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'Candidatus Mycetohabitans vallotii' sp. nov. 

Based on the well supported phylogenetic positioning of 'Candidatus Vallotia 

tarda' within the clade formed by both currently recognized Mycetohabitans species, we 

propose the transfer of 'Candidatus Vallotia tarda' (NCBI taxonomy ID 1177213) to the 

Mycetohabitans genus. To keep the naming consistent, we propose the specific name 

'Candidatus Mycetohabitans vallotii' (va.lo.tii) in honor of the researcher Vallot, who 

described A. laricis in 1836. 'Candidatus Mycetohabitans vallotii' strains have a rod-

shaped cell and co-inhabit the cytoplasm of bacteriocytes of A. laricis/tardus along with 

'Candidatus Profftia tarda’ [1]. We propose the old species-specific name be used as a 

strain name, as ‘Candidatus Mycetohabitans vallotii' strain tarda. Given their 

monophyletic origin, the transfer of other species of the ‘Candidatus Vallotia’ genus to the 

Mycetohabitans genus is reasonable [1, 2], however as multilocus sequence data are not 

available for those endosymbionts yet, we leave their species level re-designation open for 

future studies. 
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B vitamin synthesis by Vallotia  

Vallotia likely produces six B vitamins (Figures S8, S11). For the synthesis of 

riboflavin, neither yigB nor ybjI [3] were found, however, the promiscuity of 

phosphatases has been documented [4]. Thus another phosphatase of Vallotia, among 

those belonging to the Haloacid dehalogenase-like hydrolase superfamily, like YigB, 

might perform this reaction. As is the case for other endosymbionts, panD is missing for 

the de novo synthesis of pantothenate, thus this would occur from L-valine and β-alanine 

in Vallotia. Regarding pyridoxine, Vallotia lacks pdxB and serC, but alternatives such as 

the ‘serendipitous pathways’, thiG and an unspecific transaminase might bypass these 

steps [5, 6]. BioH and bioF in biotin synthesis are missing from both symbionts, 

nonetheless, these are also notably absent in several symbiotic systems of aphids [7, 8].	

Vallotia might still produce biotin, if either 8-amino-7-oxononanoate (KAPA) is imported 

or if these steps are taken over by the host. Finally, given their lack of nadB and nadC 

genes, both endosymbionts could synthesize NAD+ and NADP+ from the import of 

nicotinate.  
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Figure S1. (A) A gall of Adelges laricis/tardus collected with a spruce branch. (B) Adelgids in an 
opened gall. 



Figure S2. Phylogenomic analysis showing the affiliation of ‘Candidatus Profftia tarda’ within 
the Enterobacteriales. Insect symbionts are highlighted in green. Xanthomonas campestris 
[AE008922], Stenotrophomonas maltophilia [AM743169] and Pseudomonas aeruginosa 
[AE004091]) were used as outgroups. Maximum likelihood (IQTREE) and Bayesian trees 
(MrBayes) were based on a concatenated set of 45 proteins. Maximum likelihood tree is shown. 
SH-aLRT support (%) and ultrafast bootstrap support (%) values based on 1000 replicates, and 
Bayesian posterior probabilities are indicated on the internal nodes. Asterisks stand for a 
maximal support in each analysis (100% / 1). The branch length leading to Profftia indicated 
accelerated evolutionary rates and was similar to those of other obligate and facultative insect 
symbionts included in the analysis.  5	



Figure S3. Phylogenomic analysis showing the affiliation of ‘Candidatus Vallotia tarda’ within 
the Burkholderiaceae. Selected members of Oxalobacteraceae (Janthinobacterium 
agaricidamnosum [HG322949], Collimonas pratensis [CP013234] and Herbaspirillum 
seropedicae [CP011930]) were used as outgroups. Maximum likelihood (IQTREE) and 
Bayesian analyses (MrBayes) were performed based on a concatenated set of 108 proteins. 
Maximum likelihood tree is shown. SH-aLRT support (%) and ultrafast bootstrap support (%) 
values based on 1000 replicates, and Bayesian posterior probabilities are indicated on the 
internal nodes. Asterisks stand for a maximal support in each analysis (100% / 1). 
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Figure S4. Functional reduction in Vallotia and Profftia, as shown by the number of genes among 
main functional categories according to the EggNOG classification in the genomes of Profftia, 
Vallotia, and closely related bacteria. The fungus-associated endosymbionts, Mycetohabitans 
rhizoxinica [FR687359.1, FR687360.1, FR687361.1], and M. endofungorum [GCA_002927045.1] are 
the closest relatives of Vallotia. Free-living bacteria involve the Vallotia-related Burkholderia 
thailandensis [CP008785.1], and Profftia-related Hafnia alvei [CP036514.1], and Obesumbacterium 
proteus [CP014608.1].  
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Figure S5. Proportion (%) of genes among main functional categories according to the EggNOG 
classification in the genomes of Profftia, Vallotia, and closely related bacteria. The fungus-associated 
endosymbionts, Mycetohabitans rhizoxinica [FR687359.1, FR687360.1, FR687361.1], and M. 
endofungorum [GCA_002927045.1] are the closest relatives of Vallotia. Free-living bacteria involve 
the Vallotia-related Burkholderia thailandensis [CP008785.1], and Profftia-related Hafnia alvei 
[CP036514.1], and Obesumbacterium proteus [CP014608.1].  



Figure S6. Venn diagram showing the pan-genome of the insect endosymbiont, Vallotia, 
and related fungus-associated endosymbionts, M. rhizoxinica [FR687359.1, FR687360.1, 
FR687361.1] and M. endofungorum [GCA_002927045.1]. 
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Figure S7. Proportion (%) of genes shared by Vallotia and fungus-associated 
endosymbionts (shown in brown) compared to those shared only by the fungus-associated 
endosymbionts (shown in green) – M. rhizoxinica [FR687359.1, FR687360.1, 
FR687361.1] and M. endofungorum [GCA_002927045.1] –  among the main functional 
categories according to the EggNOG classification. 
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Figure S8. Metabolic pathway reconstruction of Vallotia. Dashed lines indicate missing or incomplete pathways. Compounds of which 
biosynthesis or transport could not be confirmed based on the genomic data are in grey italics. Essential amino acids and B vitamins 
produced by Vallotia are shown in blue. 
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Figure S9. Metabolic pathway reconstruction of Profftia. Dashed lines indicate missing or incomplete pathways. Compounds of which 
biosynthesis or transport could not be confirmed based on the genomic data are in grey italics. Bolded texts indicate essential amino 
acids and B vitamins. Essential amino acids and B vitamins produced by Profftia are shown in red. 12	
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Figure S10. Ubiquinone biosynthesis in Profftia and Vallotia. Profftia has a complete gene set for 
the pathway. Asterisks indicate pseudogenized genes in Vallotia, which is not able to synthesize 
ubiquinone. Farnesyl diphosphate can be used for peptidoglycan synthesis by both symbionts. 
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Figure S11. B vitamin synthesis as inferred based on the presence of genes in Vallotia and 
Profftia. Missing genes are shown in grey. Asterisks indicate pseudogenes of Profftia.  
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