1	Supplementary information I
2	
3	Index:
4	S1. Sediment core liner, water enclosure and Electric Potential measuring set-up
5	S2. NapA phylogeny
6	S3 . NapD phylogeny
7	S4. NapF phylogeny
8	S5 . pOCC extended phylogeny
9	S6 . Alignment of the amino acid sequences of the pOCC
10	S7. Extended discussion

Figure S1. Core liner and water enclosure for sediment incubation. Liner for sediment incubation 13 (A), enclosure for water incubation with o-rings (B), Electric Potential sensor and reference (C), 14 Oxygen fiber optode (E). Air or $N_2 + CO_2$ gas mix (F). 15

Figure S2. Phylogeny of the napA gene of Ca. Electronema sp. GS. Maximum likelihood tree 19

- supported by 1000x bootstrap resampling. Bootstrap values are represented by circles: open >70%, 20
- filled >90%. The scale bar represents 0.3 estimated amino acid substitutions. Tree was rooted with 21
- 22 the nitrate reductase (nas) of Bacillus subtilis.

Figure S3. Phylogeny of the *napD* gene of *Ca*. Electronema sp. GS and *Ca*. Electrothrix aarhusiensis
 MCF. Maximum likelihood tree supported by 1000x bootstrap resampling. Bootstrap values are
 represented by circles: open >70%, filled >90%. The scale bar represents 0.6 estimated amino acid
 substitutions. Locus tags of cable bacteria genes are in parentheses.

Figure S4. Phylogeny of the *napF* gene of *Ca*. Electronema sp. GS, *Ca*. Electrothrix aarhusiensis MCF and *Ca*. Electrothrix marina A5. Maximum likelihood tree supported by 1000x bootstrap resampling. Bootstrap values are represented by circles: open >70%, filled >90%. The scale bar represents 0.3 estimated amino acid substitutions. The phylogenetic position of the short NapF fragment of *Ca*. E. marina (dotted line) was calculated by the maximum parsimony method in the program ARB without changing the overall tree topology.

Figure S5. Full phylogeny of the pOCC of *Ca*. Electronema sp. GS and *Ca*. Electrothrix aarhusiensis MCF. Maximum likelihood tree supported by 1000x bootstrap resampling. Bootstrap values are represented by circles: open >70%, filled >90%. The scale bar represents 0.2 estimated amino acid substitutions. The phylogenetic position of the short pOCC fragment of *Ca*. E. marina (dotted line) was calculated by the maximum parsimony method in the program ARB without changing the overall tree topology. Tree was rooted with the nitrite reductase (nirB) of *Bacillus subtilis*.

43	Ga0183576_10612	MKVVVAEDSRP	KA
44	H206 0316 4	MRVVLWSAALMLAIGIQGGYVQAAQESGLP	KA
45	BOGUAY 0691	MIRKLWAFTAGAALLLVQGASIASVDAPP	NE
46	KHD08390.1	MSRKLWAFLAGAAMLLLQTASMAAVESAP	DE
47	WP 053951924.1	MENHYFVIKIYRRNAMKAIIKSLIFFLSLMFLSSSAFSSVTEPP	AQ
48	2647705483	MKAIIKSLIFFLSLMFLSSSAFSSVTEPP	A0
49	2601634560	MRKWWLLGIGAALLLTHGFAVASVKAPP	KĒ
50	2730372430	MKKI.IYI.I.TTTVI.VMAGTEAVAVTKINTP	0K
51	K.TR43854 1		KE
52	ROR45054.1		KE
52	WD 007472050 1		TVT VN
55	$WF_007475950.1$		
54	WP_013902282.1		
55	WP_011992073.1		VAHK
50	WP_002849252.1		VDRN
5/	2521963319	MNDLNRLGRVGRGENLKP	
58			
59	Ga0183576_10612	LSQETKQ <mark>C</mark> LG <mark>CH</mark> KDINTGMYQEWGESKHFGANVG <mark>C</mark> YE <mark>CH</mark> KAEKGEADAIDHN(3
60	н206_03164	LSEETKT <mark>C</mark> LQ <mark>CH</mark> KEINRGMYQQWGGSKHFGANVG <mark>C</mark> YE <mark>CH</mark> QAKKGEADAMEHN(3
61	BOGUAY_0691	FSEETKA <mark>C</mark> IA <mark>CH</mark> KETSLGVVQQWGDSKHHRAKVG <mark>C</mark> YE <mark>CH</mark> KAEAGEIDAFIHE	SEDKK
62	KHD08390.1	ISEETKI <mark>C</mark> VK <mark>CH</mark> KKRSPGIVKQWENSAHFGKNVG <mark>C</mark> YE <mark>CH</mark> KAEPGDVDAFLHE	2
63	WP 053951924.1	MSETSKQ <mark>C</mark> AT <mark>CH</mark> KKNNNGIVQQWGDSKHHRAKVG <mark>C</mark> YE <mark>CH</mark> AADPGDKDAFLHGI	<
64	2647705483	MSETSKQ <mark>C</mark> AT <mark>CH</mark> KKNNNGIVQQWGDSKHHRAKVG <mark>C</mark> YE <mark>CH</mark> AADPGDKDAFLHG	<
65	2601634560	MSTETKACVKCHKKNNPGLIOAWGASKHYGANVGCYECHAADAKDPDAYIHDI)
66	2730372430	LSKASOECTGCHADSTVNIYOOWGYSKHYRANVGCFECHEAOKGDPDAFEHO	3
67	K.TR43854 1	ISEKSKOCASCHSTTTVNIYOOWGTSKHYRANVGOYECHEAKKEDKDAFEHN(
68	RMH60699 1		, 2
69	WP 007473950 1		,)
70	WD_015002282_1		ס
70	WP_013902282.1		: T
71	WP_011992073.1		1
72	WP_002849252.1		1
/3	2521963319	VDAMQCFDCHTQIEDMHTVGKHATVNCVHCHDATEHVETASSRRI	4
74			
/5	Ga0183576_10612	FSIAVIVSPKD <mark>C</mark> SR <mark>CH</mark> AKEVEEFEGSHHSKAG	
/6	H206_03164	FTVSIIVSPKD <mark>C</mark> AK <mark>CH</mark> EKEVKEFEGSHHSKAG	
77	BOGUAY_0691	AIGKNKPISIIVSPKD <mark>C</mark> SN <mark>CH</mark> EKEVAEYTASHHSQGG	
78	KHD08390.1	KKVGNKHISIIVSPKD <mark>C</mark> AN <mark>CH</mark> EKEVTEFTNSHHSQAA	
79	WP_053951924.1	-KGDKKLISIIVSPRD <mark>C</mark> AN <mark>CH</mark> AHEVKQTEDSHHAKAG	
80	2647705483	-KGDKKLISIIVSPRD <mark>C</mark> AN <mark>CH</mark> AHEVKQTEDSHHAKAG	
81	2601634560	-KKVKKHISIIVSPKD <mark>C</mark> AN <mark>CH</mark> EAEAAEMKKSHHADAG	
82	2730372430	YLISIIVSPKD <mark>C</mark> GK <mark>CH</mark> AREVDEFENSHHSKAG	
83	KJR43854.1	EYISIIVSPLD <mark>C</mark> AR <mark>CH</mark> EKEADEFMNSHHAKAG	
84	RMH60699.1	YLISVIVSPKDCAKCHAKEVDEFENSHHSKAG	
85	WP 007473950.1	MQGANWTVQIAVSSVT <mark>C</mark> AK <mark>CH</mark> AKEVTEFLNSGHARGAAQWLATPKNPHGIAMTRLA	AYGYE
86	WP_015902282.1	MOGSNWTVOIAVSSVTCAKCHAKEVTEYMNSGHARGAAOWLATPKNKHGYLMTKLS	SYHYE
87	WP_011992073.1	PKDSNNHVSMLVSPKTCAKCHENEVDEFTKSGHARGA	
88	WP_002849252.1	PKDSGNHVSILVSPKTCAKCHAKEVEOFOOSGHARGG	
89	2521963319	GERPVT-RMDLEACATCHTAOFNSFVEVRHESHP	
90	2021900019		
91	Ga0183576 10612		
92	H206 03164		IMKDC
02			INICUG
93	BOGOAI_0691		/ KKDG
54 0E	ND 052051024 1		V DDC
32	WF_UD39D1924.1	KILGSLUNLLAEVVEGNSGEVTEGEPDGNSAAAVNGCWQCHGSQVK	/LEDG
96	264//05483	KILGSLDNLLAEVVEGNSGEVTEGFPDGNSAAAVNGCWQCHGSQVKV	/LEDG
97	∠601634560	KIMGSLDNLLAEVIEGDSGEITTEGFPEGNSAAAVNG <mark>C</mark> WQ <mark>CH</mark> GSQVKV	/LKDG
98	2730372430	RIMGSLDNVLAEVVEGNRGMKTEGFPMGISAAAVNG <mark>C</mark> WQ <mark>CH</mark> GSVVR	/LKDG
99	KJR43854.1	RIMGSLDNVLADVAEGNRGMKTEAFPDGISAAAVNG <mark>C</mark> WQ <mark>CH</mark> GSVVK	/NKDG
100	RMH60699.1	RILGSLDNVLAEVVEGNSAFVTHGFPDGASAAAVNG <mark>C</mark> WQ <mark>CH</mark> GGQVKA	ALEDG
101	WP_007473950.1	TLRGNHPKYLADGKTLTKGIRK-DDKFFRANEKNPRLSDLSVANI <mark>C</mark> IQ <mark>CH</mark> GTIIKI	DKNG

102	WP_015902282.1	SLKGANQSYMVNGKKMEKGI	RT-DGPVFQANEKSPRVADL	NVANI <mark>C</mark> IQ <mark>CH</mark> GTTIKLDKN	G
103	WP_011992073.1	MQMYANPA-IVKLMYHYEG-	ADHPDFKMA.	PDATGCTQCHGTVIKLDAD	Η
104	WP_002849252.1	VQMFAKKG-MVELMYHYEAN	GKPYENDAPFYAGNENLKDA.	PASTG <mark>C</mark> IQ <mark>CH</mark> GMEIKLDKE	G
105	2521963319	RLEKATPTSRSPMFDKLI	AGHGFAFEHAE	PRSHAFMLVDHFVVDRAYG	G
107	Ga0183576 10612	KLDP-ATWPNTGIGRI	NPDGSEGS	<mark>C</mark> AA <mark>CH</mark> SRHNF	·_
108	H206 0316 4	KLDP-ATWPNSGIGRI	NPDGSTGS	Caa <mark>Ch</mark> srhdf	'_
109	BOGUAY 0691	SLDP-ATWPNTGIGRI	NPDKSRGS	CSA <mark>CH</mark> SRHKF	'_
110	KHD08390.1	RLDP-ATWPNTGIGRL	NPDGSRGS	<mark>C</mark> TA <mark>CH</mark> SRHEF	'_
111	WP 053951924.1	ALDP-ATWPNTGIGRI	NPDGSEGA	<mark>C</mark> TA <mark>CH</mark> SRHSF	'-
112	2647705483	ALDP-ATWPNTGIGRI	NPDGSEGA	<mark>c</mark> ta <mark>ch</mark> srhsf	·_
113	2601634560	OLDP-ATWPNTGIGRI	NPDGSKGS	Caachsrhof	·_
114	2730372430	RLDP-ATWPNTGMGRV	NPDGSEGS	CTACHORHEF	·_
115	KJR43854.1	KLDV-ATWPNTGMGRV	NPDNSEGS	CSACHORHEF	·_
116	RMH60699 1	TLDP-ATWPNTGIGRI	NPDGSEGS	CSACHORHSE	·_
117	WP 0.07473950 1	KPDA-ATWPNDGIASI	YPDGGVGN	CLSCHSBHKF	·_
118	WP 015902282 1	RPDA-TTWPNDGIAAI	YPDGGVSN		·_
119	WP 011992073 1	KPTK-ETWPNYGIGNV			·_
120	WP 002849252 1	VDLPCKCWDNVCICNA			·_
120	2521963319	REOE-KNMOKATDCWCYADC			Т
121	2321903319		AWI VII LADI 1555 QI(I(FII5)	QIAIAANI V <mark>O</mark> DN <mark>CN</mark> IQDNI	Ц
122	Ga0183576 10612			POTETVNESKHGTAVOA	M
123	H206 02164			UNIQUEI INESKIIGIAIQA	.1N NT
124	POCUNY 0601		SVEODENCGACHMGP		И1. ТЛ
125	BUGUAI_0091				И1. ТИ
120	NHD00390.1 WD 052051024 1				и. О
127	WP_000000000000000000000000000000000000				2
120	2047703403				2 D
129	2601634560			DHPQIEIYNESKHGIAYRA	.D
121	2/303/2430			DHPQIEIYKESKHGINYYA	NI.
121	KJR43854.1			DHPQIEIYNESKHGINYYA	NI.
132	RMH60699.1		SAAQARQPETCGRCHLGP	DHPQKEIYEESKHGISYYA	NI.
133	WP_00/4/3950.1		SAAESRHPMACSNCHLGP	DHPDKEIFESSVHGHIFDT	N.
134	WP_015902282.1		SAEARQPGACTNCHLGP	DHPMKEVFESSVHGHIFET	N
135	WP_011992073.1		NIAEARKPAACASCHLGP	DHPDIEIFNNSMHGHIFNA	E.
136	WP_002849252.1		DMTEARKPSACASCHLGP	DHPN1E1YNNSMHGK1FNA	.E
137	2521963319	DWAYMGDEHEAAKWSRTSEV	VEFARDLNHPLN <mark>C</mark> FM <mark>CH</mark> -DP	HSAGPRVVRDGLINAVVDR	.G
139	Ga0183576 10612	KDRMNMNSSKWVV	GEDYSAAPT	<mark>C</mark> AT <mark>CH</mark> MSATKDMDVNHN	IV
140	H206 03164	KDKMNLDSPKWIA	GEDYSAAPT	<mark>Catch</mark> msatkdldinhn	V
141	BOGUAY 0691	KDKMNMDRSKWIA	GEDYDAAPT	CATCHMSATKEOGVNHD	v
142	KHD08390.1	TDKMNLDAHPWVV	GKDYSAAPT	CATCHMSATKNOEVSHD	v
143	WP 053951924.1	KGOLGMDKSKWVP	GEDYYTAPT	CSTCHMGATKDODVTHD	vV
144	2647705483	KGOLGMDKSKWVP	GEDYYTAPT	CSTCHMGATKDODVTHD	V
145	2601634560	REKMNMDNAKWVV	GEDYYVAPT	CATCHMSATRKOGITHD	• •77
146	2730372430	KDKMNLESAKWVV	GEDYFAAPT		Ŵ
147	K.TR43854 1	KDKMNLESAKWIL	GEDYSAAPT		T
148	ROR45054.1	IDKMNLESAKWW	GEDYDAAPT		т
140	WP 0.07473950 1	FEDYNEKTGEOIP			T.
150	WP 015902282 1	FEDYKEDTCEOID			v (77)
151	WP_011992073_1	CNTWKYDSA PDTWDU			v (77)
152	WP_011992073.1				V (77)
152	WF_002049202.1				V A
153	2321903319	LGIIPHDPVKSEQQGMIKVI	I QRGREDI RAIGLEDIADSN	VM <mark>C</mark> AQ <mark>CH</mark> VEINCNPGIQLS	D
155	C=0183576 10610	CI DIKMNNDDATOVEDU			- 71
122	U206 02161	CIDIKMNNVENTOKI ON		KOWNITOATIIGUMKK	.A V
150	DOCUAN OCO1	GLKINWNNKPPISKLSH	TTD		.r.
150 150	BUGUAI_UO91	GMIKISWNNKPAISVKPE	1"TD/	ARMULPGQHVKWDERR	ש.
150	NHUU039U.I	GLKISWINKPAISIKPE	L'I'DI	ERMGLPGADIKWDERR	ע. די
100	WP_US3951924.1	GMRISWNNKPPVSIKPE	VSD	KKMGLPGQHVDWE'TRR	.U
τρΟ	∠64//05483	GMRISWNNRPPVSIRPE	VSD	ĸĸmglPGQHVDWETRR	U.

161	2601634560	GDRLSWNNRPPVVKGTVGWEDRRD
162	2730372430	GLRIKWNNRPPLLKLAHPSAKITGDQRRA
163	KJR43854.1	GLRIKWNNRPAOLKOAHPSAAITGDMRKD
164	RMH60699.1	GLRIKWNNRPVHSKLSHLTDKKWNLKSASVTADTRRE
165	WP 007473950.1	SLRLKWNLWAPASFLRTGGNETAGWAFWNGGGKVTENTVTRGNPKAGNPNGPEAARA
166	WP 015902282.1	SI.RI.KWNI.WAPGSFI.RTGGYETAGWAFWKGGGKINPDTVIRGNAKAGNPOGPEAARA
167	WP 011992073 1	SORI,KWNI,WAPRSEI,RTKGYEOAAYDYWKTGKI,NTGTPI,AGNPOGPEAARA
168	WP 002849252 1	SVRLKWNLWAPHSNLRTCCYDTAAETYAKECKISICTPLACNINGPEAART
169	2521963319	CCRVCMDDRRANHFFWANVEDVKEAAOETDEEDERHATTCAALDKLOHPEAETFWCSVHE
170	2021900019	
171	$C_{2}0183576 10612$	
172	Ga0183376_10012	
172	H206_03164	
174	BOGUAY_0691	
174	KHDU8390.1	NMKDVCSNCHSSEFVDNFYVQYDELIKLYNNKFGKPGLALMKVAKPLL-KPVKF
175	WP_053951924.1	NMQDVCSACHSEDYIENFYAQYDGLVNLYNEKFAKPGIKLMKAAKPLM-KPVKF
176	2647705483	NMQDVCSACHSEDYIENFYAQYDGLVNLYNEKFAKPGIKLMKAAKPLM-KPVKF
1//	2601634560	KMKDV <mark>C</mark> NA <mark>CH</mark> EESWTENWYTQYDGLVDLYNRKYGEPGLKLMKAAKPLI-KGPKF
1/8	2730372430	NMEKV <mark>C</mark> AA <mark>CH</mark> NEDFYKAFFKQYEAQLQLYNEKWAKPGLKLYKKATEVL-KAVKGKEYAKF
179	KJR43854.1	NMKKV <mark>C</mark> VN <mark>CH</mark> NINFVDGFYTQYEAQLQLYSDKWAVPGEKLFNKATEVL-KAVHGDKYATF
180	RMH60699.1	NMVDV <mark>C</mark> QT <mark>CH</mark> NPNFTSNFFTQYEGLIKLYDEKFATPGEKLYKAAIPLL-TADADGNHIKF
181	WP_007473950.1	QMKQV <mark>C</mark> MA <mark>CH</mark> AATFTNNFFQRADAHVKVYNQYKAFATKMLKELKAKGLMKADLW
182	WP_015902282.1	EMKKV <mark>C</mark> MV <mark>CH</mark> EATFTNNYFQRIDAAVTVYNQYKSFATKMLKDLKAKGLMKSDVW
183	WP_011992073.1	EMKLV <mark>C</mark> KT <mark>CH</mark> TITHTDNFFAMGDKQVQLYNVYYDEAKKMLDDLKAKNLLLEDAW
184	WP_002849252.1	EMKQV <mark>C</mark> KS <mark>CH</mark> SSKATDSFFVSADNHVELYNTYHTEAKKMLDDLKAKGLLKKDEW
185	2521963319	RNGVA <mark>C</mark> AD <mark>CH</mark> MPKVQLENGKVYTSHSQRTPRDMMGQA <mark>C</mark> LN <mark>CH</mark> AEW
186		
187	Ga0183576_10612	AQAIDFTWYEIW <mark>H</mark> HEG <mark>R</mark> RARHGAAMMAPDY-TH <mark>W</mark> HGTYEVAKHWAAKYIPELK
188	H206_03164	SQLIDYTWFEIW <mark>H</mark> HEG <mark>R</mark> RARHGAAMMAPDY-TH <mark>W</mark> HGTYEVAKHWYSKYIPELE
189	BOGUAY_0691	ANHLDFVWFEIW <mark>H</mark> HEG <mark>R</mark> RARHGASMMGPDW-TQ <mark>W</mark> HGNYEVGKHFYGKYVPELE
190	KHD08390.1	SNKIEFTWFEIW <mark>H</mark> HEG <mark>R</mark> RARHGAAMMGPDY-TH <mark>W</mark> HGTYEVGKHFYSEFIPELE
191	WP 053951924.1	SNKIDFIWFEIW <mark>H</mark> HEG <mark>R</mark> RARHGAAMMGPDI-TH <mark>W</mark> HGTYEVAKHFYAKFIPELE
192	2647705483	SNKIDFIWFEIW <mark>H</mark> HEG <mark>R</mark> RARHGAAMMGPDI-TH <mark>W</mark> HGTYEVAKHFYAKFIPELE
193	2601634560	SNKIDFIWFELW <mark>H</mark> HEG <mark>R</mark> RARMAASMQGPDI-TH <mark>W</mark> EGTYDLGKNFYTELVPELK
194	2730372430	AQKIDYTWFELW <mark>H</mark> HEG <mark>R</mark> RVRHGASMMAPDY-TQ <mark>W</mark> HGNYDLAKNWYSEYIPEIR
195	KJR43854.1	AQKIDYTWFELW <mark>H</mark> HEG <mark>R</mark> RVRHGASMMAPDY-TQ <mark>W</mark> HGNYELARNWYGEYVTELK
196	RMH60699.1	SDDIDFVWFELW <mark>H</mark> HEG <mark>R</mark> RARHGASMMAPDY-TH <mark>W</mark> HGTYDLAKNFYTEFIPEIK
197	WP 007473950.1	SDPFFKLYYYLW <mark>H</mark> HEG <mark>R</mark> RMRQAAVMGSPDY-AH <mark>W</mark> HGVFQVMQDIREMK
198	WP 015902282.1	SDPFFKLYYYLW <mark>H</mark> HEG <mark>R</mark> RFRHGAAMGSPDY-AH <mark>W</mark> HGVFQVMQDIREMK
199	WP_011992073.1	EDEFQDVFYHLW <mark>H</mark> HEG <mark>R</mark> RMRQGALMGGPDY-SH <mark>W</mark> HGVFEVKNDIRKLR
200	WP_002849252.1	SDEFOITYYYLWHHOGRRMRMGAVMGAPDY-AHWHGVFEVOODIKKLR
201	2521963319	TEDQALYAIDYIKNYTHGKIVKSEYWLAKMIDLFPVAKRAGVSEDVLNQAR
202		
203	Ga0183576 10612	EL-IEOGKGSANKEAVAAAEELEKLLTETLNSDNHKWFLG
204	H206 03164	EV-IESGKHSDNKEAAKLADELEKMLEDVRNSDNHKWSIG
205	BOGUAY 0691	EL-IEKNLDSEDANKKASALALKNLLHEILSDEFVVTDEKTGKEVKSTGHSWFIG
206	кнровз90 1	EL-VEANLESSDPVKSKAAHDLEKKTEEVLNTDDHKWYIG
207	WP 053951924 1	YIVEKGMRSTSEKKOASAALLOATIDEVLNSDNHKWYI.G
208	2647705483	YIVEKGMRSTSEKKOASAALLOATIDEVLNSDNHKWYLG
209	2601634560	EIIEHGKHGSAADKKAAENLAKVI.DEVI.NMEEHKWFI.G
210	2730372430	EI-IEMGKHSGKGKAERLAKELEEMLEETINSDNHKWSIG
210	K.TR/385/ 1	
212	RMH60600 1	
212	$\frac{1}{10000000000000000000000000000000000$	
213	WE_00/4/3930.1 WD_015000000_1	
∠⊥4 21⊑	WF_UIJYUZZŎZ.I WD_011002072_1	DI-IDIUMUMUVUCATUFALANFALANFALA
213	WF_UII9920/3.1	NT-IVEVIE9RVAU
217 217	WF_UUZ849252.1	
21/ 210	2221303313	ELHIDAHLIWEWWTAENSVGFHNPDQAKESLMTSISKSKEAVS
∠⊥ō 210	C-0102E7C 10C10	
Z13	Gauro32/0_10012	AEUEAUAAEKAAGAEEľKAAIAK

220	H206 03164	QENEADKKLRLERAKEYDAGYAN
221	BOGUAY 0691	KMSPEEAKARKESREAFIQRYGEQTDR
222	KHD08390.1	KMDAKEAAVRQKVTDDFIKRYGKHEAIEKKE
223	WP 053951924.1	KMSAKQQEIRKKATADFKAQFEK
224	2647705483	KMSAKQQEIRKKATADFKAQFEK
225	2601634560	KMDPAKAKARKARQEEFKNRYKEH
226	2730372430	KEDPASKAERERRRREFLKRYQQKVDM
227	KJR43854.1	KEDPAVKAERDKRRQEFLERYKAK
228	RMH60699.1	KMSKAEKQKRKKAAEEFKARYK
229	WP 007473950.1	
230	WP 015902282.1	
231	WP_011992073.1	
232	WP 002849252.1	
233	25 <u>2</u> 1963319	LLNDAIDAQVASR
~~ .		

Figure S6. Alignment of the amino acid sequences of the octaheme cytochromes encoded in the 236 237 genomes of Ca. Electronema sp. GS (Ga0183576 10612), Ca. Electrothrix aarhusiensis MCF (H206 03164), *Ca.* Maribeggiatoa sp. (BOGUAY 0691), Ca. Thiomargarita nelsonii 238 (KHD08390.1), Ca. Thioglobus autotrophicus (WP 053951924.1), Ca. Thioglobus sp. EF1 239 (2647705483), endosymbiont of Riftia pachyptila (2601634560), Nitrospirae bacterium jdFR-81 240 241 (2730372430), *Ca.* Magnetoovum chiemensis (KJR43854.1), Calditrichaeota bacterium (RMH60699.1), the EHaO encoded in the genomes of Caminibacter mediatlanticus 242 (WP 007473950.1), Nautilia profundicola (WP 015902282.1), Campylobacter 243 curvus (WP 011992073.1), Campylobacter fetus (WP_002849252.1) and Thioalkalivibrio (2521963319). 244 The eight conserved heme binding motives (CxxCH) (yellow), a conserved tryptophan thought to be 245 important for reductive type HaO (green) and conserved residues located at the putative active sites 246 (blue) are highlighted. 247

249 LINKING SULFIDE OXIDATION TO NITRATE REDUCTION VIA MENAQUINONE 250 CYCLING THROUGH LONG-DISTANCE ELECTRON TRANSFER IN CABLE 251 BACTERIA

The metabolic model of nitrate reduction in the cathodic nitrate-reducing cells in cable bacteria 252 253 includes a menaquinone cycle in which a reduced menaquinone donates two electrons to the menaquinol dehydrogenase NapGH, membrane component NapH. This results in the transfer of two 254 protons from the cytoplasm to the periplasm. The menaquinone is reduced back via sulfide oxidation, 255 which however takes place in a distant cathodic cell, most likely via reverse sulfate reduction (1). 256 Assuming the presence of an identical membrane-bound enzymatic apparatus for catalyzing 257 menaquinone oxidation-reduction reactions in the cathodic nitrate-reducing cell and in the anodic 258 sulfide-oxidizing cell, and that these apparatus are electrically connected with a conductor the 259 metabolic system linking sulfide oxidation to nitrate reduction via a menaquinone cycle can be 260 considered as a concentration cell (Fig. S7.1). This is a galvanic cell that has two equivalent half-cells 261 with the same reactants differing only in concentration. Such a concentration cell produces a voltage 262 as it attempts to reach chemical equilibrium, which occurs when the concentration of the reactant in 263 both half-cells are equal. This is achieved by transferring electrons from the half-cell with the highest 264 concentration of reduced compounds to the half-cell with a lower concentration of these. In the 265 following we will investigate, the thermodynamic constrains on the concentration cell model of 266 nitrate reduction in cable bacteria in order to elucidate if the flow of electrons between the 267 menaquinone in pool anodic (half) cells and the menaquinone pool in cathodic (half) cells via the 268 conducting fiber in cable bacteria is thermodynamic possible and can account for current observed 269 270 running in these organisms.

272 *Figure S7.1*. Conceptual scheme of a concentration cell.

274 The voltage yield of the concentration cell

275 The voltage produced by the concentration cell can be estimated from the Nernst equation:

276
$$E = E_o - \frac{0.0592}{n} LogQ$$
 (Eq. S1)

Where E_0 is the standard cell potential, which is defined as the sum of the reduction potential and the oxidation potential of the half reactions. *n* is the number of moles of electrons transferred, and *Q* is the reaction coefficient. The reduction potential (E_{red}) for the reaction MQ + 2H⁺ + 2e⁻ \rightarrow MQH₂ is - $67 \pm 10 \text{ mV}$ (2) and the oxidation potential is consequently +67 ± 10 mV. Hence, E_o equals zero. The full reduction of 1 mole of menaquinones implies the transfer of two moles of electrons and *n* consequently equals 2. The reaction coefficient *Q* is defined from the overall reaction:

283
$$MQH_{2an} + MQ_{cat} + 2H_{cat}^+ \rightarrow MQ_{an} + 2H_{an}^+ + MQH_{2cat}$$

284 Thus:

285
$$Q = \frac{[MQH_{2cat}][MQ_{an}][H^+_{an}]^2}{[MQH_{2an}][MQ_{cat}][H^+_{cat}]^2}$$
(Eq. S2)

The proton source for the menaquinone cycle is the cytoplasm. As an equivalent pH of the cytoplasm of cathodic and anodic half-cells can be assumed, $[H^+_{an}]^2/[H^+_{cat}]^2$ approximates 1. Hence:

$$Q \approx \frac{[MQH_{2cat}][MQ_{an}]}{[MQH_{2an}][MQ_{cat}]}$$
(Eq. S3)

289 With *a* and *b* denoting the fraction of oxidized menaquinones (MQ) to the total pool of menaquinones

290 (MQ_{Tot}) in the anodic cell and cathodic cell, respectively we have:

291
$$MQ_{an} = a MQ_{Total anode}$$
 (Eq. S4)

292 $MQH_{2an} = (1-a) MQ_{Total anode}$ (Eq. S5)

293 for the anodic cell, and:

294 $MQ_{cat} = b MQ_{Total cathode}$ (Eq. S6)

295 $MQH_{2cat} = (1-b) MQ_{Total cathode}$ (Eq. S7)

296 for the cathodic cell. Thus:

$$Q = \left(\frac{\left[(1-b) \ MQTotal_{cathode} \][a \ MQTotal_{anode}]}{\left[(1-a) \ MQTotal_{anode} \][b \ MQTotal_{cathode} \]}\right)$$

$$297 = \left(\frac{(1-b) \ a}{(1-a) \ b}\right)$$
(Eq. S8)

298 With this expression for Q the voltage produced by the concentration cell is given by:

299
$$E = -\frac{0.0592}{2} Log\left(\frac{(1-b) a}{(1-a) b}\right)$$
 (Eq. S9)

Figure S7.2. The voltage yield (E) of the concentration cell for different values of a (the fraction of
oxidized menaquinones in the anodic half-cell) as function of the fraction of menaquinones oxidized
in the cathodic half-cell (b).

303

Equation S9 allows to calculate the voltage yield (E) of the concentration cell for different values of 304 305 a and b A positive voltage yield (E > 0) implies that the concentration cell operates in the forward direction (electron transfer from the anodic half-cell to cathodic half-cell), whereas a negative voltage 306 yield implies electron transfer in the opposite direction. As shown in Figure S7.2, electron transfer 307 from the menaquinone pool in an anodic half-cell to the menaquinone pool in a cathodic half-cell is 308 most favorable if the electrons are delivered from an anodic half-cell with an almost completely 309 reduced (99.99%, a = 0.0001) menaquinone pool. For such a system, electron transfer in the forward 310 direction is possible if only 0.01% (b = 0.0001) or more of the menaquinone pool is kept oxidized in 311 the cathodic half-cell. The thermodynamic threshold increases when electrons are delivered from 312 313 anodic half-cells with a less reduced menaquinone pool. If electrons are delivered from anodic halfcells having 90% of the menaquinone pool reduced the recipient half-cell should keep more than 10% 314 of the menaquinone pool oxidized for the reaction to proceed, and for anodic cell having 70% of their 315 menaquinone pool reduced, the recipient cell should keep more than 30% of its menaquinone pool 316 oxidized, etc. The voltage yield is highest if electrons can be delivered from an anodic half-cell having 317 an almost fully reduced menaquinone pool, and for such a system the voltage produced falls in the 318 range 80-150 mV for 5% < b < 92%. The voltage yield drops significantly when the menaquinone 319 pool in the anodic half-cell becomes more oxidized. Figure S7.3 shows the voltage yield for a 320 concentration cell, where 90% of the menaquinone pool in the cathodic half-cell is oxidized (b = 0.1). 321 322 The 80-150 mV range is only obtained for cells where more than 98% of the menaquinone pool in the anodic half-cell are reduced. 323

Figure S7.3. The voltage yield of a concentraion cell as function of the fraction of menaquinons oxidized in the cathodic half-cell (b) where 90% of the menaquinone pool in the cathodic half-cell are oxidiced.

329 The current in the concentration cell

The above considerations points to the idea that sulfide oxidation coupled to nitrate reduction via 330 menaquinone cycling, through long-distance electron transfer, is thermodynamically possible and the 331 next question to be adressed is the if the voltage generated from the concentraion cell in a certain 332 configuration can drive an electric current comparable to the current running in metabolic active cable 333 bacteria. For simplicity, we will consider a steady-state situation. The drivers of the model are the 334 concentrations of oxidized and reduced menaquinones in the anodic and cathodic half-cells (eq. S2) 335 We will assume that the redox state of the menaqunonens in the anodic and cathodic cells of the cable 336 bacteria are controlled by: 1) the rate of menaquinone reduction via sulfide oxidation in the anodic 337 cells, 2) the rate of menaquinone oxidation in the anodic cells via the current generated from the 338 concentration cell, 3) the rate of menaquinone reduction in the cathodic cells via the current generated 339

from the concentration cell, and 3) the rate of menaquinone oxidation via nitrate reduction. At steadystate, (i.e. a, and b are constant) these rates are equal in magnitude. We will further assume that the total pool of menaquinones (MQ_{Tot}) in the anodic cell equals the total pool in the total pool of menaquinones (MQ_{Tot}) in the cathodic cells and that the rate constant for menaquinone reduction in the anodic cell is equal to the rate constant for menaquinone oxidation in the cathodic cell. This implies that a = (1-b) in equation S9, which then can be simplified to:

346
$$E = -\frac{0.0592}{2} Log\left(\frac{b^2 - 2b + 1}{b^2}\right)$$
 (Eq. S10)

347 With this expression we can estimate the curent in the steady-state sitution by means of ohms law.

Where *I* is the current, *E* the voltage yield of the concentraion cell, and *R* is the resistance of the wire.
The resistance of wire can be determined as in (3), *i.e.*,:

$$R = \frac{l}{\sigma A}$$
(Eq. S11)

Here *l* is the length of the wire, σ the conductivity and *A* the cross section area of the wire.

353 The current can therfore be estimated as:

354
$$I = -\frac{0.0592}{2} Log\left(\frac{b^2 - 2b + 1}{b^2}\right) \frac{\sigma A}{l}$$
 (Eq. S12)

The conductive element in cable bacteria is a periplasmatic network of discrete fibres (4). Each of those with a diameter of ca. 50 nm, corresponding to a cross section area of 2 x 10^{-15} m², and a counductivity of 20.1 S cm⁻¹, corresponding to 2.01 x 10^3 S m⁻¹ (4).

Figure S7.4, shows the current running between two half cells, connected with a wire having conductive properties similar to a cable bacteria fibre. The current flows from the anocic half cell to the cathodic half cell if the fraction of oxidized menaquinones to the total pool of menaquinones in the cathodic half cell (b) is > 0.5. The current increases for $b \rightarrow 1$. There is an inverse relationship between the length (*l*) of the wire connecting the anodic and cathodic half-cells and the magnitude of the current running through it. Half cells connected with a short wire in general have a higher current flowing between them than half-cells connected with a long wire.

Figure S7.4. Steady state current between half cells in the concentration cell, as function of b: the
fraction of oxidized to total menaquinenes in the cathodic half cell. The half cells are electrically
connected with a wire having conductive properties similar to a conducting fibre in cable bacteria.
Collored lines represent the current in wires at different length (l).

370

A cable bacterium can be considered as a composit of concentration cells with a series of anodic half 371 cells coupled to a few cathodic half cells via the conducting periplasmatic network of fibres. We will 372 for simplicity consider a virtual cable bacterium with 5000 anodic cells, each coupled to a cathodic 373 cell. The cathodic cell can in principle be the same for all anodic cells. 5000 cells spans a distance of 374 2 cm and in our simplified model the wire connecting the most distant anodic cell to the cathodic cell 375 is 2 cm long while the wire connecting the nearst anodic cell to the cathodic cell is 4 µm long. In 376 general, the length of the wire for the cells between the most distant and the nearest cell is equal to 377 their distance to the cathodic cell, which is in a fixed position for all anodic cells. According to 378

equation 12 and Fig S2.4, the implication of such a configuration is that the metabolic activity of the cells in the filament decreases with the distance to the cathodic cell. Figure S7.5 shows the current integrated for all 5000 cells in the filament. As seen, the current generated from this composit concentration cell model of a cable bacterium wastly exceeds the 0.2 - 0.36 nA estimated for natural cable bacteria (5-7) for most redox states of the menaquinone pool in the cathodic cell. Already with 50.11% of the menaquinones in the cathodic cell being oxidized, the current is >1 nA.

Figure S7.5. Curent produced from 5000 individual half-cells (the approx. number of cells in a 2 cm
long filament). Dashed line indicates the max filament specific current production (0.4 nA) reported
in the literature.

389

385

390 Conclusion

Here we have shown using the concentration cell model, that electron transport from a menaquinone pool in a anodic cell to a menaquinone pool in a cathodic cell is thermodynamically possible, and when the concentration cells are brought together in a way that simulate a cable bacterium, that the voltage produced from such cells can be sufficiently high to drive an electric current that exceeds the current reported for cable bacteria.

- **396 REFERENCES**
- 397
- Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, *et al.* On the evolution
 and physiology of cable bacteria. Proc Natl Acad Sci U S A. 2019; 116(38): 19116-25.
- Wagner GC, Kassner RJ, Kamen MD. Redox Potentials of Certain Vitamins K: Implications
 for a Role in Sulfite Reduction by Obligately Anaerobic Bacteria. Proceedings of the National
 Academy of Sciences of the United States of America. 1974; 71(2): 253-6.
- 3. Bockris JOM, Reddy AKN. Modern Electrochemistry 1 Ionics. 2 ed. New York: Plenum
 Press; 1998. 769 p.
- 405 4. Meysman FJR, Cornelissen R, Trashin S, Bonne R, Martinez SH, van der Veen J, *et al.* A
 406 highly conductive fibre network enables centimetre-scale electron transport in multicellular cable
 407 bacteria. Nat Commun. 2019; 10(1): 4120.
- Malkin SY, Rao AMF, Seitaj D, Vasquez-Cardenas D, Zetsche E-M, Hidalgo-Martinez S, *et al.* Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor.
 Isme Journal. 2014; 8(9): 175-9.
- Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. The geochemical fingerprint of
 microbial long-distance electron transport in the seafloor. Geochim Cosmochim Acta. 2015; 152(0):
- 413 122-42.
- 414 7. Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al.
- 415 Cable Bacteria in Freshwater Sediments. Appl Environ Microb. 2015; 81(17): 6003-11.
- 416