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Synthesis process of F-MWCNT/ZnO-NFs composites: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow chart. S1 Synthesis process of F-MWCNT/ZnO-NFs composites 
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Electrochemical sesnor measurement setup:  
 

  
 
 
 

Fig. S1(a) Electrochemical measurement setup of Agilent 4294A precision impedance analyzer 

system 

 

 

 
 

Fig. S1(b) Impedance characteristic measurement electronic circuit with 1 kHz frequency generator 

 



 

EDS characterization: 

 

                    

                    
 
                    

Fig. S2 EDS composition spectra for F-MWCNT (a), F-MWCNT/ ZnO-NFs composites with 

proportion of 1:1 (b), 1:3 (c) 1:5  

 
Fig. S2 illustrates the EDS composition spectrum of the F-MWCNT (Fig. 4 a), F-MWCNT/ ZnO-

NFs composites with proportion of 1:1 (Fig. 4 b), 1:3 (Fig. 4 c) and 1:5 (Fig. 4 d). The corresponding 

EDS spectrum confirms the presence of Carbon(C), Zinc (Zn) and Oxygen (O) elements in the F-

MWCNT/ZnO-NFs nanocomposites and wright percentage of ZnO (6.82-17.99%) proportionally 

increasing with respect to the sample S1, S2 and S3. In addition, the result also indicates the higher 

distribution of the C and Zn in the scan area and no other impurity was detected in the chemical 

compositional studies.  
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XRD characterization: 

 

No other peak related to impurities was detected in the spectrum, which further confirms the 

synthesized materials were of high purity and matches well with the standard crystallographic data’s 

(ZnO: JCPDS 01-076-0704, C: JCPDS No. 00-026-1080). The strong diffraction peak at the angle 

2θ of 25.58° can be indexed as the C (002) reflection of the hexagonal graphite structure and 

corresponding to the MWCNT, which confirms the formation of composites and completely reduced 

its peaks in the F-MWCNT/ZnO-NFs nanocomposites because of ZnO-NFs embedded on the entire 

surface of F-MWCNT. As a function of the ZnO concentration ratio, peak intensities of F-MWCNT 

and ZnO varies within nanocomposite samples (S1, S2 and S3). It is clear evident that on increasing 

the concentration of ZnO will decreases the peak intensity of the F-MWCNTs and ZnO peaks are 

becoming more intense. The peaks intensity of F-MWCNT/ZnO-NFs nanocomposites (S1, S2 and 

S3) decreased as compared with the untainted ZnO peaks. This indicates that the crystallinity of the 

materials decreases on composite formation.  

Evaluation of electrochemical sensing performance of F-MWCNT/ZnO-NFs composites active 

layer:  
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Fig. S3 Impedance magnitude versus frequency (kHz) response of the sensors (S1, S2 and S3) 

 

    

Fig. S4 Impedance magnitude (Ω) versus 0.1- 100 mM NH4+ion concentration response of the 

sensor S1 in the acid (a), neutral (b) and alkaline (c) sample environment conditions. 

 

     

Fig. S5 Impedance magnitude (Ω) versus 0.1- 100 mM NH4+ion concentration response of the 

sensor S2 in the acid (a), neutral (b) and alkaline (c) sample environment conditions. 
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Fig. S6 Impedance magnitude (Ω) versus 0.1- 100 mM NH4+ion concentration response of the 

sensor S3 in the acid (a), neutral (b) and alkaline (c) sample environment conditions. 

The fabricated sensors (S1, S2 and S3) sensitivity were estimated from the slope of the impedance 

magnitude versus NH4+ ion characteristics response from the calibration plots shown in Fig. S5 (a, b, 

and c), Fig. S6 (a, b, and c) and Fig. S7 (a, b, and c) respectively. 

 

  

Fig. S7: Change in impedance magnitude versus NH4+ ion concentration (1-20 mM) response of the 

sensor S1 in the acid (a), neutral (b) and alkaline (c) sample conditions. 

  

Fig. S8: Change in impedance magnitude versus NH4+ ion concentration (1-20 mM) response of the 

sensor in the acid (a), neutral (b) and alkaline (c) sample conditions. 
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Fig. S9: Change in impedance magnitude versus NH4+ ion concentration (1-20 mM) response of the 

sensor S1 in the acid (a), neutral (b) and alkaline (c) sample conditions. 

The correlation coefficient (R2) and sensitivity of the fabricated device was calculated in the selective 

range and recorded in the Table S1 

NH4+ Sensor NH4+ sample 
conditions 

Correlation 
coefficient (R2) 

Sensitivity (mM/ Ω) 

S1 Acid (pH=4) 0.73955 3.60 ±0.18 
Neutral (pH=7) 0.78420 3.07 ±0.17 
Alkaline (pH=9) 0.81735 1.06 ±0.05 

S2 Acid (pH=4) 0.82036 55.15 ±2.75 
Neutral (pH=7) 0.96394 8.08 ±0.40 
Alkaline (pH=9) 0.98567 4.27 ±0.21 

S3 Acid (pH=4) 0.98399 76.09 ±3.80 
Neutral (pH=7) 0.95135 26.18 ±1.30 
Alkaline (pH=9) 0.94865 12.16 ±0.60 

 

Table S1: Fabricated NH4+ sensor response for selective range about 1-20 mM with acid (a), neutral 

(b) and alkaline (c) sample conditions 
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 Fig. S10 Response of  |𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚| versus NH4+ concentration (1 -20 mM) for three similar set of 

S3 devices in the acid (a), neutral (b) and alkaline (c) sample conditions  

Machine learning based target predictions: 

             
          
 
 
 
 
 
 
 
 
 

 
Table S2: Model comparison at different sample sizes using various assessment metrics for Dataset 

1 
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Table S3: Model comparison at different sample sizes using various assessment metrics for Dataset 
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Table S4: Model comparison at different sample sizes using various assessment metrics for Dataset 
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Table S5: Confusion matrix Random Forest (Showing number of instances) 
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Table S6: Confusion matrix Neutral Network (Showing number of instances) 

 
 

 

 
 

Table S7: Confusion matrix Logistic Regression (Showing number of instances) 
 
 



 
 

Table S8: Confusion matrix kNN (Showing number of instances) 
 
 

 
 

Table S9: Confusion matrix Naïve Bayes (Showing number of instances) 
 
 
 



 
 

Table S10: Confusion matrix for SVM (Showing number of instances) 
 
 
 

 
 
 

 
 
 
Code:  
 
Input: 
Super set-(Tri)={Tr1,Tr2….Tr5} Where Tr-Training Sets(i=1 to 5) 
Super set(Tei)={Te1,Te2,….Te5} Where Te-Test Sets(i=1 to 5) 
Machine  Learning Algorithms : 
  NB ,RF,Knn,SVM,LR,NN(MLi) 
Where, 
  NB-Naive Bayes 
  RF-Random Forest 
  kNN-Knowledge nearest neighbor 
  SVM – Support vector machine 
  LR- Logistic Regression 
  NN-Neural Network 
Output: 
 1, Best Approach Algorithm 
 2,Dominance in Feature Extraction 
 3,Predicted Values in best approach algorithms. 
BEGIN 
 FETCH the datasets from source 



 PREPROCESS the training & test datasets(DSi) as Tri,Tei 
  CONVERT Categorical values(Ci) into Numerical values(Ni) 
 FOR i=1 to 5 DO 
  CHOOSE the target(Ti) variable in Tri 
  CHOOSE the Original (Ori) variable in Tei 
  FEED Features of (Tri) for FEATURE EXTRACTION(Fei) 
  IDENTIFY the Fei values with Greater Probability to cover maximum  Fei values 
  CHOOSE  the Higher Dominance of Fei from Tri 
 END FOR 
 FOR  j=1 to  6 DO 
  FEED Fej into Machine learing Algorithms(MLj) 
  FIND the Predicted values(Pj) from Mlj 
 END FOR 
 FOR i=1 to 5 DO 
  IF Ori== Pi THEN 
   Ai=0 
   Ai(Accuracy)=Ai + 1 
  ELSE IF Ori > Pi || Ori< Pi THEN 
   Ai(Accuracy)=Ai – 1 
  END IF 
 END FOR 
 FOUND ACCURACY (A1,A2….A5) 
 FOR i= 1 to 5 DO 
  Gri=Ai 
  IF Ai > Gri THEN 
   Gri=Ai 
  EVALUATE  greater (Gri) for the best Machine Learning algorithms 
  END IF 
 END FOR  
END 
 
INPUT/OUTPUT 

 We have Training set (Tri) and Test set (Tei) as input for five datasets. Six Machine learning 

algorithms were tested to predict the target concentration in Test sets, and the most suitable algorithm 

is identified. Dominant predictors are extracted from all the features.  

PREPROCESSING AND HIGHER DOMINANCE 

 Fetch Tri and Tei from the source .Preprocess both datasets by converting categorical values 

(Ci) into numerical values(Ni). Target feature (Ti) from training sets (Tri) are selected. The original 

predicting feature (Ori) from test sets (Tei) are chosen. Predictors are extracted from the Training sets 



(Tri) as Feature extraction (Fei). Identify the Fei values with the highest predominance (Fei) from 

Training sets (Tri). 

ACCURACY FINDINGS 

 Feed the Higher dominance feature extracted values (Fej) values into the Machine learning 

algorithms (MLj). Find the predicted values (Pj) of all algorithms (MLj). Compare the accuracy of 

all algorithms based on Original value (Ori) present in Test set and Predicted values (Pj). Evaluate 

and find Higher accuracy algorithms to choose the best algorithm in machine learning based the 

datasets collected from the source. 


