. These findings match with the recent

observation that in macaque V1, gamma oscillations emerge

for low-dimensional visual stimuli that are highly redundant

across space and disappear for highly salient pop-out stimuli

(Vinck and Bosman, 2016; Peter et al., 2019; Uran et al., 2021).

On the other hand, other oscillatory states associatedwith wake-

fulness, like hippocampal theta, may be accompanied by infor-

mation-rich neural sequences and exhibit genuine inter-areal

phase-synchronization (Mizuseki et al., 2009; Dragoi and Buz-

sáki, 2006).

Inference of connectivity or communication from
coherence
Previous work has shown correlations between functional and

anatomical connectivity. Consistent with SSM model predic-

tions, anatomical connection strength is linearly correlated with

LFP coherence/Granger causality across brain areas in beta

and gamma bands (Vezoli et al., 2020). Feedforward and feed-

back Granger causality in gamma and beta frequency bands

correlate with the anatomical SLN measure (% of supragranu-

lar-labeled neurons) (Bastos et al., 2015). This is predicted by

the SSMmodel, given the strength of gamma in superficial layers

of early visual areas and beta in deep layers and parietal areas

(Vezoli et al., 2021; Vinck and Bosman, 2016; Buffalo et al.,

2011). Importantly, afferent synaptic inputs with strong oscilla-

tory components can create the appearance of rhythmic compo-

nents in a receiving area even when there is no local rhythm

generated by E/I interactions in the receiver (Figure 7; Saleem

et al., 2017; Schomburg et al., 2014). Thus, the presence of

coherence and Granger causality between many area pairs

does not provide evidence for the widespread presence of local

rhythms.

Because coherence is strongly dependent on oscillatory po-

wer, it has major limitations as a measure of effective and

anatomical connectivity. These limitations can be partially over-

come by using the SSM model to correct for oscillation power

and by estimating connectivity for different behavioral conditions

(Figure 4). Several factors further complicate the problem of

inferring anatomical and effective connectivity (see also Pesaran

et al., 2018; Buzsáki and Schomburg 2015): (1) Spikes of neurons

in a receiver can contribute to coherence (see below). (2) Volume

conduction and third-party inputs can lead to coherence be-

tween areas that are not anatomically connected (Pesaran

et al., 2018; Buzsáki et al., 2012; Sirota et al., 2008; Vinck
et al., 2011). (3) Extracellular return currents from synaptic inputs

at the basal and apical dendritic compartments cancel out.

Hence, afferent axons that terminate exclusively either on the

basal or apical dendrites will generate particularly strong LFPs

(Lindén et al., 2011; Einevoll et al., 2013). Furthermore, if afferent

synaptic inputs have a specific laminar termination zone, then

coherence might not necessarily be observable at the ECoG

level or in each cortical layer.

Likewise, changes in inter-areal coherence with cognition or

behavior should be very carefully interpreted (e.g., Figures 4, 6,

and S3). Task-related increases in coherence, e.g., with atten-

tion, have been interpreted to reflect increases in synaptic

gain, or have even been postulated to represent a mechanism

for synaptic gain increases (e.g., Bosman et al., 2012; Grothe

et al., 2012). For example, attention to grating stimuli (which

generate exceptionally strong gamma) increases V1-V4 gamma

coherence from about 0.05 to 0.09 (which corresponds to ex-

plained power values <1%) (Ferro et al., 2021; Bosman et al.,

2012; Grothe et al., 2012). These low coherence values are in

line with the predictions of the SSM model, especially because

V1 contains a very strong gamma source, which can show

more than 100-fold power increases during visual stimulation

(Onorato et al., 2020; Spyropoulos et al., 2020). An increase in

V1-V4 gamma coherence may simply result from a combination

of factors that are unrelated to synaptic gain, as demonstrated

by the SSM model. These include increases in the firing rates

and phase locking of V1 projection neurons and V1 gamma po-

wer. Because neurons have distinct firing rate patterns and stim-

ulus correlates depending on their projection targets (Lur et al.,

2016; Han et al., 2018), it is insufficient to control for average

firing rates or spike-field coherence of single neurons when their

projection patterns are unknown. An additional complication is

the heterogeneity among excitatory neurons, e.g., the presence

of distinct excitatory neurons showing different phase-locking

patterns (e.g., Onorato et al., 2020), and the log-normal distribu-

tion of firing rates (Buzsáki and Mizuseki, 2014).

Contributions of spiking entrainment and afferent
synaptic inputs to coherence
It is generally difficult to determine the relative contribution of

afferent synaptic inputs and spike phase locking to inter-areal

LFP coherence. It requires measurements of single neurons,

CSDs, and causal perturbation experiments. We showed that if

receiver neurons are phase locked to rhythmic afferent synaptic

inputs, and they integrate these synaptic inputs in an approxi-

mately linear way, then the spike-field coherence can be pre-

dicted by the SSM model. Importantly, phase locking of spikes

to afferent inputs does not indicate that there is resonance or a

locally generated rhythm in the receiver. Further, it does not

demonstrate that inter-areal coherence itself has a functional

consequence. Rather, phase locking simply implies that afferent

synaptic inputs have a functional consequence (not the coher-

ence itself). The extent to which spikes can phase-lock to

afferent synaptic inputs depends on numerous factors: (1) Pas-

sive dendritic filtering properties, which can prevent excitatory

neurons to phase-lock to high-frequency inputs, in contrast to

fast-spiking interneurons (Buzsáki and Schomburg, 2015; Pike

et al., 2000). (2) Resonance, by which neurons or networks of
Neuron 109, 4050–4067, December 15, 2021 4063
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neurons amplify synaptic inputs at certain frequencies (Izhike-

vich et al., 2003). (3) Non-linear input-to-output functions which

reduce linear correlations (i.e., coherence), even though non-lin-

earities are thought to be essential for cortical computation. (4)

The number of presynaptic inputs that a neuron receives. Individ-

ual neurons in a receiver may be driven by a very small set of pre-

synaptic neurons (Ringach, 2021), which may be only weakly

coherent with the sender population rhythm (Figure 5F). This

can prevent strong coherence between receiver spikes and a

sender rhythm. Finally, it is critical to compute spike-field coher-

ence in both directions (Buzsáki and Schomburg, 2015). If a

sending area exhibits strong oscillations, then sender spikes

can trivially show coherence with receiver LFPs, because their

inputs contribute to the receiver LFPs (e.g., Figure 1D).

Outlook and recommendations
The mechanism for the generation of coherence identified in this

studymight not explain coherence in all model systems but is ex-

pected to always contribute to LFP coherence. Wemake several

recommendations: (1) It is difficult to directly infer changes in

effective communication and synaptic connectivity from coher-

ence. To make progress, it is necessary to performmore sophis-

ticated mathematical inferences on underlying circuit parame-

ters and test different coherence models against each other.

(2) It is critical to combine measurements of laminar CSDs and

identified single units (Buzsáki and Schomburg, 2015). Yet,

even if spike phase locking is observed, it remains difficult to

dissociate contributions of local spiking and afferent inputs to

coherence. (3) Causal perturbation techniques are necessary

to circumvent the problems of correlational measures and distin-

guish different interpretations of coherence from each other.

Combined with CSDs and spiking measures, causal techniques

can disentangle the contribution of different afferent input

streams to local phase-locking patterns (see, e.g., Fernández-

Ruiz et al., 2021).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Allen Brain Observatory Neuropixels dataset Allen Brain Institute https://portal.brain-map.org/explore/

circuits/visual-coding-neuropixels

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) German Primate Centrum, Germany & Aventis

Pharma Deutschland GmbH, Germany

NA

Sst-IRES-Cre (SOM-IRES-Cre) mice The Jackson Labaratory Cat#013044

Ai32(RCL-ChR2(H134R)/EYFP) mice The Jackson Labaratory Cat#024109

Software and algorithms

MATLAB (version 2020a) Mathworks https://www.mathworks.com/

FieldTrip Oostenveld et al., 2011 https://www.fieldtriptoolbox.org

Reduced Rank Regression Semedo et al., 2019 https://github.com/joao-semedo/

communication-subspace

Stochastic Model of Spiking Neurons Wallace et al., 2011 https://github.com/ewallace/stochsimcode

Python version 3.6 Python Software Foundation https://www.python.org/

AllenSDK pakage (version 2.3.1) Allen Brain Institute https://allensdk.readthedocs.io/en/latest/

Kilosort 2.5 Steinmetz et al., 2021 https://zenodo.org/record/4482749#.

YSjX4I4zaUk

Code for SSM model and E/I networks This manuscript https://zenodo.org/record/5507277
RESOURCE AVAILABILITY

Lead contact
The Lead Contact of this study is Martin Vinck. Further information and requests for resources should be directed to and will be ful-

filled by the Lead Contact, Martin Vinck (martin.vinck@esi-frankfurt.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments in macaque monkeys
For the data recorded in macaque neural activity was recorded simultaneously from many channels in two female rhesus macaque

monkeys (Animals S and Z, bodyweight 9,7 and 7 kg, age 7 and 10 years, respectively). Detailed experimental procedures have been

described previously (Dann et al., 2016). All procedures and animal care were in accordance with German and European law and

were in agreement with the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National

Research Council, 2003).

Visual coding neuropixels dataset in mice
We analyzed data from the publicly available Visual Coding - Neuropixels dataset, recorded and preprocessed by the Allen Institute

of Brain Science (Siegle et al., 2021). The Dataset contains recordings from 30 C57BL/6J wild-type male and female (between 12 and
e1 Neuron 109, 4050–4067.e1–e12, December 15, 2021
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21weeks old) mice, as well as 28male and female (between 12 and 21weeks old) mice from three transgenic lines (N = 8 Pvalb-IRES-

Cre x Ai32, N = 12 Sst-IRES-Cre x Ai32, and N = 8 Vip-IRES-Cre x Ai32), implanted with up to six Neuropixels silicone probes each.

Mice were maintained in the Allen Institute for Brain Science animal facility and used in accordance with protocols approved by the

Allen Institute’s Institutional Animal Care andUseCommittee. After surgery, all micewere single-housed on a reversed 12-hour cycle.

Experiments were performed during the dark cycle. In each recording session mice passively viewed a battery of natural and artificial

stimuli. We used default function in the Allen software development kit (AllenSDK) package to download the raw data files, containing

the neuronal and behavioral data. The details on surgical procedures, stimulation protocols, recording techniques, preprocessing,

and spike sorting can be found in the technical white paper (https://portal.brain-map.org/explore/circuits/visual-coding-

neuropixels).

Experiments in mice with electrophysiology and optogenetics
For the second dataset collected in mice, adult male and female mice served as subjects (age range 5-6 months). All procedures

complied with the European Communities Council Directive 2010/63/EC and the German Law for Protection of Animals, and were

approved by local authorities, following appropriate ethics review. All mice were treated according to the approved research

protocol V54–19c20/15–F149/1006. Mice were maintained on a 12/12 h light/dark cycle and recordings were performed their

dark (awake) cycle. To identify the SST-positive neurons (SST+) during electrophysiological recordings, we crossed Sst-IRES-Cre

mice (Ssttm2.1(cre)Zjh Stock, 013044, The Jackson Labaratory) to the Ai32(RCL-ChR2(H134R)/EYFP) mice, to allow Cre-dependent

expression of ChR2 (SST-ChR2).

METHOD DETAILS

Recordings from macaque monkeys
The monkeys were trained to perform a delayed grasping task. In this task, the monkey was either instructed to grasp a target with

one of the two possible grip types (power and precision) or was free to choose between the grip types, as described in detail in pre-

vious studies (Dann et al., 2016). During instructed trials, the monkey was visually cued by one of two discs displayed on amonitor to

perform the associated grip type. During free-choice trials, both discs were displayed, and themonkeys could freely choose between

grip types. To encourage switching behavior during consecutive free-choice trials, the reward was iteratively reduced every time the

monkey repeatedly chose the same grip type. Note that delayed-instructed trials were also part of the task. These trials were not

analyzed in this study and are therefore not further explained. The monkey learned to perform the task with high accuracy of

95 +- 0.01% SD successful trials on average.

Surgical procedures have been described in detail previously (Dann et al., 2016). In short, the monkey was implanted with four

chronically implanted 32-channel microelectrode arrays (FMAs;Microprobes for Life Sciences; 32 electrodes; spacing between elec-

trodes: 0.4mm; length: 1.5 to 7.1 mmmonotonically increasing to target gray matter along the sulcus). Two arrays were positioned in

part of the ventral premotor cortex (area F5) and two in area 7B, specifically around the anterior intraparietal area (AIP), yielding a total

number of 128 channels. We will refer to the 7B/AIP recording simply as 7B, esp. because LFPs may pick up activity from a larger

region of space. Electrode signals from the implanted arrayswere amplified and digitally stored using a 128 channel recording system

(Cerebus, Blackrock Microsystems; sampling rate 30 kS/s; 0.6-7500Hz band-pass hardware filter).

To detect spikes, electrode signals were first high-pass filtered with a median filter (window length 3ms) and then low-pass filtered

with a non-causal Butterworth filter (5000Hz; 4th order). Next, common noise sources were eliminated by applying principal compo-

nent (PC) artifact cancellation, and spike waveforms were detected and semi-automatically sorted using a modified version of the

offline spike sorter Waveclus. Finally, redetection of the different average waveforms (templates) was used to detect overlaid wave-

forms. The exact procedures of spike detection are described previously (Dann et al., 2016). Only well-isolated single units were used

for all analyses. To detect LFPs, electrode signals were first low-pass filtered with a median filter (window length 6.7 ms) and then

high-pass filtered with a non-causal Butterworth filter (1 Hz; 4th order). In order to filter out line noise and their harmonics, additional

band-stop filtering between 49 and 51 Hz and 98 and 102 Hz was applied. Subsequently, signals were down-sampled from 30000 to

1000Hz by averaging 30 consecutive frames. Broken channels and trials containing movement noise were removed from all further

data analyses. For this purpose, the total power, the correlation and the maximum deflection of all channels, and trials were

compared, and all outliers were discarded. Finally, to reduce the influence of the on-array ground and reference electrode on

each array, the trimmed mean over all channels per array (leaving the highest two and the lowest two values per time point out)

was removed by using linear regression. After spike and LFP detection, single-neuron spike events were binned in non-overlapping

1-mswindows to obtain an equal sampling rate of 1000Hz for both signals. Subsequently, signals were aligned to cue andmovement

onset for the instructed- and free- choice-task.

Recordings from LGN and V1 in mice
For Figures 5, 6, and 7A–7C we used the publicly available Visual Coding - Neuropixels dataset, recorded and preprocessed by the

Allen Institute of Brain Science (Siegle et al., 2021). The dataset contains LFP signals and single unit spikes recorded simultaneously

in 4 to 6 visual areas of 58 awakemice during spontaneous activity and different visual stimuli. Gray screen and natural movie periods

were chopped into 1 s trials.
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Recordings from LGN and V1 combined with optogenetics
For Figures 7D–7K, we collected an additional dataset, where we performed Neuropixels recordings from LGN and V1 while acti-

vating SST+ interneurons using optogenetics. Thirty minutes prior to surgery antibiotic (Enrofloxacin, 10 mg/kg, sc, Bayer, Leverku-

sen, Germany) and analgesic (Metamizole, 200 mg/kg, sc) were administered. For the anesthesia, induction mice were placed in an

induction chamber and briefly exposed to isoflurane (3 % in oxygen, CP-Pharma, Burgdorf, Germany). Shortly after the anesthesia

induction, the mice were fixated in a stereotaxic frame (David Kopf Instruments, Tajunga, California, USA) and the anesthesia

adjusted to 0.8 – 1.5 % in oxygen. To prevent corneal damage the eyes were covered with eye ointment (Bepanthen, Bayer, Lever-

kusen, Germany) during the procedure. A custom-made stainless steel head fixation bar was secured with dental cement (Super-

Bond C & B, Sun Medical, Shiga, Japan) exactly above the bregma suture, while the area of the recording craniotomy (V1, AP:

1.3 mm anterior to the anterior border of the transverse sinus, ML: 2.0 to 2.5 mm) was covered with cyanoacrylate glue (Insta-

Cure, Bob Smith Industries Inc, Atascadero, CA USA). Four to six days after the surgery, the animals were habituated for at least

five days in the experimental conditions. The day before or the same day of the first recording session a 1 mm2 craniotomy was per-

formed above V1 (AP: 1.3 mm anterior to the anterior border of the transverse sinus, ML: 2.0 to 2.5 mm) under isoflurane anesthesia.

The craniotomy was covered with silicon (Kwik-Cast, World Precision Instruments, Sarasota, USA), and the mouse was allowed to

recover for at least 2 hours. Recording sessions were carried out daily for a maximum of 5 days, depending on the quality of the elec-

trophysiological signal. Awake mice were head-fixed and placed on the radial wheel apparatus. We recorded simultaneously from

384 recording sites on a single Neuropixels probe, from both LGN and V1. The probe was inserted in the brain tissue through the

V1 craniotomy under a 15 degrees angle. We targeted SST+ interneurons using SST-ChR2 mice and activated them using optoge-

netic stimulation. During the optogenetic experiment, an optic fiber (Thorlabs, 200um, 0.39 NA) coupled to a diode laser (LuxX CW,

473nm, 100mW,Omicron-Laserage Laserprodukte GmbH,Germany) was used to illuminate V1 craniotomy. The optic fiber was posi-

tioned 0.2mm from the probe position, just above the surface of the brain. Continuous light square pulses were applied for 500ms

interleaved by 3-6 s intervals. Light intensity on the tip of the fiber was 0.5-2mW/mm2.

Single units were isolated using the semi-automated spike sorting algorithm Kilosort 2.5 (Steinmetz et al., 2021). To obtain LFPs,

electrode signals were first low-pass filtered at 400 Hz and then high-pass filtered at 0.1 Hz, using a third-order Butterworth filter. In

order to filter out line noise, an additional band-stop filter between 49.5 and 50.5 Hz and 99 and 101 Hz was applied. Subsequently,

signals were downsampled to 1200 Hz by averaging consecutive frames. For memory reasons, only every second electrode was

used for the analysis of LFP signals.

Theoretical analysis of SSM model without source-projection coherence
In this section we describe our model of Synaptic-Source-Mixing and derive an analytical expression for coherence based on inter-

areal connectivity and power. We start out from a unidirectional communication setting, where the sender projects to the receiving

area. The measured signals of sender and receiver are denoted z1ðtÞ and z2ðtÞ. In the following derivations and our simulations, we

assume that the signals are measured without the addition of extrinsic noise. That is we assume that all signals reflect neural activity,

and we assume that there is no volume conduction.

Wemodel the signal z1ðtÞ in the sender as the sum of an oscillatory process s1ðtÞ and a broad-band process, e.g., Pink noise, h1ðtÞ:
z1ðtÞh s1ðtÞ+ h1ðtÞ : (3)

The intrinsic signal z2ðtÞ of the receiver has no rhythmic component and is modeled as a linear mixture of its own noise term and the

projected input from the sender,

z2ðt + tÞ = h2ðt + tÞ+wðs1ðtÞ + h1ðtÞÞ (4)

where w denotes the projection strength from sender to receiver and t the transmission delay between the receiver and the sender

area. We assume that the background processes h1ðtÞ and h2ðt + tÞ are linearly uncorrelated for all t. For the purpose of mathemat-

ical derivation, we suppose that the power spectral densities of the broad-band processes are equal for all frequencies f, i.e.,H11ðfÞ =
H22ðfÞhHðfÞ. We denote the spectral density of s1ðtÞ as S11ðfÞ. We define the SOS (‘‘Sender Oscillation Strength’’) as

aðfÞh S11ðfÞ
H11ðfÞh

S11ðfÞ
HðfÞ : (5)

The cross-spectral density between z1ðtÞ and z2ðtÞ equals
Z12ðfÞ = wðS11ðfÞ + H11ðfÞÞ
=w Z11ðfÞ (6)

and is real-valued. Note that the other cross-terms fell out because we assumed that h2, h1 and s1 are uncorrelated. The squared

coherence C2ðfÞ between sender and receiver is defined by
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C2ðfÞh

���Z12ðfÞj2

Z11ðfÞ Z22ðfÞ: (7)

This simplifies as follows:

C2ðfÞ = w2Z11ðfÞ2
Z11ðfÞ Z22ðfÞ

=
w2 Z11ðfÞ
Z22ðfÞ : (8)

Since h2ðtÞ and s1ðtÞ are uncorrelated, we have

Z22ðfÞ = HðfÞ+w2Z11ðfÞ : (9)

Equation 5 now reduces to

C2ðfÞ = w2 Z11ðfÞ
HðfÞ+w2 Z11ðfÞ

=
1

1+HðfÞðw2 Z11ðfÞÞ�1
: (10)

From Equation 5 it follows that

Z11ðfÞ = HðfÞðaðfÞ + 1Þ : (11)

Hence H fð Þ w2 Z11 fð Þ� ��1
reduces to the expression

1

w2ðaðfÞ+ 1Þ : (12)

Thus the coherence can be simplified to

C2ðfÞ = w2ð1+aðfÞÞ
1+w2ð1+aðfÞÞ

=Q
�
w2ð1 + aðfÞÞ� ; (13)

where Qh x
1+ x is the sigmoid function.

We can estimate the connectivity weight from the measurement variables by solving for w and aðfÞ,

w =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðfÞ

�ðaðfÞ+ 1Þ
�
C2ðfÞ � 1

�
vuut
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðfÞ
aðfÞ+ 1

s
; (14)

Here, the approximation is based on the first-order Taylor expansion of the coherence around CðfÞ = 0. We can also take the Taylor

expansion around w= 0 for Equation 13 and obtain

C2ðfÞzw2ð1 + aðfÞÞ : (15)

Note that the samemodel derivations (and the derivations below) pertain toGranger causality, because for unidirectional coupling the

following relationship holds between Geweke-Granger causality and coherence (Geweke, 1982):

G1/2ðfÞ = � ln
�
1�C2ðfÞ

�
zC2ðfÞ ; (16)

where the approximation was made based on the first order Taylor-expansion around CðfÞ = 0.

Theoretical analysis of SSM model with source-projection coherence
In themodel above, we assumed that the signal received by the receiver is fully coherent with the signal in the sender. As explained in

more detail in the Results Section, this is likely not the case for two reasons: 1) The sender consists of sub-populations that are not
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fully coherent with each other, especially for frequencies where there is no oscillatory synchronization. 2) The number of projecting

neurons in the sender may be small. Therefore, the coherence between the summed potential of sender-to-receiver projection neu-

rons and the sender LFP (the source-projection coherence) may not be 1.

We first derive an expression of the inter-areal coherence that includes a linear dependence on the source-projection coherence.

We model the signals as

z1ðtÞ = s1ðtÞ+ h1ðtÞ (17)
z2 t + tð Þ= h2 t + tð Þ+w s�1 tð Þ+ ε1 tð Þ� �
: (18)

Here, s�1ðtÞ is the projected oscillatory signal into the receiver, and ε1ðtÞ is the projected background signal into the receiver. The

coherence between h1ðtÞ and ε1ðtÞ is denoted Ch;εðfÞ. The coherence between s1ðtÞ and s�1ðtÞ is denoted Cs;sðfÞ. We assume that

s1ðtÞ and s�1ðtÞ have the same power spectral densities. Likewise we assume that h1ðtÞ, h2ðtÞ and ε1ðtÞ have the same power spectral

densities.

We now obtain

Z12 fð Þ=w Cs;s fð Þ S11 fð Þ+Ch;ε fð ÞH fð Þð Þ=w Cs;s a fð Þ+Ch;ε fð Þð ÞH fð Þ ;
Z11 fð Þ=S11 fð Þ+H fð Þ= 1+a fð Þð ÞH fð Þ ;

Z22 fð Þ=w S11 fð Þ+ 1+wð ÞH fð Þ= 1+w 1+a fð Þð Þð ÞH fð Þ
(19)

The squared coherence C2ðfÞ now simplifies as

C2ðfÞhw2 ðCssðfÞ aðfÞ+Ch;εðfÞÞ2
ð1+aðfÞÞð1+wð1+aðfÞÞÞ : (20)

Plugging in aðfÞ= 0 for all f we obtain

C2
12ðfÞ =

w2 C2
h;εðfÞ

w+ 1
(21)
zw2 C2
h;εðfÞ (22)

where the first-order Taylor expansion was made around w = 0. Thus, the squared coherence between areas scales with the

coupling weight and the squared inter-areal coherence in the sender. For the oscillatory part, assuming the background fluctuations

have coherence close to zero, we have

C2ðfÞzw2 aðfÞ2
aðfÞ+ 1

C2
s;sðfÞ (23)

Following the same derivation, we can also obtain an expression for the squared coherence that combines both the noise and the

oscillatory term as

C2ðfÞhw2 ðCsource;projðfÞðaðfÞ+ 1ÞÞ2
ð1+aðfÞÞð1+wð1+aðfÞÞÞ

zC2
source;projða + 1Þw2 : (24)

Here Csource;proj is the source-projection coherence. The variable aðfÞ is defined as the ratio of power of the intrinsic signal in the

sender over the intrinsic signal in the receiver.

Theoretical analysis of source-projection coherence based on phase locking of projection neurons
We then derive the expression for the source-projection coherence based on Np active (i.e., firing spikes) projecting neurons as fol-

lows. Let xiðtÞ be the activity of a single neuron in the sender with power spectral density XðfÞ for all i. The cross-spectral density of the
Np projecting neurons with the signal based on all Nt neurons in the sender equals

Xproj;sourceðfÞ = NpXðfÞ+NpðNt � 1ÞXðfÞcðfÞ ; (25)

Here cðfÞ is the coherence between two individual neurons,

cðfÞhXi;jðfÞ
XðfÞ : (26)
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The factor ðNt �1Þ accounts for the fact that each projecting neuron is fully coherent with itself. For simplicity, we assume that the

cross-spectral density between any two neurons is real-valued (i.e., all neurons are on average coherent at zero-phase). The power

of the signal in the source (sender) equals

Xsource;sourceðfÞ = NtXðfÞ+NtðNt � 1ÞXðfÞcðfÞ : (27)

The power of the signal of the projection equals

Xproj;projðfÞ = NpXðfÞ+NpðNp � 1ÞXðfÞcðfÞ : (28)

The squared coherence now equals

C2
proj;source h

���Xproj;sourceðfÞj2

Xproj;projðfÞ Xsource;sourceðfÞ=/
ðNpXðfÞ+NpðNt � 1ÞXðfÞcðfÞÞ2
ðNtXðfÞ+NtðNt � 1ÞXðfÞcðfÞÞ ðNpXðfÞ+NpðNp � 1ÞXðfÞcðfÞÞ : (29)

This simplifies further to

C2
proj;source =

Npð1� cðfÞÞ+ cðfÞNpNt

Ntð1� cðfÞÞ+ cðfÞNpNt

: (30)

Plugging in ghNp

Nt
, where g is the fraction of projecting neurons, we obtain

C2
proj;source =

cðfÞgðNt � 1Þ+g

cðfÞðgNt � 1Þ+ 1
: (31)

By taking the Taylor expansion around cðfÞ = 0, because the coherence between two individual neurons will be small, we obtain the

first-order approximation

C2
proj;source zg + cðfÞð1�gÞgNt

zg + g cðfÞ Nt : (32)

Here we removed the term ð1�gÞ because we can assume that g is typically close to zero. Hence the source-projection coherence is

proportional to the fraction of projecting neurons, plus the coherence times the total number of projecting neurons. We can further-

more relate cðfÞ to the coherence of an individual neuron with the total signal in the sender (the spike field coherence). The squared-

magnitude spike-field coherence can be expressed in terms of cðfÞ as

f2 =
ððNt � 1ÞcðfÞXðfÞ+XðfÞÞ2

ðNtXðfÞ+ ðNt � 1ÞNtXðfÞcðfÞÞXðfÞ

= cðfÞ
�
1� 1

Nt

	
+

1

Nt

: (33)

Note that we used

Xsource;i =
XNt

j = 1

Xi;j

=XðfÞ + ðNt � 1ÞXðfÞcðfÞ (34)

because we assumed all cross-spectra to be real-valued. Furthermore the total power in the source can be decomposed as

Xsource;source =
XNt

j = 1

XNt

i = 1

Xi;j

=NtXðfÞ + NtðNt � 1ÞXðfÞcðfÞ : (35)

Solving Equation 33 for cðfÞ yields

cðfÞ = f2Nt � 1

Nt � 1
; (36)
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where f2NtR1. Plugging this into Equation 32 we obtain the approximation

C2
source;proj zg + g

�
f2Nt � 1

�
zg Nt f

2 : (37)

We thus obtain

C2ðfÞzw2ðaðfÞ+ 1Þ2f2 g Nt : (38)

Theoretical analysis of the relation between power and spike-field coherence
We further expect aðfÞ to be proportional to f2: Let be fðfÞ here is the consistency of single spikes (estimated by spike-field PPC;

Pairwise Phase Consistency, Vinck et al. (2011)) and divide the population into Nt spike trains of single spikes. The power due to

the oscillation that is projected equals

SoscðfÞ = NpXðfÞ + NpðNp � 1ÞcðfÞXðfÞ

zNpXðfÞ + NpðNp � 1Þf2ðfÞXðfÞ : (39)

The power due to the background equals

SbackgroundðfÞ = NpXðfÞ+NpðNp � 1ÞcbackgroundðfÞXðfÞ (40)
zNpXðfÞ+NpðNp � 1Þf2
backgroundðfÞXðfÞ :

Here, fbackground is the spike-field coherence related to the background 1=fn fluctuations, whichmay be non-zero.We note that ifNp is

large enough, we have

aðfÞ/ f2ðfÞ
f2
background

: (41)

However, for small Np, we obtain the first-order Taylor expansion

aðfÞz1+ ðNp � 1Þ
�
f2ðfÞ�f2

background

�
: (42)

In this case, the SOS depends on Np. The reason for this dependence is that when Np is small, the contribution of the phase consis-

tency across neurons is relatively small and the intrinsic power due to the individual energy contributions weighs in.

Because the connection weightw should be proportional to the total number of projection neurons (Markov et al., 2011), we there-

fore expect coherence to be proportional to w and f. Combining all results we obtain:

C2ðfÞfw4f4 : (43)

The factor f4 follows from the dependence of a on f2 andCsource;projðfÞ on f2. The factorw4 follows from the dependence of C2ðfÞ on
w2, the dependence of aðfÞ on Np and therefore w, and the dependence of Csource;projðfÞ on Np and therefore w. When the number of

projection neurons Np and fðfÞ is sufficiently high, the source-projection coherence Csource;projðfÞ should converge to one, and aðfÞ
to f2ðfÞ

f2
background

. In that regime we obtain

C2ðfÞfw2f2 : (44)

Simulations of SSM model without source-projection coherence
We summarize the simulations shown in Figure 2 (seeMethods: Theoretical analysis of SSMModel without source-projection coher-

ence). Wemodeled the LFP signal in the sender and receiver area using Equation 3 and 4. The simulation of the different components

are described in Simulations: 1/f processes and AR(2) models. The details of the simulations were as follows:

d For Figure 2A the SOS (Sender Oscillation Strength) at the oscillatory frequency f1 = 20Hz was SOSðf1Þ= 14 and w = 0:1.

d In Figure 2D the parameters were: SOS= 10 (blue and black - left), w= 0:025 (black - left), w= 0:035 (blue - left) and SOS= 10

(black - left), SOS= 20 (blue - left), w = 0:025.

d For the fits of 7B-LFP data shown in Figure 2E, power spectra were fitted as a linear mixture of an AR(2) model with 1= fn back-

ground fluctuations (w = 0:069).
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Simulations of SSM model with source-projection coherence
In this subsection we summarize themodel simulations shown in Figures 3A, 3D, 3E, and 3G, as well as the model fits of 7B-LFP data

shown in 4C-D (see Methods: Theoretical analysis of SSMmodel with source-projection coherence for the mathematical derivation).

For the purpose of simulations, we modeled the signal in the sender as follows:

z1ðtÞh s1ðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� gÞ

p
h1ðtÞ+

ffiffiffi
g

p
εðtÞ : (45)

The intrinsic signal z2ðtÞ of the receiver is defined as a linearmixture of its own background fluctuations, and the input from the sender:

z2ðtÞ = h2ðtÞ+w
�
s1
�
t� tdelay

�
+ h1

�
t� tdelay

��
: (46)

The transmission delay is denoted by tdelay and was set to 4ms in all simulations. For the purpose of simulations, we assumed that the

projected oscillatory component s1ðtÞ is fully coherent with the oscillatory process in the sending area. We used the following

parameters:

d For Figure 3A the SOS at the oscillatory frequency was SOS = 14, w= 0:1 and g = 0:95.

d For the model fits of 7B-F5 coherence shown in Figure 3D the parameters were: SOS= 10 (blue and black - left), w= 0:025

(black - left), w= 0:036 (blue - left) and SOS= 10 (black - right), SOS= 20 (blue - right), w= 0:025 (blue and black - right). g=

0:95 for all panels in Figure 3D. The background fluctuations in Area-1 were only partially transmitted, with a weight offfiffiffiffiffiffiffiffiffiffiffiffi
1� g

p
, g = 0:95.

d For Figure 4C the parameters were the following w= 0:071 (memory-period), w= 0:076 (fixation-period) and w= 0:076 (move-

ment-period) and g = 0:90. For Figure 4D the parameters were the following w= 0:053 (memory-period), w= 0:055 (fixation-

period) and w= 0:075 (movement-period) and g = 0:90.
Simulations for source-projection coherence based on phase locking of projection neurons
For Figure 3B we generated an LFP signal as an oscillatory AR(2) process (see Methods: Simulations: 1=f processes and AR(2)

models) and used it to modulate the activity of 200000 neurons according to an inhomogeneous Poisson process. The average

PPC peak between the neurons and the modulation signal was 0.007. A subset of 100 neurons represents the projecting neurons.

The activity of the projecting and the source population were summed up and filtered with a 100Hz low pass filter. The resulting sig-

nals were used to calculate the source-projection coherence.

To fit the 7B-F5 coherence in Figures 4E and 4F, the model predictions were inferred from the spike-LFP PPC within area 7B, the

SOS aðfÞ and the coupling weightw of the model in 4C. As spike-LFP PPC has no trial bias, while LFP-LFP squared coherence has a

trial bias for low number of trials we subtracted the trial bias from the squared coherence of the data. The trial bias was estimated by

generating uncorrelated signals with the same number of trials and evaluating their coherence. The peaks in the spike-LFP PPC

spectra were fitted using a Gaussian function. The inter-areal coherence was inferred using Equation 24 and 31. For Figure 4E

the total number wasNt = 100000 (which was arbitrarily chosen) and the number of projecting neurons wasNp = 1500. For Figure 4F

the parameters wereNt = 100000 andNp = 5000. Note that low-frequency synchronization in themovement periodwas not captured

by our model, as it was unidirectional and not optimized for spectral resolution at low frequencies.

Simulations: 1=f processes and AR(2) models
The background fluctuations in Figure 2, 3, and 4 were simulated as 1=f2=3 pink-noise processes. For every trial we generated a trace

of white noise sample points. Each trace was Fourier transformed. The complex coefficients of the positive frequencies were multi-

plied by the 1=f2=3-function. By concatenating the resulting coefficients with a flipped version of their complex conjugate, we ob-

tained a spectrum following the 1=f2=3-function. By inverse Fourier transforming the resulting spectrum we obtained a time series.

The oscillatory processes in Figures 2, 3, and 4 were simulated using an AR(2)-model. The AR(2)-model is defined as

xt = a1xt�2 + a2xt�1 + ht (47)

where hðtÞ is a white noise process with zero mean. To obtain a stationary signal, the roots must lie within the unit circle. If the AR

process has complex conjugated roots it becomes a stochastic noise driven oscillator. The eigenvalues determine the strength of

the oscillations.

Simulations of E/I networks
In this section we summarize the population model from Figure 8. All simulations of the Wilson Cowan model were performed using

code fromWallace et al. (2011). The Wilson Cowan Model is a stochastic network model of nonlinear neuron models. It is often used

to demonstrate the appearance of oscillations on a network scale (Powanwe and Longtin, 2019; Wallace et al., 2011; Wilson and

Cowan, 1972). Each area shown in Figures 8, S2, and S5 was modeled by a Wilson-Cowan model, composed of fully connected

Ne excitatory and Ni inhibitory neurons. The neurons were modeled as two-state Markov processes (one active and one quiescent

state). In this model, the transition probability of the ith neuron to change from the active to the quiescent state is equal to
Neuron 109, 4050–4067.e1–e12, December 15, 2021 e8
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Piðactive/quiescent;dtÞ = aidt : (48)

The transition probability of the ith neuron to change from the quiescent to the active state is equal to

Piðquiescent/ active;dtÞ = bi fi ðsiðtÞÞ dt : (49)

Here the activation function is defined:

fðsÞh 1

1+ e�s
(50)

The total input current sE to excitatory neurons and sI to inhibitory neurons is defined:

sEðtÞ = Wee

Ne

kðtÞ �Wei

NI

lðtÞ+ hE (51)

and

sIðtÞ = Wie

Ne

kðtÞ �Wii

NI

lðtÞ+ hI : (52)

Here hI and hE are the external input current to the correspondent neuron types. The number of active excitatory neurons is referred to

as kðtÞ and the number of active inhibitory neurons as lðtÞ. The synaptic strength from excitatory neurons to inhibitory neurons is de-

noted Wie, and Wei is the synaptic strength from inhibitory neurons to excitatory neurons. The total synaptic weight between excit-

atory neurons is referred to as Wee, whereas the total synaptic weight between inhibitory neurons is referred to as Wii.

The model determines the rates of transition between states by the variables a and b. However, since biological networks are sto-

chastic processes, it is necessary to randomize the time of the next event. We achieved this by running the simulation with a Gillespie

algorithm (Gillespie, 1977). In the scenario of ‘‘synaptic-source-mixing with entrainment,’’ the excitatory neurons from the sender

formed connections with the excitatory neurons of the receiver. This changed Equation 51 for region 2 as follows:

sE;2ðtÞ = Wee;2

Ne;2

k2ðtÞ �Wei;2

NI;2

l2ðtÞ+Wee;1

Ne;1

k1ðtÞ+ hE;2 : (53)

Whereas the neurons within an area were all-to-all connected, the inter-regional connection rate in 8B-D (right), S2B-D (right) and

S5B,C (right) was 10%. For simplification, each connection is represented in the LFP signal as one synapse. We calculated the

LFP signal by convolving every incoming spike to an area with an alpha function aðtÞhgðe�t=t1 � e�t=t2Þ. Here, the variable t is defined
as the time relative to the spike onset and aðtÞ= 0 for t < 0. The factor g was equal to g= � 1 for inhibitory synapses and g= 1 for

excitatory synapses. In Figures 8B–8D (left), S2B-D (left) and S5B,C (left) we used Equation 51 instead of Equation 53, in order to

make receiver neurons blind to inter-areal connections. For the calculation of the LFP signal in Area 2 we still considered an inter-

areal connection rate of 10% (Figures 8B–8D left) to dissociate the contribution of spike phase locking and afferent synaptic inputs

in E/I networks.

Finally, the synaptic potentials of all input connections within an area were summed up to calculate an overall LFP signal of the

corresponding area. In the simulations we used the following parameters:

d Each simulated area consisted of 800 excitatory and 200 inhibitory neurons. The neurons within one area were fully connected.

d In Figures 8A–8D, S2B–S2D, S5B, and S5C, each neuron in the receiver received inputs from 80 randomly chosen excitatory

neurons within the sender.

d All simulations in Figures 8, S2, and S5 had the following parameter values,Wee = 25:4,Wii = 1:3,Wei = 24:3,Wie = 30, hE =

� 3:8, hI = � 3:8.

d Areas oscillating in the beta-frequency band had parameter values ae = 0:038, ai = 0:076, be = 0:379 bi = 0:758.

d Areas oscillating in the gamma-frequency band had parameter values ae = 0:1, ai = 0:2, be = 1, bi = 2.

d For Figure 8G the coherence peaks were integrated between w= 0:02 and w = 0:2.
Simulations of Poisson modulated neurons
To investigate the consequences of a sigmoidal input-output relationship on inter-areal coherence, we simulated a population of

inhomogeneous Poisson neurons (Figure S7). The receiver was modeled as a population of up to 1000 neurons. The firing of the neu-

rons was modulated by a synthetic LFP signal according to an inhomogeneous Poisson process. The modulation signal was a

mixture of the afferent oscillatory inputs and the intrinsic 1=fn fluctuations. This mixed modulation signal was passed through a sig-

moid function and normalized on the standard deviation of the signal. We implemented the inhomogeneous Poisson process by

applying the time-rescaling theorem (Brown et al., 2002). In the first step, we generated spike times from a homogeneous Poisson

process with unit firing rate. Thereupon we applied the inverse of the cumulative rate function to each event time (Nawrot et al., 2008).

The average firing rate of the neurons across trials was 2Hz. There was no 1=fn input from the sender area, i.e., the coherence fol-

lowed the extended synaptic mixing model shown in Figure 3C.
e9 Neuron 109, 4050–4067.e1–e12, December 15, 2021
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Simulations of leaky-integrate-and-fire neurons
In this section, we describe the simulations shown in Figure S6. In order to investigate the effects of spiking entrainment on inter-areal

coherence in a biologically realistic way, wemodeled the receiver population asN leaky integrate-and-fire (LIF) neurons. Each neuron

received an input current, which consisted of an afferent oscillatory signal sðtÞ and a local, intrinsic input hiðtÞ. The local input hi is

modeled as a 1=fn pink-noise process described before, and defined as

hiðtÞ =
ffiffiffi
g

p
hcðtÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� gÞ

p
hilðtÞ : (54)

Here, hcðtÞ represents the shared fluctuations across receiver neurons, whereas hilðtÞ represents local fluctuations that are specific to
neuron i. The parameter g scales the temporal correlation between the neurons in the receiver population. The oscillatory signal sðtÞ
was generated using the AR(2) model that we described above. We denote the power spectral density of the total background fluc-

tuations in the receiver, htotalðtÞ =
PN

i =1hiðtÞ, as HðfÞ. The power spectral density of oscillatory input sðtÞ is defined as SðfÞ. We define

the SOS of a population of N neurons as

aðfÞ = NSðfÞ
HðfÞ : (55)

The dynamics of the membrane potential VmðtÞ of neuron i is defined by

tm
dViðtÞ
dt

= � Vi +RmIiðtÞ : (56)

Here, tm is the membrane time constant, Rm the membrane resistance, and IðtÞ the input current.

The input current IiðtÞ of neuron i is defined as

IiðtÞ = hiðtÞ+wsðtÞ (57)

where w denotes the projection strength from the sender to the receiver. At t = 0 the membrane voltage is set to the resting potential

Vrest. Whenever the membrane potential passes a threshold Vth, the neuron elicits a spike and the membrane potential is reset to

Vreset. The LIF neurons in Figure S6 had the following parameters: tm = 20ms, Vrest = � 60mV , Vreset = � 50mV , Vth = � 30mV

and Rm = 100MU.

Extension of SSM model to spike-field coherence
The same model developed for field-field coherence should apply to spiking activity, if spiking relates in a linear or sigmoidal way to

synaptic inputs. Consider that z2ðtÞ represents the average voltage fluctuations in the receiver. If population spiking activity is a linear

function of z2ðtÞ, i.e., y2ðtÞ = z2ðtÞ, then the same equation for coherence applies. Because spiking activity is stochastic and sparse

for a single neuron, a population of neurons will contain additional variance that suppresses the coherence, i.e., we can write

y2ðtÞ = s2ðtÞ+ x2ðtÞ+w
�
s�1ðtÞ + ε1ðtÞ

�
: (58)

where s2ðtÞ is the intrinsic signal in the receiver. This distortion x2, which should decrease with the number of neurons, will decrease

the inter-areal spike-field coherence by increasing the intrinsic power in the receiver (see Figures S6 and S7). Next, consider the case

where the population spiking activity is a standard sigmoidal activation function of z2ðtÞ, i.e.
y2ðtÞ = sðz2ðtÞÞ ; (59)

where sðxÞh1=ð1 + expð� xÞÞ. In analogy to the data processing equality, we expected that the coherence after the transformation

should always be lower than in the linear case, because the signal gets distorted by the sigmoid transformation, and coherence ex-

presses the amount of variance that can be explained by linear prediction (see Figure S7). Assuming thatw is relatively small, we use

the Taylor-expansion around w= 0 and obtain

y2ðtÞ = sðs2ðtÞ + x2ðtÞÞ+w s�1ðtÞ _sðs2ðtÞ + x2ðtÞÞ : (60)

Here, _sðxÞ denotes the first derivative of the sigmoid function at x. Note that

E


s�1ðtÞs�1ðt + tÞ _sðs2ðt + tÞ + x2ðt + tÞÞ� (61)
=E


s�1ðtÞs�1ðt + tÞ�Ef _sðs2ðt + tÞ + x2ðt + tÞÞg :

We can thus scale the signal as follows. Define a new transformation function by scaling inside the sigmoid as

vðxÞ = s
� x

Ef _sðxÞg
�
: (62)

Assuming that s1ðtÞ and s2ðtÞ are statistically independent, we can see that the resulting coherence between z1ðtÞ and y2ðtÞ now
equals
Neuron 109, 4050–4067.e1–e12, December 15, 2021 e10
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C2
sender�LFP; receiver�Spikesz

C2
proj;sourcew

2

Sv
22
ðfÞ

S11ðfÞ+w2
: (63)

whereSv
22ðfÞ is the spectral density function of vðs2ðtÞ + x2ðtÞÞ. Here, we can recognize that the equation has the same form above and

is scaled by the weight and the source-projection coherence.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spectral analysis of the macaque monkey data
All analyses of macaque data were performed in MATLAB (Mathworks) using custom scripts and the FieldTrip toolbox (Oostenveld

et al., 2011). Power and coherence spectra were computed using integration windows of 0.35 s, which were moved over the whole

data in steps of 0.05 s. The weighted phase lag index (WPLI) between LFPs was calculated using adaptive windows of 5 cycles per

time-window, with amaximumwindow length of 0.75 s (Vinck et al., 2011). The epochs were Hann-tapered to avoid spectral leakage.

The pairwise phase consistency (PPC) between spikes and LFPs was calculated using windows of 0.35 s around each spike (Vinck

et al., 2012), using the spiketriggeredspectrum functions in the FieldTrip SPIKE toolbox. To compute the spike-LFP PPC, we first

pooled all neurons in the area together, which gives the most sensitive estimate of entrainment in an area by increasing the number

of pairwise phase comparisons (Vinck et al., 2013).

Layer Assignment of mouse V1 data
The layer assignment was carried out using current source density (CSD) analysis on the average LFP signal during whole screen

flash stimulation. The current source density was computed by taking the second discrete spatial derivative across the different elec-

trode sites (Mitzdorf, 1985). Single units were assigned to a layer based on the location of the electrode with the highest amplitude

during AP depolarization. To avoid incorrect layer assignment, the peak amplitude electrode of a unit needed to be at least 50m apart

from the intersection of two cortical layers.

Spectral analysis of V1 and LGN data
Power and coherence spectra were computed using integration windows of 0.25 s, whichweremoved over thewhole data in steps of

50ms. The epochs were Hann-tapered to avoid spectral leakage. The pairwise phase consistency (PPC) between spikes and LFPs

was calculated using windows of 0.25 s around each spike (Vinck et al., 2012), using the spiketriggeredspectrum functions in the

FieldTrip SPIKE toolbox. Only neurons firing at least 150 spikes were considered for the calculation of spike-LFP PPC. Because

LGN is a nucleus and the neurons are not aligned, the LFP signal in LGN does not reflect the oscillatory activity of the neurons in

LGN. For this reason, we used a surrogate LFP (sLFP) derived from the spiking activity of the neurons in LGN. The sLFP was derived

by summing the spikes of all individual isolated units in the LGN. Subsequently, the population spike activity was filtered between 1

and 100Hz. In order to get a meaningful sLFP only sessions with at least 10 recorded single units in LGN were analyzed. The asymp-

tote of the sLFP - LFP coherence between LGN and V1 as a function of recorded neurons in LGN was estimated based on the

following equation:

C2
LGN;V1 =

N2C2
SP�LGN;LFP�V1

CLGNN2 +N
: (64)

Here CLGN;V1 denotes the coherence between the sLFP of LGN and the LFP of V1, N the number of LGN neurons used to infer the

sLFP, CSP�LGN;LFP�V1 the coherence between single units in LGN and the LFP signal in V1 and CLGN the average coherence between

the units in LGN. In order to estimate the asymptote of the coherence between the sLFP in LGN and the LFP in V1 we computed

CSP�LGN;LFP�V1 andC2
LGN;V1 and subsequently fitted Equation 64. For Figures 6A–6E and 6J–6Nwe only included session with at least

150 trials per condition.

Laminar profile of gamma oscillations in mouse V1
In order to infer the delay between LGNgamma peaks and LFP signals across the laminar structure of V1we used peaks of oscillatory

gamma activity in the sLFP of LGN (van Kerkoerle et al., 2014). To detect genuine oscillatory gamma activity we filtered the sLFP of

LGN with a bandpass filter between 45 and 65 Hz. Thereupon we detected gamma peaks exceeding 0.5 standard deviations of the

filtered signal. Time windows around the gamma peaks in LGN were used to align the broadband LFP signals in V1, calculate the

average LFP response as well as the average CSD in V1. Subsequently, we aligned the CSD of the different mice to calculate an

average CSD profile.

Up and down state detection in mouse V1
Up and down states during spontaneous activity were detected based on the average firing rate across all V1 neurons for each

mouse. The average V1 firing rate was z-scored, binned into 0.01 s windows, and smoothed using Gaussian windows of 0.4 s.

This analysis was only carried out on stationary periods, where the running speed was constantly below 1 cm/s. Subsequently,
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we used a 3 state hidden Markov model to detect the different brain states of V1. The state with the highest average firing rate was

considered as up state, while the state with the lowest average firing rate as down state. The subsequent analyses were only carried

out on identified states with a minimum length of 0.15 s (McFarland et al., 2011).

Reduced rank regression using phase-binned population activity in LGN-V1 data
Spike trains of LGN units were split into two subsets based on the gamma phase of the sLFP in LGN. One subset of spike trains con-

taining spikes from themost excitable gammaphase and one of the opposite phase. Thewidths of the phase binswere adjusted such

that spike counts were kept constant across phase bins (Womelsdorf et al., 2012). Spike virtual LGN spike trains and V1 spike trains

were counted into 100 ms bins. The average Peri-stimulus time histogram (PSTH) was subtracted from every single trial response.

Reduced rank regression was carried out using the implementation of Semedo et al. (2019).

Statistical Testing
Statistical details, including the specific statistical tests and p values are specified in the corresponding figure legends or results sec-

tion. In general, paired t test, Wilcoxon-Mann-Whitney and Wilcoxon signed-rank test were performed. Throughout the whole paper

data are presented as the mean ± SEM, unless otherwise indicated. All statistical analyses were conducted using MATLAB 2020a

(Mathworks).
Neuron 109, 4050–4067.e1–e12, December 15, 2021 e12



Neuron, Volume 109
Supplemental information
A mechanism for inter-areal coherence

through communication based on connectivity

and oscillatory power

Marius Schneider, Ana Clara Broggini, Benjamin Dann, Athanasia Tzanou, Cem
Uran, Swathi Sheshadri, Hansjörg Scherberger, and Martin Vinck



Supplementary Figures to: A mechanism for inter-areal
coherence through communication based on connectivity and

oscillatory power

Marius Schneidera,d,f,, Ana Clara Brogginia, Benjamin Dannb, Athanasia Tzanoua, Cem Urana, Swathi
Sheshadrib,c, Hansjörg Scherbergerb,c, Martin Vincka,d,e,f
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Figure S1: Beta coherence between 7B and F5 for both monkeys and during the movement period. Related to Figure 1.
(A-H) Same as Figure 1, but for Monkey Z. (I-N) Power spectra and spike-field locking in the movement period, for both monkeys. Same naming conventions as
in Figure 1. (O) Power of 50% of the electrodes in 7B that have a high (red)/low(black) coherence with area F5 (Monkey S). (P) Coherence between of 50% of the
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Figure S2: Granger-causality in bidirectionally coupled E/I network. Related to Figure 3 and 8.
(A) Illustration of the two models. Each area consisted of a population of spiking neurons whose dynamics were modeled by stochastic Wilson-Cowan equations.
In the first model (left two columns), synaptic potentials due to inputs from Area-1 were superimposed onto the synaptic potentials from Area-2 itself and vice
versa. Neurons in Area-2/Area-1 were “blind” to the synaptic inputs from Area-1/Area-2, i.e. spiking entrainment was prohibited. The second model (right two
columns) is identical to the first model, however, synaptic inputs from Area-1/Area-2 could now entrain the neurons in Area-2/Area-1. (B) First two columns: Area
1 oscillates at gamma and Area 2 at beta. Spectral Granger causality shows clear peaks, following the power in the sender. Last two columns: Spiking entrainment
increases Granger influences slightly. (C) and (D) Same as in (B), but now with different oscillation frequencies. When the oscillation frequency in the sender
matches with the receiver, there is an increase in LFP-LFP Granger influence due to spiking (D). (B-D) all for coupling value of w = 0.1.
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coherence). (B) Data were extracted from the supplementary figures in Bastos et al. (2015) using Adobe Illustrator on the vector graphics. We hypothesized
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for different areas). Each data point represents the gamma Granger-causality from V1 to higher areas, separately for the pre-cue and post-cue condition. Consistent
with the SSM model predictions, we found that the gamma Granger-influences from V1 to higher areas were increased by approximately the same factor across all
areas (1.76; Pearson’s R = 0.99).
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and non-excitable gamma phases. (C) Same as (B) but instead of predicting all spikes of the population in V1, V1 activity was predicted after binning V1 spikes
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Figure S5: Coherence between a sender and a receiver consisting of two laminar compartments. Related to Figure 8.
(A) Illustration of the two models. Area 1 consisted of a population of spiking neurons whose dynamics were modeled by stochastic Wilson-Cowan equations.
Area 2 was divided into a granular layer (L4) and a superficial layer (L2/3). Each layer consisted of a population of spiking neurons whose dynamics were modeled
by stochastic Wilson-Cowan equations. In the first model (left two columns), synaptic potentials due to inputs from Area 1 were superimposed onto the synaptic
potentials from L4 of Area 2 itself. In the same way, synaptic potentials due to inputs from Area 2 L4 were superimposed onto the synaptic potentials from L2/3
of Area 2 itself. Neurons in L4 of Area 2 were “blind” to the synaptic inputs from Area 1, i.e. spiking entrainment was prohibited. Neurons in L2/3 of Area 2
were “blind” to the synaptic inputs from Area 2 L4. The second model (right two columns) is identical to the first model, however synaptic inputs from Area-1
and Area-2 L4 could now entrain the neurons in L4 of Area-2 and L2/3 of Area-2. (B) First two columns: Area 1 oscillates at gamma and the two layers of Area
2 at beta. Coherence spectra show clear peaks, following the power in the sender. Last two columns: Spiking entrainment increases coherence slightly. (C) Same
as in (B), but now with different oscillation frequencies. When the oscillation frequency in the sender matches with the receiver, there is an increase in LFP-LFP
coherence due to spiking. (B-C) all for a coupling value of w = 0.1. The two layers of Area-2 always oscillate at the same frequency.
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Figure S6: Coherence between sender and receiver’s spiking activity for LIF neurons. Related to Figure 8.
(A) Illustration of the different mechanisms contributing to inter-areal LFP coherence. Spiking activity in the sender (i) causes afferent synaptic inputs in the receiver.
These inputs may not be a coherent copy of the LFP signal in Area-1 (source-projection coherence). Synaptic inputs in the receiver give rise to additional spiking
activity (iii), which through recurrent connections will give rise to synaptic inputs in the receiver (iv). In the case of resonance, oscillatory inputs may be amplified
through recurrent dynamics at (iii) and (iv). The LFP, in the typical frequency range (< 80Hz), is a proxy of the population synaptic activity. (B) Illustration of
model simulations on spike phase-locking. The receiving area is modeled as a population of leaky integrate-and-fire (LIF) neurons, whose intracellular potentials
are a mixture of oscillatory input from sending Area-1 and intrinsic 1/ f fluctuations in the receiver. The local fluctuations are correlated to different degrees. In
the panels below, we use a correlation value of 0.5. We summed the spikes across all neurons to construct the summed population activity and then computed the
coherence with the sender LFP. (C) Squared coherence between summed population spiking activity in the receiver and the sender LFP, for different values of SOS
and coupling weight (solid lines). LFP-LFP coherence due to afferent synaptic inputs corresponds to dashed lines. Note similar dependences between LFP-spike
and LFP-LFP coherence on SOS and coupling weight. However, there was higher LFP-LFP coherence between the sender and the afferent synaptic inputs, than
between the sender and the population spiking activity in the receiver. One reason for this difference is that non-linear input-output transformations introduce a
distortion in the coherence, and introduce interactions across frequencies to which coherence (being a linear measure) is blind. Another reason is that the outputs of
individual neurons are stochastic and sparse. Hence, spikes cannot encode afferent synaptic inputs without distortion. Distortion will be greater for a small number
of neurons in the receiver as shown in (C). (D) Spike-field phase-locking (unbiased PPC) between individual neurons in the receiver population and the LFP signal
in the sender. Spike-field PPC shows similar dependencies on SOS and connectivity as spike-field coherence. Note relatively small spike-field PPC values for
realistic connectivity weights around 0-0.1. (These PPC values are consistent with the empirical data observed in Figure 1, 5). (E) The number of neurons in the
receiver determines the spike-LFP coherence. Inter-areal coherence between Area-1 LFP and Area-2 spikes increases with the number of receiver neurons. This
is expected, because a larger number of neurons will provide a better sampling of the input rhythm, as each neuron fires sparsely and with random variation. For
enough neurons, an asymptote is reached (which is shown in (C)). In this simulation, the SOS at the oscillatory frequency f1 = 20Hz was SOS ( f1) = 5.5 (F) The
Spectrum of spike-field PPC of receiver spikes of individual neurons to sender LFP. There is a clear beta-peak in the inter-areal spike-LFP PPC. (G) Spike-field
PPC of receiver spikes to the receiver LFP. There is no beta-peak in the spike-LFP PPC in the receiver, consistent with the absence of intrinsic oscillations in the
receiver. (H) Power spectrum of the receiver LFP. Despite the afferent oscillatory input, the population spiking activity does not show a peak at the sender oscillation
frequency (beta). Instead, the spectrum follows the 1/f activity of the local fluctuations. Together with (G) and (H), this shows that rhythmicity in afferent inputs
effectively disappears in the receiver, both at the synaptic and the spiking level. (F-H) The parameters were: SOS = 5.5, w = 0.08.
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Figure S7: Coherence between sender and a receiver’s spiking activity for neurons with a sigmoidal input-output relationship. Related to Figure 8.
The receiver was modeled as a population of 1000 neurons modulated by the synthetic LFP signal as in (Figure 3B) according to an inhomogeneous Poisson process.
(A) Phase-locking of individual neurons to the sender (left) and receiver (right) LFP. The phase-locking to the sender LFP signal shows a narrow-band peak at the
modulation frequency. (B) Power spectra of both areas. The sender area follows the power spectrum expected from the model in Figure 3B. The power spectrum of
the summed activity of neurons in the receiver area does not show a peak at the frequency of the transmitted oscillatory signal. (C) For a high number of neurons,
the coherence between sender LFP and receiver LFP approaches the LFP-LFP coherence that is predicted from synaptic inputs. The LFP-LFP coherence (black) is
generated with the Synaptic-Source-Mixing model from Figure 3B. In addition, we have generated an LFP-LFP model where the receiver signal depends sigmoidally
on the transmitter signal. As predicted, coherence is comparable between the linear and sigmoidal cases. As the number of neurons increases, the coherence between
sender LFP and population spiking output approaches the LFP-LFP coherence due to afferent synaptic inputs. (D) The inter-areal coherence through sigmoidally
modulated input-output relation of spiking shows similar dependencies on coupling and SOS similar to synaptic mixing. (E) Inter-areal coherence increases with
the number of entrained neurons in the receiver. Depending on the coupling weight and the SOS the squared coherence saturates at a certain number of neurons.
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Figure S8: Illustration of the difference between LFP-LFP coherence and spiking entrainment, and ability to switch communication by changing oscilla-
tions in the sender. Related to Figure 8.
In the left case, the sender oscillates at beta, and it would have a high LFP-LFP coherence with a receiver at gamma due to synaptic mixing. However, this LFP
coherence does not translate into spiking entrainment. When the receiver also oscillates at beta, the LFP coherence due to synaptic mixing is lower, but due to
resonance, the receiver will now exhibit more spiking entrainment. In the right case, the sender switches to gamma and now switches communication to the gamma
receiver. Paradoxically, LFP-LFP coherence might be higher between the sender and the receiver that communicate less.
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