Supplementary Information for

Pathways of China's $PM_{2.5}$ air quality 2015-2060 in the context of carbon neutrality

Jing Cheng^{1,#}, Dan Tong^{1,2,#}, Qiang Zhang^{1,*}, Yang Liu¹, Yu Lei³, Gang Yan³, Liu Yan¹, Sha Yu⁴, Ryna Yiyun Cui⁵, Leon Clarke⁵, Guannan Geng⁶, Bo Zheng⁶, Xiaoye Zhang⁷, Steven J. Davis², and Kebin He⁶

¹Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, People's Republic of China

²Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, USA

³Chinese Academy of Environmental Planning, Beijing 100012, China

⁴Joint Global Change Research Institute, Pacific Northwest National Laboratory, University Research Court, College Park, MD 20742, USA

⁵Center for Global Sustainability, School of Public Policy, University of Maryland, College Park, MD 20742, USA

⁶State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

⁷Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081, China

*These authors contributed equally to this work.*Correspondence to: Qiang ZhangEmail: qiangzhang@tsinghua.edu.cn

1 Supplementary Information Text

2 Supplementary Note 1. Rationale and definition of scenario ensembles. A subset of six scenarios (Baseline, Current-goals, Ambitious-pollution-NDC-goals, Ambitious-pollution-2°C-goals, Ambitious-3 pollution-Neutral-goals, and Ambitious-pollution-1.5°C-goals) are designed to dynamically project China's 4 future emission and air quality pathways. The combinations of different SSP and RCP scenarios (i.e. SSP1-5 26, SSP2-45, SSP4-60) are selected according to the Scenario Model Intercomparison Project (ScenarioMIP) 6 for CMIP6¹. O'Neill et al describe ScenarioMIP's objectives, experimental design, and its relation to other 7 8 activities within CMIP6 in detail¹. In summary, O'Neill choose an SSP for each global average forcing 9 pathway by taking into consideration of the possibility that the sensitivity of climate outcomes to SSP choice 10 may be larger than anticipated. To account for that possibility, choices were based on one or, when 11 compatible, more of the following goals: facilitate climate research; minimize differences in climate; and 12 ensure consistency with scenarios that are most relevant to the IAM/IAV communities. Therefore, an 13 experimental design has been identified consisting of eight alternative 21st century scenarios (i.e. SSP5-8.5, 14 SSP3-7.0, SSP2-4.5, SSP1-2.6, SSP4-6.0, SSP4-3.4, SSP5-3.4-OS, SSPa-b) plus one large initial condition 15 ensemble (SSP3-7.0) and a set of long-term extensions (SSP5-8.5-Ext, SSP5-3.4-OS-Ext, and SSP1-2.6-Ext), divided into two tiers defined by relative priority. Therefore, given the purpose of this study and China's 16 17 current development mode, we select SSP4-6.0 as the baseline climate scenario, SSP2-45 as the NDC-18 consistent scenario, SSP1-26 as the global 2°C limits-consistent scenario, SSP1-19 as the global global 1.5°C 19 limits-consistent scenario.

Baseline represents the reference of the study, which includes China's enacted clean air actions before
2015. Following an inequal global developing mode, economic growth is much slower and results in limited
climate policies and clean air actions. Simulations of *Baseline* could elucidate the possible deterioration of
future air qualities without any restriction of fossil fuels or pollution control.

24 Current-goals is designed with current released and upcoming climate target (i.e. the National Determined 25 Contributions (NDC) target) and environmental policies (Table S1). For environment policies, this scenario incorporates all of China's released and upcoming air pollution control policies, and these policies would 26 27 also be enhanced during 2020–2030 in terms of national air quality goals of building 'a beautiful China'. 28 Besides, regional air pollution control diversities are also fully considered according to China's latest clean 29 air actions, that three key regions, namely the Beijing-Tianjin-Hebei and surroundings (BTHS), the Fenwei 30 Plain (FWP) and the Yangtze River Delta (YRD) are highlighted in this scenario. Current-goals represents a middle and policy-continued developing mode, whose simulation results could indicate future ambient PM_{2.5} 31 variations under all the current policies. 32

Ambitious-pollution-NDC-goals shares the same energy inputs with Current-goals, but would maximumly 33 adopt highly-developed end-of-pipe control technologies by 2050, and implement consistently during 2050-34 2060. End-of-pipe pollution control policies in this scenario present the best available air pollution control 35 process in China. From 2015 to 2030, the strictest clean air process in the BTHS region would be deployed 36 37 all over China; while during 2030–2050, the best available end-of-pipe control and combustion/production technologies would be gradually penetrated in all sectors; and then, these best technologies would be 38 39 continued to operate during 2050-2060 (Table S1). Simulation results of Ambitious-pollution-NDC-goals 40 help to reveal whether China could achieve ultimate air quality improvements through current energy 41 transitions along with the strictest pollution control measures.

Ambitious-pollution-Neutral-goals is designed under the context of carbon neutrality commitment released
 by China's government, that China aspires to achieve carbon neutrality by 2060. Rigorous low-carbon energy
 transitions would be rapidly deployed to ensure the zero carbon emissions in China by 2060. Meanwhile, it

combines the best available pollution control technologies (Table S1), and assumes the social economy would
 develop sustainably at a reasonably high pace (i.e. the SSP1 sustainable pathway).

47 Ambitious-pollution-2°C-goals and Ambitious-pollution-1.5°C-goals scenarios are further designed to 48 better understand the role and the impacts of China's carbon neutrality goals, which are consistent with the global 2°C and 1.5°C temperature rising limits, respectively; and they share the same pollution control and 49 50 socioeconomic development with Ambitious-pollution-Neutral-goals. Together with the Ambitiouspollution-Neutral-goals scenario, these three strict low-carbon scenarios manifest China's future PM2.5 air 51 quality under the strictest carbon and pollution co-control pathways. Besides, it is also informative for 52 53 China's air quality co-benefit potentials under the national carbon-zero-adapted and the global 2°C-/1.5°C-54 consistent energy optimizations.

55 Supplementary Note 2. Configurations of WRF-CMAQ modeling system. In this work, we use the Weather Research and Forecasting Version 3.9.1 (WRFv3.9.1) and the Community Multiscale Air Quality 56 Version 5.2.1 (CMAOv5.2.1) to establish the air quality modelling system for China mainland. WRF and 57 58 CMAQ model provide the meteorological conditions and pollutant concentrations respectively. The 59 horizontal domain covers the mainland of China with a resolution of $36 \text{ km} \times 36 \text{ km}$. The vertical resolution is designed as 23 sigma levels from surface to tropopause (about 100 mb) for WRF simulation (with 10 layers 60 below 3-km), and then these 23 sigma levels are collapsed into 14 sigma levels (1.000, 0.995, 0.988, 0.980, 61 62 0.970, 0.956, 0.938, 0.893, 0.839, 0.777, 0.702, 0.582, 0.400, 0.200 and 0.000) for CMAQ model.

63 We choose the New Goddard shortwave radiation scheme², RRTM³ longwave radiation scheme, the Kain-Fritsch cloud parameterization⁴ (version 2), the ACM2 PBL scheme⁵, the Pleim-Xiu land-surface scheme⁶ 64 and WSM6 cloud microphysics for WRF simulation; and adopt the Analysis nudging, observational nudging, 65 66 soil nudging to improve the modelling fidelity. The surface roughness is corrected by increasing the friction velocity by 1.5 times to reduce the high biases in wind speed⁷. We apply the CB05 gas-phase and AERO6 67 particulate matter chemical mechanisms for CMAQ modelling. The meteorological initial and boundary 68 69 conditions are derived from the final analysis data (FNL). The chemical initial and boundary conditions are 70 interpolated from the dynamic outputs of GEOS-Chem model, which are driven by future gridded CMIP6 71 emissions. All the simulations are conducted throughout the whole year and with a one-month spin-up.

72 For emission inputs, we utilize the time factors (i.e. monthly, daily, hourly), spatial and species (including both particulate matter and volatile organic compounds) proxies of the MEIC model (Multiresolution 73 Emission Inventory for China)⁸ to transform DPEC-derived China's future anthropogenic emissions into 74 CMAQ-required formats. Global emissions (except for China) are derived from the gridded global CMIP6 75 76 emission datasets⁹. For other natural source emissions, biogenic emissions are simulated with the Model of Emission of Gases and Aerosols from Nature (MEGAN v2.1)10; sea-salt and dust emissions are calculated 77 78 online in the CMAQ model; open fire burning emissions are obtained from the fourth-generation global fire 79 emissions database (GFED4)¹¹.

80 Our study contains two parts of experiments, namely core scenario and sensitivity simulations. In core 81 scenario simulations, meteorological conditions and natural emissions are fixed as 2015 level; future 82 anthropogenic emissions of China and other countries under the scenario ensembles are derived from DPEC 83 model and CMIP6 emission database respectively. We design two sets of sensitivity simulations to quantify the potential impacts of meteorology change and global pollution transports on future China's PM_{2.5} 84 85 evolutions. Taking Ambitious-pollution-2°C-goals as the criterion, we fix China's anthropogenic emissions under Ambitious-pollution-2°C-goals in all sensitivity simulations. For meteorology change, we simulate 86 87 China's future air quality with the meteorology from 2000 to 2018, and then quantify its impacts by comparing the results of emission-fixed, meteorology-varied simulations with the core Ambitious-pollution-88 $2^{\circ}C$ -goals (2015-meteorology) simulation. For pollution transports, we vary the chemical boundary and 89 90 global future emissions with SSP1-19 (the lowest emissions) and SSP3-70 (the highest emissions) CMIP6 91 scenarios. We then quantify the transport impacts by comparing the results of China emission-fixed, global 92 emission and chemical boundary-varied simulations with the core *Ambitious-pollution-2°C-goals* simulation.

- 93 Emission, meteorology, and chemical boundary configurations of all simulations are summarized in Table
- 94 S5. We collect the hourly observed PM_{2.5} concentration data from 1664 national observation monitors (China

95 Environmental Monitor Center), and evaluate our base-year annual mean PM_{2.5} simulations by grids (Fig.

96 S9). The comparisons generally show good agreements of annual mean PM_{2.5} simulations and observations.

Supplementary Note 3. Uncertainties and limitations. The projected China's future PM_{2.5} exposures in
 this study are subjected to several uncertainties in each model and step.

First, the base-year (i.e. 2015) $PM_{2.5}$ exposure estimates are uncertain due to the multiple inputs, limited temporal and spatial coverage of monitor sites^{12,13}. These uncertainties have been evaluated in previous studies, that the relative prediction error of annual mean $PM_{2.5}$ exposure is within 17%, and the mean bias is 1.61 µg/m³. The annually iterated cross-validation correlation coefficient with the in-situ observations is high as 0.749, also showing the good agreements^{12,13}. This dataset might be the best-available $PM_{2.5}$ estimates over China with complete spatiotemporal coverage.

105 Secondly, the WRF-CMAQ modelling system would induce inherent uncertainties on ambient PM_{2.5} concentration simulations, especially the simulated response of PM2.5 concentrations to the emission 106 reductions^{14,15}, which exists uncertainties on the future $PM_{2.5}$ exposure projections under different mitigation 107 pathways. It is largely because of the incomplete understanding of the chemical formulations, products, rate 108 coefficients, and reaction kinetics¹⁶. We evaluate our base-year simulations with the hourly observed PM_{2.5} 109 110 concentration data from China Environmental Monitor Center. The comparisons show good agreements of 111 the PM_{2.5} simulations and observations, that the average correlation coefficient of all monitor sites is high as 0.79 (Fig. S9), the average normalized mean bias (NMB) and normalized mean error (NME) are 8.5% and 112 31.4% respectively, well inside the recommended criteria for $PM_{2.5}$ photochemical model performance 113 statistics (NMB<±30%, NME<50%, R>0.40)¹⁷. Besides, the pollution mitigation response to the emission 114 reductions have been well simulated in our previous studies, and the simulated PM_{2.5} concentrations and 115 compositions can well capture the relevant observation changes^{18,19}. 116

Third, meteorology fluctuations²⁰ and global pollution transports²¹ would influence the degree of China's future air quality improvements. Employing the meteorology of last two decades (Table S5), we find that the meteorology impacts are relatively small on China's future $PM_{2.5}$ exposure evaluations, with the fluctuation margin of -7% – 6% under *Ambitious-pollution-2°C-goals* pathway (Fig. S11). As for the global pollution transports, we find their impacts on China's future $PM_{2.5}$ exposure are also marginal, with the relative influences of -2%–6% and -1%–5% in 2030 and 2060 under *Ambitious-pollution-2°C-goals* pathway respectively.

Fourth, carbon neutrality goals could be fulfilled by different energy pathways which lead to different air pollutant emission levels. In this work, we only demonstrate the air quality benefit from one specific carbon neutrality pathway, and more comprehensive analysis with different pathways should be investigated in the future.

128 Our estimations are also subject to some limitations. On the one hand, the three air pollution scenarios are 129 designed with existing knowledge of China's localized environmental policies and best-available technologies. Future technical innovation targeted end-pipe emissions are not included in our analysis. The 130 131 unpredictable technical innovation on end-pipe pollution control, especially for non-energy related sources (i.e. agriculture, solvent use), might also profoundly benefit future air quality. On the other hand, future 132 variations of meteorology²²⁻²⁵ and natural source emissions²⁶⁻²⁹ induced by climate change remain highly 133 uncertain, but are not considered in this study, that they are fixed in the 2015 level in core simulations (Table 134 135 S5). Several studies have demonstrated future meteorological conditions are likely to deteriorate air pollution through intense extreme events, enhanced thermal stability and the Arctic sea ice melting²²⁻²⁵. For example, 136

meteorology under the RCP4.5 climate pathway would increase China's population-weighted $PM_{2.5}$ concentrations by 3% in 2050²³. In response to future climate and land cover change, previous studies

concentrations by 3% in 2050^{23} . In response to future climate and land cover change, previous studies concluded the natural dust loading would vary from -19%–9% (vs. modern natural emissions) globally²⁶; and

the biogenic VOC emissions in China would increase by 11.13% and 25.20% under RCP4.5 and RCP8.5

141 climate scenarios respectively in 2050^{29} . Our simulation shows the natural source emissions contribute ~3.0

142 $\mu g/m^3$ to China's population-weighted PM_{2.5} concentrations in 2015. However, as the significant air quality

143 improvements will be achieved from the anthropogenic emission reductions under the ambitious co-control

pathways, the role of natural sources in total $PM_{2.5}$ exposure will be more highlighted. And given these

145 climate change-induced natural emissions and meteorological conditions might exacerbate PM_{2.5} exposure

146 in the future, more mitigation efforts are needed to better protect public health.

147

Fig. S1. The methodology framework.

Fig. S2. Future energy evolutions under different scenarios during 2015-2060. (a) Electricity generation pathways. (B) Industry final energy transitions. (c) Residential final energy transitions. (d) Transportation final energy transitions.

Fig. S3. Future anthropogenic emission (including SO_2 , NO_x , $PM_{2.5}$, NMVOC, NH_3) pathways under different scenarios. The stacking histograms represent the emission fractions by sectors (left Y-axis), and the black lines with circle labels represent the emission magnitudes (right Y-axis).

Fig. S4. Sectoral CO₂ emissions over China under different scenarios during 2015-2060.

Fig. S5. Sectoral CO₂ emissions (including the positive CO₂ emissions from power, industry, transportation, residential sectors, absorbed positive CO₂ emissions by carbon capture and storage technologies, and negative CO₂ emissions by biological negative carbon emission technologies) over China under different scenarios in 2060.

Fig. S6. Accumulated $PM_{2.5}$ exposure by $0.1^{\circ} \times 0.1^{\circ}$ grid in 2015 (ranked from low to high, coloured by region). The horizontal grey dashed lines represent the national ambient air quality standards (i.e. $35 \text{ }\mu\text{g/m}^3$) and WHO Air Quality Guideline (i.e. $10 \text{ }\mu\text{g/m}^3$).

Fig. S7. Regional disparities of future PM_{2.5} exposure and energy evolutions in 2030. (a)-(f), Accumulated PM_{2.5} exposure by $0.1^{\circ} \times 0.1^{\circ}$ grid in 2060 under different scenarios (ranked from low to high, coloured by region). The horizontal grey dashed lines represent the national ambient air quality standards (i.e. $35 \ \mu g/m^3$) and WHO Air Quality Guideline (i.e. $10 \ \mu g/m^3$). (g) National and regional population-weighted mean PM_{2.5} concentrations in 2030. (h) Fossil fuel fraction in primary energy mix in 2030.

Fig. S8. City fractions of annual mean $PM_{2.5}$ concentrations below the national ambient air quality standards (i.e. 35 µg/m³) and WHO Air Quality Guideline (i.e. 10 µg/m³) in 2030 (a) and 2060 (b) under different scenarios.

Fig. S9. Comparisons of the base-year (i.e. 2015) simulated and observed $PM_{2.5}$ concentrations (grid-based) over China. The solid line indicates the 1 : 1 line; while the dashed lines indicate the 1 : 2 and 2 : 1 lines.

Fig. S10. China's major air pollutant emissions (SO₂, NO_x and primary $PM_{2.5}$) by sectors and fuel types in 2060 under different scenarios.

Fig. S11. Monthly (a) and annually (b) impacts of meteorology variations on China's future population-weighted mean PM_{2.5} concentrations in 2030 and 2060 under the *Ambitious-pollution-2*°C-goals scenario.

Table S1.a. Detailed clean air measures, process, and policy parameters of the three air pollution control scenarios (i.e. *Baseline, Current-goals, Ambitious- pollution control*) in the power sector.

Emission source	Scenario	Region	Policy types	2015	2016	2017	2018	2019	2020	2021		2025 .	2	028	2029	203	30 2031		2035		2040		2045	2050		2060
			End-of-pipe						G	B 13223-201	1 [SO ₂ -10); NO _x -10	0/20	0; PI	M-30]:	end-o	of-pipe co	ontrol re	main the	same as 2	2015					
	Baseline	All region	Power plant fleet									40-ye	ar lif	fetim	e by na	atural	l retireme	nt								
		BTHS & FWP	End-of-pipe control	GB 13223-2011	achievi	ing ultra 35; NO	a-low st D _x -50; F	andard ¹ PM-10]	[SO2-	achieved ult	ra-low emi	ssion star	ndard	d ¹ : re	emoval	effeic	ciency of	SO2 >	95%; NO,	, >90%, d	le-PM dev	ices upda	ate to at le	ast FAB		
			Power plant fleet turnover	phase out 1	5% of c	urrent i	nstalled	l capaci	ty								40-yea	r lifetime	e by natu	ral retirem	ent					
Coal-fired power	Current	YRD	End-of-pipe control	GB 13223-2011	achiev st	ving ultr tandard	a-low	achieve	ed ultra-	low emissior	n standard ¹	l														
plants	goals		Power plant fleet turnover	phase out 1	5% of c	urrent i	nstalled	l capaci	ty								40-yea	r lifetime	e by natu	ral retirem	ent					
			End-of-pipe	GB 13223-2011	ach	nieving (ultra-lov	v standa	ard ¹	achieved ult	ra-low emi:	ssion star	ndard	d ¹												
		Other regions	Power plant fleet	phase out 1	5% of c	urrent i	nstalled	l capaci	ty								40-yea	r lifetime	e by natu	ral retirem	ent					
	Ambitious pollution All region control	All region	End-of-pipe control	GB 13223-2011	achiev st	ving ultr tandard	a-low	achieve	ed ultra-	low emissior	n standard ¹	I					ach BAT (iveing control ²	achieved > 99%; I	I BAT cont NO _x > 959	rol ² [SO ₂ - %, de-PM	20; NO _x -: devices u	30; PM-5]: pdate to \	removal e NESP	ffeicienc	y of SO ₂
	control	control Power plan turnove End-of-p	Power plant fleet turnover	phase out 1	5% of c	urrent i	nstalled	l capaci	ty						i	furthe	er phase	out 50%	of currer	nt installed	l capacity					
	Deceline	All region	End-of-pipe control								GB 1322	23-2011: 6	end-o	of-pip	e conti	rol rei	main the	same a	s 2015							
	Baseline All region	All region	Technology turnover				G	TCC tec	hnolog	y increase to	10%											-				
	Baseline A	BTHS & FWP	End-of-pipe control	GB 1322	3-2011		achi limits ³ 1(eving sp [SO2-5)0; PM-2	ecial 0; NOx 20]	achieved sp limits ³ : appl rate of FGD SCB,LNB >	ecial ication > 80%, 70%	achievin ultra-lov emissior	g vac 1 ¹	chiev	ved ultra	a-low	emissio	n standa	ard ¹ : remo	oval effeici	ency of S	D2 >95%	b; NOx >	90%		
	Current		Technology turnover	GTCC techno	ology inc	rease t	o 30%;	CFB te	chnolo	gy increase t	o 40%					GT	CC tech	nology i	ncrease t	o 50%; CF	B techno	logy incre	ase to 60	%		
Other thermal	goals	VPD	End-of-pipe control	GB 1322	3-2011		achi	eving sp limits ³	ecial	achieved sp limits ³	ecial	achievir low em	ng ult iissio	tra- on ¹	achiev	/ed ul	ltra-low e	mission	standard	l ¹						
power plants		TRU	Technology turnover	GTCC techno	ology inc	rease t	o 30%;	CFB te	chnolo	gy increase t	o 40%					GT	CC tech	nology ii	ncrease t	o 50%; CF	B techno	logy incre	ase to 60	%		
	Othurn	Otherseitere	End-of-pipe control	GB 1322	3-2011		achi	eving sp limits ³	ecial	achieved sp limits ³	ecial	achievir	ng ult	tra-lo	ow emi:	ssion	1 ¹ achiev	ved ultra	l-low emis	ssion stan	dard ¹					
	Other regions	Technology turnover		GTC	C techr	iology i	ncrease	to 30%	; CFB techn	ology incre	ease to 40)%					GT	CC techn	ology incr	ease to 50)%; CFB	technolog	y increase	to 60%		
	Ambitious	All region	End-of-pipe control	GB 1322	3-2011		achi	eving sp limits ³	ecial	achieved sp limits ³	ecial	achievin ultra-lov emissior	9 v ac 1 ¹	chiev	ed ultr	a-low	emissio	n standa	ard ¹	achive	ing BAT c	ontrol ²	achieved	BAT contr	ol²	
	pollution All region control	Technology turnover		GTC	C techr	iology i	ncrease	to 30%	; CFB techn	ology incre	ease to 40)%						(GTCC and	CFB tech	nology in	crease to	100%			

Table S1.b. Detailed clean air measures, process, and policy parameters of the three air pollution control scenarios (i.e. *Baseline, Current-goals, Ambitious- pollution control*) in the industry sector.

Emission source	Scenario	Region	Policy types	2015		2018	2019	2020	2021	1 2022	2023	2024	2025	2026 202	7 2028	2029	2030	0 2033 2034 2035 2040 2045 2046 2047 2050 2060						60				
	Receirce	Allersien	End-of-pipe control							GB 1327	71-2014	[SO ₂ -200	0/300; NG	D _x -200/300;	PM-30/50])]: end-(of-pipe c	ontrol remain	ns the sa	me as 20	015							Т
	Daseille	All region	technology turnover				phas	e out 10M	/W-belo	w industr	y boilers	in key re	gions										-					
		BTHS & FWP	End-of-pipe control	GB 132	71-2014	achie special	eving I limits ³	achieveo limits ³	ach	nieving ultr standard	ra-low d ¹	achieve	ed ultra-k	ow emission	standard	d1												
		2	technology turnover	phase out 1 industry	10MW-below y boilers	phase ind	out 25MV lustry bo	V-below ilers			phas	e out 35N	/W-belo	w industry b	oilers								-					
Coal-fired	Current	VED	End-of-pipe control	GB 132	71-2014	achievin	ig limits ³	achieveo limits ³	achi	ieving ultra	a-low sta	indard ¹	achieve	ed ultra-low	emission e	standa	rd ¹											
boilers (Heating and industrial)	goals	YRD	technology turnover	phase out 1 industry	10MW-below y boilers	ph	ase out 2	25MW-be	low ind	ustry boile	ers	pi	hase out	35MW-belo	w industr	ry boile	rs						-					
			End-of-pipe control	GB 132	71-2014	achievin	ig limits ³	achieveo limits ³	1	achieving	ultra-lov	/ standar	rd¹	achieved u	tra-low ei	emissior	n standar	d1										
		Other regions	technology turnover	phase out 1 industry	10MW-below y boilers				p	hase out:	25MW-be	elow indu	ustry boi	lers									-					
	Ambitious		End-of-pipe control	GB 132	71-2014	achievin	ig limits ³	achieveo limits ³	ach	nieving ultr standard	ra-low 1 ¹	achieve	ed ultra-k	ow emission	standard	ď				achivei con	ng BAT trol ²	achi	ieved BA	T control ²	2			
	pollution control	All region	technology turnover	phase out 1 industry	10MW-below y boilers	phase ind	out 25MV lustry boi	V-below ilers			phas	e out 35N	/W-belo	w industry b	oilers					phase	out all the	e outda	ated capa	acities			-	
	Baseline	All region	End-of-pipe control	GB 28662-	-2012 (sinter)) [SO ₂ -20	0; NO _x -3	00; PM-50	0]/GB1	6171-201	2 (coke)	[SO ₂ -100); NO _x -2	00; PM-50] / s	3B 28663 ame as 20	3-2012 015	(iron) [PI	1-20; PM-fu-i	8] / GB 2	8664-20	12 (steel)) [PM-2	20/50; PM	-fu-8]: end	d-of-pip	e control	remains th	е
	Baseline All region technology tur														-													
		BTHS & EWD	End-of-pipe control	stand	dards	specia [SO ₂ -5 NO _x -10 PM-1	l limits ⁴ 60/100; 00/320; 5/20]	achievin	g ultra-l	ow emissi NO _x -50/20	ion stand)0; PM-1(lard ⁵ [SO)]	₂ -35/50;	achieved u FAB, impro	tra-low er ve fugitive	emissior e dust (n standar control by	d ⁵ :removal /20%	effeicien	ncy of SC	O₂ ~90%-9	95%; N	NO _x ~80%	∍-90%, de	⊱PM de	vices upd	ate to at le	ast
		DIIIS & TWP	technology turnover	phase iron/steel/co by 215 mil	out old ke capacities llion tonnes	phase coke c m	out old in apacities illion tonn	on/steel/ by 100 ies	iro	further p n/steel/co	hase out	t outdate cities by 2	d 20%							-								
Iron and steel	Current		End-of-pipe control	stand	dards	special	l limits ⁴	ac	hieving	ultra-low	emission	standar	ď	achieved u	tra-low ei	emissior	n standar	d⁵										
plants (Sinter/Coke/Iro n/Steel)	goals	YRD	technology turnover	phase iron/steel/co by 30 milli	out old ke capacities ion tonnes	phase coke o m	out old in capacities illion tonn	on/steel/ s by 10 ies	iro	further p n/steel/co	hase out ke capa	t outdate cities by 2	d 20%							-								
			End-of-pipe control	stand	dards	S	pecial lim	its ⁴			achie	eving ultra	a-low er	nission stan	lard⁵			achieved ult	tra-low e	mission	standard ⁵	5						
		Other regions	technology turnover	phase iron/steel/co by 3 millio	out old ke capacities on tonnes	phase coke o m	out old in capacities illion tonn	on/steel/ s by 60 ies		further	phase o	ut outdat	ed iron/s	teel/coke ca	pacities b	by 20%							-					
	Ambitious		End-of-pipe control	stand	dards	specia	l limits ⁴	ac	hieving	ultra-low	emission	standar	ď	achieved u	tra-low er	mission	n standar	d ⁵	achieving 35; NO _x -(g BAT co 50/100; F	ontrol ^e [SO PM-10]	D ₂ achi >98	ieved BA 8%; NOx	T control ⁶ >93%, d	i: remov de-PM de	/al effeici evices up	ency of So date to WE)2 SP
	pollution All region control		technology turnover	phase iron/steel/co by 250 mil	out old ke capacities llion tonnes	phase coke c m	out old in apacities illion tonn	by 170 by 170	iro	further p n/steel/co	hase out	t outdate cities by :	d 20%				ph	ase out all th	ne iron/ste	eel/coke	outdated	capac	ties				-	

Emission source	Scenario	Region	Policy types	2015		2018	2019	2020	2021	1 2022	2023	2024	2025	2026 2	027 2	2028	2029	2030	203	3 2034	2035	2040	:	2045 20	46 20	47		2050	2060
	Deseline		End-of-pipe control		GB	31574-20	01529(Pb	,Zn), GB 3	31575-2	201530(Cu	i,Al), GB	25468-2	01031(N	Vlg), GB 2	5467-2	201032((Ni) [SO	_z -150/2	00; NO _x -	200; PM	-30/50]: (end-of-pip	oe cor	itrol remai	ns the s	same a	is 2015		
	Baseline	All region	technology turnover													-													
		BTHS & EWP	End-of-pipe control	stand	ards	achie specia	eving I limits ⁷	achieved 100; PM-*	l specia 15/20]	al limits ⁷ (S	O ₂ -100;	NO _x -	achiev emissi	ving ultra-l ion standa	ow rd ⁵ a	chieve	d ultra-l	ow emis	sion sta	ndard⁵									
			technology turnover	-		phase of metal c	out old no apacities	onferrous s by 10%		further pl	nase out	outdated	nonfer	rous meta	l capac	cities b	y 20%							-					
Nonferrous	Current	VPD	End-of-pipe control	stand	lards	achie specia	eving I limits ⁷	achieved	l specia	al limits ⁷			achievi	ing ultra-lo standar	w emis d ⁵	ission a	achieve	d ultra-l	w emise	sion stai	ndard ⁵								
metal	goals	TRO	technology turnover	-		phase of metal c	out old no apacities	onferrous s by 10%		further pl	nase out	outdated	nonfer	rous meta	l capac	cities b	y 20%							-					
			End-of-pipe control	stand	ards	achiev	ing speci	ial limits ⁷	achiev	ved specia	I limits ⁷		achie	eving ultra	-low er	mission	n standa	ard ⁶ a	chieved	ultra-lov	w emissi	on standa	rd ⁵						
		Other regions	technology turnover	-		phase of	out old no	onferrous	metal c	apacities I	oy 10%	furth	er phas	se out out capacitie	dated n is by 2	nonferro 20%	ous met	tal						-					
	Ambitious	All region	End-of-pipe control	stand	ards	achie specia	eving I limits ⁷	achieved	l specia	ıl limits ⁷			achiev emissi	/ing ultra-l ion standa	ow rd ⁵ a	chieve	d ultra-l	ow emis	sion sta	ndard⁵		a	chiev	ng BAT c	ontrol ⁶	ac	chieved B	AT control	f
	control	Airregion	technology turnover	-		phase of metal c	out old no apacities	onferrous s by 10%		further pl	nase out	outdated	nonfer	rous meta	l capac	cities b	y 20%			p	hase out	all the no	onferro	ous metal	outdate	d capa	icities		-
	Baseline	All region	End-of-pipe control							GE	3 4915-2	013 [SO;	-200; N	10 _x -400; P	M-30]:	end-of	f-pipe co	ontrol re	mains th	e same	as 2015								
	Baseline All region cement klin turn		cement klin turnover		Cement e	nergy no	rm													-									
	Baseline All region cement klin tu End-of-pipe or BTHS & FWP		End-of-pipe control	GB 491	5-2013	achie specia	eving I limits ⁸	achieved [SO ₂ -100 20]	l specia ; NO _x -32	Il limits ⁸ 20; PM-	achie emis [SO ₂ -50	eving ultra sion stand 0; NO _x -10 15]	a-low lard ⁹ 0; PM-	achieved FAB, imp	l ultra-li rove fu	low em ugitive (iission s dust coi	tandard ntrol by	⁹ : remov 20%	/al effei	ciency of	SO ₂ ~90	%-95	%; NO _x ~8	0%-90%	%, de-F	PM device	es update t	o at least
			œment klin turnover	phase out o capacities by ton	old œment 100 million nes	phase capac	e out old ities by 5 tonnes	cement 0 million	fur	ther phase capa	e out out cities by	dated cer 20%	ment									-							
	Current		End-of-pipe control	GB 491	5-2013	achie specia	eving I limits®	achieved	l specia	al limits ⁸	achiev	ing ultra- standa	low em ard ⁹	ission	chieved	d ultra-l	low emi	ission st	andard ⁹										
Cement plants	nt plants		œment klin turnover	phase out o capacities by ton	old œment y 32 million nes	phase capac	e out old ities by 1 tonnes	cement 0 million	fur	ther phase capa	e out out cities by	dated cer 20%	nent									-							
	End-of-pipe contro		End-of-pipe control	GB 491	5-2013	achiev	ing speci	ial limits [®]	speci	ial limits ⁸		achie	ving ultr	a-low em	ission s	standar	rd ⁹	8	chieved	ultra-lov	w emissi	on standa	rd ⁹						
	Other regions c			phase out o capacities by ton	old œment 120 million nes	phase capaci	e out old ties by 13 tonnes	cement 30 million		furth	ner phas	e out outo	dated ce	ement cap	acities	s by 209	%							-					
	Ambitious pollution All region			GB 491	5-2013	achie specia	eving I limits ⁸	achieved	l specia	al limits ⁸	achie emise	eving ultra sion stand	⊢low tard ⁹	achieved	l ultra-l	low em	iission s	tandard	9			achiev control NO _x -50	ving B I ¹⁰ [SC 0; PM	AT ac 0 ₂ -35; of -10] up	ieved E SO ₂ > 9 date to '	3AT co 8%; N(WESP	ontrol ¹⁰ : r Ox > 95%	emoval eff , de-PM de	feiciency vices
	pollution All region control		œment klin turnover	phase out of capacities by tone	old cement y 252 million nes	phase capaci	e out old ties by 19 tonnes	cement 90 million	fur	ther phase capa	e out out cities by	dated cer 20%	ment	ph	ase out	it all the	e outdate	ed ceme	nt capac	cities; pe	enetration	rate of k	lin wit	h capacit	es over	4000	tons > 70	%	-

Emission source	Scenario	Region	Policy types	2015		2018	2019	2020) 20	202	2 202	23 20	24 2025	2026 2	2027 2028 2029 2030 2033 2034 2035 2040 2045 2046 2047 2050 2060													
	Basalina	All region	End-of-pipe control								GB2949	95-2013	3 [SO ₂ -400;	NO _x -700; F	PM-50]	: end-o	f-pipe cont	rol re	mains the s	same as 2	015							
	Dasenne	Airregion	technology turnover													-												
			End-of-pipe control	GB294	95-2013	achi specia	eving I limits ¹¹	achiev 300; Pl	ed spe N-30]	cial limits ¹¹	[S0 ₂ -2	00; NO _x	- achie emise	ving ultra-l ion standa	low ard ⁹	achieve	d ultra-low	emis	sion stand	ard ⁹								
		BTHS & FWP	technology turnover	phase out capacities weigh	old flat glass by 78 million It cases	phase capa v	out old cities by veight ca	flat glass 8 million ases	s fi	urther phas ca	e out o bacities	outdated s by 209	l flat glass %								-							
	Current		End-of-pipe control	GB294	95-2013	achi specia	eving I limits ¹¹	achiev	ed spe	cial limits ¹¹			achiev	ing ultra-lo standar	ow em rd ⁹	ission	achieved u	itra-lo	w emissio	n standaro	d ⁹							
Flat glass	goals	YRD	technology turnover	phase out capacities weigh	old flat glass by 11 million It cases	fu	irther ph	ase out (outdate	ed flatglas	s capa	cities by	y 20%								-							
			End-of-pipe control	GB294	95-2013	achiev	ing spec	ial limits ¹	1 ach	nieved spe	ial limit	s ¹¹						a	chieved ult	tra-low em	nission s	standard	9					
		Other regions	technology turnover	phase out of capacities weigh	old flat glass by 22 million it cases	phase capa v	out old cities by veight ca	flat glas: 6 million ises	3	fur	her ph	ase out	outdated fl	at glass ca	pacitie	es by 20)%							-				
	Ambitious		End-of-pipe control	GB294	95-2013	achi specia	eving I limits ¹¹	achiev	ed spe	cial limits ¹¹			achie emiss	ving ultra-l ion standa	low ard ⁹	achieve	d ultra-low	emis	sion stand	ard ⁹		a	chievin ontrol ¹⁰	g BAT	achiev	ed BAT con	trol ¹⁰	
	pollution control	All region	technology turnover	phase out capacities weigh	old flat glass by 111 million It cases	phase capac	out old :ities by veight ca	flat glas: 14 million ases	s fi	urther phas ca	e out o bacities	outdated s by 209	l flat glass %				phase out all the outdated flat glass capacities -											
	Deceline	All services	End-of-pipe control							GB 2962	0-2013	B (brick a	and lime) [S	D ₂ -300; NO	D _x -200	; PM-30	-30]: end-of-pipe control remains the same as 2015											
	Baseline	Airregion	technology turnover													-												
		RTHS & FWD	End-of-pipe control	stan	dards	achi specia	eving Il limits ⁸	achiev	ed spe	cial limits ⁸			achiev	ing ultra-lo standar	ow em rd ⁹	ission	achieved u	itra-lo	w emissio	n standaro	d ⁹							
		billoditw	technology turnover		-	phase cap	out old I acities b	brick/lime vy 10%	•	fur	her pha	ase out	outdated bi	ick/lime ca	pacitie	es by 20)%							-				
Brick/lime and	Current	VPD	End-of-pipe control	stan	dards	achi specia	eving Il limits ⁸	achiev	ed spe	cial limits ⁸			ac	hieving ultı staı	ra-low ndard ⁹	emissio	on ach	ieved	l ultra-low	emission s	standaro	d ⁹						
other indutires	goals	TR0	technology turnover		-	phase cap	out old I acities b	brick/lime y 10%	•	fur	her pha	ase out	outdated bi	ick/lime ca	pacitie	es by 20)%							-				
			End-of-pipe control	stan	dards	achiev	ring spec	cial limits ⁱ	act	nieved spec	ial limit	s ⁸	ach	ieving ultra	-low e	emissior	n standard	a	chieved ult	tra-low em	nission s	standard	9					
		Other regions	technology turnover		-	pha	ase out c	old brick/	lime ca	pacities by	10%	fu	rther phase	out outdat 2	ed brid 0%	ck/lime o	capacities I	by						-				
	Ambitious		End-of-pipe control	stan	dards	achi specia	eving Il limits ⁸	achiev	ed spe	cial limits ⁸			achiev	ing ultra-lo standar	ow em rd ⁹	emission achieved ultra-low emission standard ⁰ achieving BAT control ¹⁰ achieved BAT control ¹⁰					rol ¹⁰							
	control	Airregion	technology turnover		-	phase cap	out old I acities b	brick/lime y 10%	•	fur	her pha	ase out	outdated bi	ick/lime ca	pacitie	ties by 20% phase out all the outdated brick/lime capacities -					-							
	Baseline	All region	End-of-pipe control													-												
		BTHS & FWP	End-of-pipe control		-	in	nprove Ll	DAR	fur	ther improv faci	e LDAF ty in al	R techno II VOC-r	ology; insta elated indus	IVOCs co tries	ntrol					I	relative	low emi	ission l	evels				
Key VOCs- related	Current goals	YRD	End-of-pipe control		-	in	nprove Ll	DAR	1	further impr	ove the acility i	e LDAR in all VC	technology C-related in	install VO dustries	C con	trol					rela	ative low	emissi	on levels				
indutiries		Other regions	End-of-pipe control		-		improve	ELDAR in	n chem	ical industr	y	fu	rther improv	ve the LDA cility in all \	LDAR technology; install VOC all VOC-related industries													
	Ambitious pollution	All region	End-of-pipe control		-	in	nprove Ll	DAR	fur	ther improv faci	e LDAF ty in al	R technol II VOC-r	nology; install VOCs control relative low emission levels Innovation of VOC control facilities															

Table S1.c. Detailed clean air measures, process, and policy parameters of the three air pollution control scenarios (i.e. *Baseline, Current-goals, Ambitious-pollution control*) in the transportation sector.

Emission source	Scenario	Region	Policy types	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	20	30.	203	34 20	035	2040	2	2046	20	050		2060
	Baseline	All region	End-of-pipe control	Chi	na 4								C	hina 5												
		BTHS & FWP	End-of-pipe control	Chi	na 4	Chi	na 5	(China 6a								(China	16b							
Light-duty	Current goals	YRD	End-of-pipe control	Chi	na 4	Chi	na 5	(China 6a								(China	1 6b							
gasoline vehicle		Other regions	End-of-pipe control	Chi	na 4		China 5		Chi	na 6a								Ch	hina 6b							
	Ambitious pollution control	All region	End-of-pipe control	Chi	na 4	Chi	na 5		China 6a				China	a 6b						Assu	imed (China	7			
	Baseline	All region	End-of-pipe control									China	4													
		BTHS & FWP	End-of-pipe control			China 4			China	5	(China	6a						Ch	ina 6b	-					
Heavy-duty	Current goals	YRD	End-of-pipe control			China 4			China	5	(China	6a						Ch	ina 6b						
gasoline vehicle		Other regions	End-of-pipe control			Chi	na 4			Chi	na 5		China 6	a						China	6b					
	Ambitious pollution control	All region	End-of-pipe control			China 4			China	5		China	6a		С	hina	6b				A	ssume	ed Chir	na 7		
	Baseline	All region	End-of-pipe control		China IV									Ch	na V											
		BTHS & FWP	End-of-pipe control		China IV			China	V		Chin	na VI a							China \	√Ib						
Light-duty diesel	Current goals	YRD	End-of-pipe control		China IV			China	V		Chin	na VI a							China \	√Ib						
vehicle		Other regions	End-of-pipe control		China IV			China	V		Chin	na VI a							China \	√Ib						
	Ambitious pollution control	All region	End-of-pipe control		China IV			China	V		Chin	na VI a		C	hina VI	b					Assu	med C	;hina ∨	11		
	Baseline	All region	End-of-pipe control	Chir	na IV								C	hina 5												
		BTHS & FWP	End-of-pipe control	Chir	na IV		Chi	na V		Chin	a VI a							Ch	ina VI b							
Heavy-duty	Current goals	YRD	End-of-pipe control	Chir	na IV		Chi	na V		Chin	a VI a							Ch	ina VI b		-					
diesel vehicle		Other regions	End-of-pipe control	Chir	na IV		Chi	na V		Chin	a VI a							Ch	ina VI b							
	Ambitious pollution control	All region	End-of-pipe control	Chir	na IV		Chi	na V		Chin	a VI a				Chir	na VI	b					As	sumed	China	a VII	
	Baseline	All region	Mobile fleet turnover	phase out	20 million o	d vehicles									-											
		BTHS & FWP	Mobile fleet turnover	phase ou	it 8 million ol	d vehicles	phase ou	ut 2 million ol	d vehicles		phas	se out	all the o	ld vehic	es						-					
All types of on-	Current goals	YRD	Mobile fleet turnover	phase out	2.6 million o	ld vehicles	phase out	t 0.5 million o	ld vehicles		phas	se out	all the o	ld vehic	es						-					
road vehicle		Other regions	Mobile fleet turnover	phase out	9.4 million o	ld vehicles	phase ou	ut 3 million ol	d vehicles			-														
	Ambitious pollution control	All region	Mobile fleet turnover	phase out	20 million o	d vehicles	phase out	t 5.5 million o	ld vehicles		phas	se out	all the o	ld vehic	es						-					
	Baseline	End-of-pipe control	China II									China II														
		BTHS & FWP	End-of-pipe control	China II		Chi	na III			China	IV								China	V						
	Current goals	YRD	End-of-pipe control	China II		Chi	na III			China	IV								China	V					-	
Off-road	_	Other regions	End-of-pipe control	China II		Chi	na III			Ch	ina IV								Ch	iina V						
Off-road Ambitious pollution control		All region	End-of-pipe control	China II		Chi	na III			China	IV				Ch	ina V	/			Ch	ina VI	a		China	VIb	

Table S1.d. Detailed clean air measures, process, and policy parameters of the three air pollution control scenarios (i.e. *Baseline, Current-goals, Ambitious- pollution control*) in the residential, agriculture and solvent use sectors.

Source sector	Scenario	Region	2015	2016	2017	2018	2019	2020	2021		2026	2027	2028		2030		2045		2050		2060
	Baseline	All region									-										
		BTHS & FWP		-		cleaner	coals a	nd stoves	further red residential coa	luce the ash and sulfu al, and fully applied ad	r content in Ivanced stoves				r	elative	low emis	sion leve	s		
Residential	Current goals	YRD		-		cleaner	coals a	nd stoves	further reduce	e the ash and sulfur co fully applied adva	ontent in reside nced stoves	ntial co	al, and			r	elative lo	w emissi	on levels		
		Other regions		-		cleaner	coals a	nd stoves	further reduc	e the ash and sulfur c adva	ontent in reside	ential co	al, and	fully	applied		rela	ative low	emission	levels	
	Ambitious pollution control	All region		-		cleaner	coals a	nd stoves	further red residential coa	luce the ash and sulfu al, and fully applied ad	r content in Ivanced stoves		relative	e Iow	emissio	n levels	5	Inn	ovation of resident	stoves al fuels	and
	Baseline	All region									-										
		BTHS & FWP	- lower the VOCs content further improve the water-soluble solvent use; install VOC control facility in coating and painting industry relative low emission levels																		
Solvent use	Current goals	YRD		-		lower t	he VOC:	s content	further improv	e the water-soluble so facility in coating and p	olvent use; insta painting industr	all VOC y	control			r	elative lo	w emissi	on levels		
		Other regions		-		lower t	he VOCs	s content	further impr	ove the water-soluble coating an	solvent use; in d painting indu	stall VC stry	C contr	rol fa	cility in		rela	ative low	emission	levels	
	Ambitious pollution control	All region		-		lower t	he VOCs	s content	further improv control	e the water-soluble so facility in coating and	olvent use; inst painting industr	all VOC Y	rel	ative	low emi	ssion le	evels	Innova	tion of so control	lvent an facility	d VOC
	Baseline	All region									-										
		BTHS & FWP	- enhance the intensive cutivation and grazierty; promote the slow-release fertilizer relative low emission levels								evels										
Agriculture	Current goals	YRD		-		pron organic	note the : fertilize	use of r and the	enhance the i	ntensive cutivation an release fer	d grazierty; pro tilizer	mote th	e slow-			r	elative lo	w emissi	on levels		
, ignoulture		Other regions		-		resourc poultr	e utilizat y excrem	tion of the nent and	enhance th	ne intensive cutivation	and grazierty; fertilizer	promote	e the slo	ow-re	lease		rela	ative low	emission	levels	
	Ambitious pollution control	All region	poultry excrement and straw fertilizer - straw enhance the intensive cultivation and graziery; promote the slow-release fertilizer relative low emission levels graziery									n and									

 Table S2. Descriptions of scenarios used in this study.

Scenario name	Socioeconomic assumptions	Climate targets	Air pollution control	Relationship with Tong's work	Scenario definition
Baseline	SSP4	RCP6.0	Baseline	SSP4-60- BAU	<i>Baseline</i> represents the baseline scenario and adapts to the SSP4 global developing modes. Inequality remains high and economies are relatively isolated, which leads the development in China to proceed slowly. China therefore would develop with a pessimistic trend, and the economic growth would slow down, which lead to limited actions on climate and environmental issues. Thus, the climate constraints would be negligible under RCP6.0 and the environmental control would remain as the 2015 level.
Current- goals	SSP2	RCP4.5	Current goals	SSP2-45-ECP	<i>Current-goals</i> is basically matched China's NDC carbon mitigation target and the national ambient air quality standards (i.e. $35 \ \mu g/m^3$) by 2030, elucidating China's future emission, air quality evolutions towards released and upcoming policies, both on climate and pollution control. NDC-adapted energy transition would be performed, that China would achieve the carbon peak and the non-fossil fuel fractions would rise to ~18% in 2030. For air pollution control, key industries (i.e. iron, steel, cement, metal) would meet the special emission standards around 2020 according to China's clean air actions and further attain the ultra-low emission standards by 2030 based on the upcoming plans and the goal of 'a beautiful China'. However, during the post-2030 periods, no extra environment policies or technology innovations would be applied, and the energy transition basically follows the RCP4.5 trajectories. For socio-economic development, the central pathway of SSP2 is adopted, representing China's moderation future along with the historical patterns.
Ambitious- pollution- NDC- goals	SSP2	RCP4.5	Ambitious pollution control	Newly added	<i>Ambitious-pollution-NDC-goals</i> shares the same energy evolutions and economic pathway with the <i>Current-goals</i> scenario during 2015–2060. On the aspect of air pollution control, key industries would be upgraded to achieve the ultra-low emission standards comprehensively by 2030 along with China's medium-term environmental targets and modernization goals. And on post-2030 periods, the strengthened pollution control measures would be persisted, with even more optimistic long-term environmental policies, investments and the fully-applied best available technologies across all sectors by 2050. And these rigorous policies and best available technologies would be implemented consistently during 2050-2060, to achieve clean air as in developed countries and maximally protect human health.

Ambitious- pollution- Neutral- goals	SSP1	Net-zero CO ₂ emission in 2060	Ambitious pollution control	Newly added	<i>Ambitious-pollution-Neutral-goals</i> is designed to pursue China's carbon neutrality goals and the WHO Air Quality Guideline (i.e. $10\mu g/m^3$) from China's long-term air quality improvement perspectives by 2060. Rapid and ambitious low-carbon energy transitions would be deployed to ensure net-zero CO ₂ emissions in 2060, with an average natural sink of ~0.7 Gt CO ₂ in 2060 under the low radiation forcing scenarios (i.e. RCP2.6, RCP1.9) projected by published study ³⁰ and our simulations (Table S3). Primary coal and oil fractions would be decreased below 9% and 10% respectively in 2060; while the low-carbon energy (i.e. solar, wind, biomass, nuclear energy) fractions would rise to ~72%. For the air pollution control, <i>Ambitious-pollution-Neutral-goals</i> shares the same end-of-pipe control policy and technology evolutions as <i>Ambitious-pollution-NDC-goals</i> , that the best available technologies would be entirely infiltrated among all sectors by 2050, and implemented consistently during 2050-2060. Meanwhile, following the heterogeneous and sustainable SSP1 pathways, China would develop sustainably at a reasonably high pace, with the rapid development of technology, economy, productivity, education. More finances would be invested in decarburization and decontamination toward a friendly environment and public health.
Ambitious- pollution- 2°C-goals	SSP1	RCP2.6	Ambitious pollution control	SSP1-26-BHE	Ambitious-pollution-2°C-goals is designed to pursue the 2°C temperature limits in Paris Agreement and the WHO Air Quality Guideline (i.e. $10\mu g/m^3$) from China's long-term air quality improvement perspectives by 2060. The energy transition is compatible with 2°C limits, however less than the SSP1-19 pathway. Primary coal and oil fractions would be decreased below 13% and 15% respectively in 2060; while the low-carbon energy (i.e. solar, wind, biomass, nuclear energy) fractions would rise to ~60%. For the air pollution control and socioeconomic developments, Ambitious-pollution-2°C-goals shares the same end-of-pipe control evolutions and SSP1 assumptions as Ambitious-pollution-Neutral-goals, that the best available technologies would be entirely infiltrated among all sectors by 2050, and implemented consistently during 2050-2060.

Ambitious- pollution- 1.5°C- goals	SSP1	RCP1.9	Ambitious pollution control	Newly added	Ambitious-pollution-1.5°C-goals is designed to pursue the 1.5°C global temperature rise limits and the WHO Air Quality Guideline (i.e. $10\mu g/m^3$) by 2060. The most innovative and strictest co-control measures would be implemented. A low-carbon energy system would be established promptly with the pervasive electrification and widespread renewable applications; and traditional fossil fuels of coal and oil would be eliminated instantly. Primary coal and oil fractions would be decreased below 6% and 5% in 2060 respectively; while the low-carbon energy (i.e. solar, wind, biomass, nuclear energy) fractions would rise to ~82%. For the air pollution control and socioeconomic developments, <i>Ambitious-pollution-1.5°C-goals</i> shares the same end- of-pipe control evolutions and SSP1 assumptions as <i>Ambitious-pollution-Neutral- goals</i> , that the best available technologies would be entirely infiltrated among all sectors by 2050, and implemented consistently during 2050-2060. Given that the potential of available pollution control measures would be fully released under the maximum-control scenarios, further air quality progress would be mainly depended on clean energy transitions toward 1.5°C climate target.

Targets	Year	CO ₂ emissions (2030) / natural sink (2060) (Gt CO ₂)	Sources
		11.4 - 14	Meinshausen, M. et al 2015 ³¹
		12.9 - 15.2	Pan et al., 2017 ³²
		11.8	Gallagher et al., 2019 ³³
		10.0 - 12.0	Chai et al., 2014 ³⁴
		11.3 - 11.8	Elzen et al., 2016 ³⁵
		10.0 - 12.5	Grubb et al., 2015 ³⁶
China's NDC pledges	2030	9.7 - 11.9	Zhou et al., 2013 ³⁷
		10.6	He et al., 2014 ³⁸
		10.2	Zhang et al., 2016 ³⁹
		10.8 - 11.8	He et al., 2019
		13.3	CD-Links, Van deg Berg et al., 2019
		13.957	PBL; ISSIA, 2015
		11.0	Li et al., 2019 ⁴⁰
China's carbon noutrality goals	2060	0.43-1.34	Wang et al., 2014 ³⁰
China's carbon neutrainty goals	2000	0.55	SSP1-26 simulation
		0.45	SSP1-19 simulation

Table S3. China's anthropogenic CO_2 emissions under the NDC target in 2030 and the projected natural carbon sink in 2060 under low radiation forcing scenarios (applied as China's carbon neutrality goals in 2060).

Table S4. Region	definitions	in	this	study.
------------------	-------------	----	------	--------

Region	Province / City inclusions
Beijing-Tianjin-Hebei	Beijing city; Tianjin city; Shijiazhuang, Tangshan, Handan, Baoding, Langfang, Cangzhou, Hengshui, Xingtai city in Hebei
and Surroundings	Province; Taiyuan, Changzhi, Yangquan, Jincheng city in Shanxi Province; Zhengzhou, Anyang, Hebi, Kaifeng, Jiaozuo, Xinxiang,
(BTHS) ⁴¹	Puyang city in Henan Province; Jinan, Dezhou, Liaocheng, Binzhou, Zibo, Jining, Heze city in Shandong Province
Fenwei Plain	Xi'an, Xianyang, Tongchuan, Baoji, Weinan city in Shaanxi Province; Jinzhong, Linfen, Yuncheng, Lvliang city in Shanxi Province;
(FWP) ⁴¹	Luoyang, Sanmenxia city in Henan Province
Yangtze River Delta (YRD) ⁴¹	Shanghai city, Jiangsu, Zhejiang, Anhui Province
Sichuan Basin	Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Meishan, Yibin, Ya'an, Ziyang, Nanchong, Guang'an,
(SCB) ⁴²	Dazhou city in Sichuan Province; Chongqin city
Pearl River Delta (PRD) ⁴²	Guangzhou, Shenzhen, Zhuhai, Foushan, Jiangmen, Zhaoqing, Huizhou, Dongguan, Zhongshan city in Guangdong Province

Simulation type	Scenario	China's anthropogenic emission scenario and year	Global anthropogenic emission scenario and year	Natural source emission year	Chemical boundary	Meteorology year
Core simulation	Base-year (2015)	MEIC, 2015	SSP2-45, 2015	2015	GEOS-Chem outputs with global SSP2-45 emissions in 2015	2015
Core simulation	Baseline (2030)	Baseline, 2030	SSP4-60, 2030	2015	GEOS-Chem outputs with global SSP4-60 emissions in 2030	2015
Core simulation	Baseline (2060)	Baseline, 2060	SSP4-60, 2060	2015	GEOS-Chem outputs with global SSP4-60 emissions in 2060	2015
Core simulation	Current-goals (2030)	Current-goals, 2030	SSP2-45, 2030	2015	GEOS-Chem outputs with global SSP2-45 emissions in 2030	2015
Core simulation	Current-goals (2060)	Current-goals, 2060	SSP2-45, 2060	2015	GEOS-Chem outputs with global SSP2-45 emissions in 2060	2015
Core simulation	Ambitious-pollution- NDC-goals (2030)	Ambitious-pollution- NDC-goals, 2030	SSP2-45, 2030	2015	GEOS-Chem outputs with global SSP2-45 emissions in 2030	2015
Core simulation	Ambitious-pollution- NDC-goals (2060)	Ambitious-pollution- NDC-goals, 2060	SSP2-45, 2060	2015	GEOS-Chem outputs with global SSP2-45 emissions in 2060	2015
Core simulation	Ambitious-pollution- Neutral-goals (2030)	Ambitious-pollution- Neutral-goals, 2030	SSP1-26, 2030	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2030	2015

 Table S5. Summary of emission and meteorology configurations used in this study.

Core simulation	Ambitious-pollution- Neutral-goals (2060)	Ambitious-pollution- Neutral-goals, 2060	SSP1-26, 2060	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2060	2015
Core simulation	Ambitious-pollution- 2°C-goals (2030)	Ambitious-pollution- 2°C-goals, 2030	SSP1-26, 2030	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2030	2015
Core simulation	Ambitious-pollution- 2°C-goals (2060)	Ambitious-pollution- 2°C-goals, 2060	SSP1-26, 2060	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2060	2015
Core simulation	Ambitious-pollution- 1.5°C-goals (2030)	Ambitious-pollution- 1.5°C-goals, 2030	SSP1-19, 2030	2015	GEOS-Chem outputs with global SSP1-19 emissions in 2030	2015
Core simulation	Ambitious-pollution- 1.5°C-goals (2060)	Ambitious-pollution- 1.5°C-goals, 2060	SSP1-19, 2060	2015	GEOS-Chem outputs with global SSP1-19 emissions in 2060	2015
Sensitivity simulation	Meteorology sensitivity (2030)	Ambitious-pollution- 2°C-goals, 2030	SSP1-26, 2030	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2030	2000-2018
						(a total of 19 years' simulations)
Sensitivity simulation	Meteorology sensitivity (2060)	Ambitious-pollution- 2°C-goals, 2060	SSP1-26, 2060	2015	GEOS-Chem outputs with global SSP1-26 emissions in 2060	2000-2018
						(a total of 19 years' simulations)
Sensitivity simulation	Transport sensitivity (2030)	Ambitious-pollution- 2°C-goals, 2030	SSP3-70, 2030	2015	GEOS-Chem outputs with global SSP3-70 emissions in 2030	2015

Sensitivity simulation	Transport sensitivity (2060)	Ambitious-pollution- 2°C-goals, 2060	SSP3-70, 2060	2015	GEOS-Chem outputs with global SSP3-70 emissions in 2060	2015
Sensitivity simulation	Transport sensitivity (2030)	Ambitious-pollution- 2°C-goals, 2030	SSP1-19, 2030	2015	GEOS-Chem outputs with global SSP1-19 emissions in 2030	2015
Sensitivity simulation	Transport sensitivity (2060)	Ambitious-pollution- 2°C-goals, 2060	SSP1-19, 2060	2015	GEOS-Chem outputs with global SSP1-19 emissions in 2060	2015
Sensitivity simulation	Natural source emission sensitivity	None	None	2015	Static default profile	2015

SI References

- 1 O'Neill BCT, Tebaldi C and van Vuuren DP *et al.* The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. *Geosci. Model Dev.* 2016; **9:** 3461-3482.
- 2 Chou MD, Suarez MJ and Ho CH *et al.* Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models. *J. Climate* 1998; **11**: 202-214.
- 3 Mlawer EJ, Taubman SJ and Brown PD *et al.* Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *J. Geophys. Res. Atmos.* 1997; **102:** 16663-16682.
- 4 Kain JS. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004; 43: 170-181.
- Pleim JE. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer.
 Part II: Application and Evaluation in a Mesoscale Meteorological Model. J. Appl. Meteorol. 2007;
 46: 1396-1409.
- 6 Xiu AJ and Pleim JE. Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteorol. 2001; 40: 192-209.
- 7 Mass C and Ovens D. WRF model physics: progress, prob-lems, and perhaps some solutions, The 11th WRF Users' Workshop, NCAR Center Green Campus, 21-25 June, 2010.
- 8 Zhang Q, Streets DG and Carmichael GR *et al.* Asian emissions in 2006 for the NASA INTEX-B mission, *Atmos. Chem. Phys.* 2009; **9:** 5131–5153.
- 9 Feng L, Smith SJ and Craun C et al. The generation of gridded emissions data for CMIP6. Geosci. Model Dev. 2020; 13: 461-482.
- 10 Guenther AB, Jiang X and Heald CL *et al.* The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. *Geosci. Model Dev.* 2012; **5**: 1471-1492.
- 11 van der W, Guido R and Randerson JT *et al.* Global fire emissions estimates during 1997–2016. *Earth Syst. Sci. Data* 2017; **9:** 697-720.
- 12 Xue T, Zheng YX and Tong D *et al.* Spatiotemporal continuous estimates of PM_{2.5} concentrations in China, 2000-2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. *Environ. Int.* 2019; **123:** 345-357.
- 13 Xue T, Zheng YX and Geng GN *et al.* Fusing Observational, Satellite Remote Sensing and Air Quality Model Simulated Data to Estimate Spatiotemporal Variations of PM_{2.5} Exposure in China. *Remote Sens.* 2017; **9:** 221.
- 14 Dong XY, Li J and Fu JS *et al.* Inorganic aerosols responses to emission changes in Yangtze River Delta, China. *Sci. Total Environ.* 2014; **481:** 522-532.
- 15 Megaritis AG, Fountoukis C and Charalampidis PE *et al.* Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. *Atmos. Chem. Phys.* 2013; **13**: 3423–3443.
- 16 Brasseur GP and Jacob DJ. Modeling of Atmospheric Chemistry. Cambridge University Press, 2017.
- 17 Emery C, Liu Z and Russell AG *et al.* Recommendations on statistics and benchmarks to assess photochemical model performance, *J. Air Waste Manage. Assoc.* 2017; **67:** 582-598.
- 18 Li HY, Cheng J and Zhang Q *et al.* Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions. *Atmos. Chem. Phys.* 2019; **19**: 11485–11499.
- 19 Zhang Q, Zheng YX and Tong D *et al.* Drivers of improved PM_{2.5} air quality in China from 2013 to 2017. *Proc. Natl Acad. Sci. USA* 2019; **116:** 24463-24469.
- 20 Zhong Q, Ma JM and Shen GF *et al.* Distinguishing Emission-Associated Ambient Air PM_{2.5} Concentrations and Meteorological Factor-Induced Fluctuations. *Environ. Sci. Technol.* 2018; **52**: 10416-10425.
- 21 Han LH, Cheng SY and Zhuang GS *et al.* The changes and long-range transport of PM_{2.5} in Beijing in the past decade. *Atmos. Environ.* 2015; **110:** 186-195.
- 22 Shen L, Jacob DJ and Mickley LJ *et al.* Insignificant effect of climate change on winter haze pollution in Beijing. *Atmos. Chem. Phys.* 2018; **18**: 17489–17496.
- Hong CP, Zhang Q and Zhang Y *et al.* Impacts of climate change on future air quality and human health in China. *Proc. Natl Acad. Sci. USA* 2019; **116:** 17193–17200.

- 24 Cai W, Li K and Liao H *et al.* Weather conditions conducive to Beijing severe haze more frequent under climate change. *Nat. Clim. Chang.* 2017; **7:** 257-262.
- 25 Wang HJ, Chen HP and Liu JP. Arctic sea ice decline intensified haze pollution in eastern China, *Atmos. Ocean. Sci. Lett.* 2015; **8:** 1–9.
- 26 Tegen I, Werner M and Harrison SP *et al.* Relative importance of climate and land use in determining present and future global soil dust emission. *Geophys. Res. Lett.* 2004; **31:** L05105.
- 27 Tsunematsu N, Kuze H and Sato T *et al.* Potential impact of spatial patterns of future atmospheric warming on Asian dust emission. *Atmos. Environ.* 2011; **45:** 6682-6695.
- Fu Y and Liao H. Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: implications for tropospheric ozone and secondary organic aerosol. *Tellus B* 2014; 66: 24987.
- 29 Liu S, Xing J and Zhang HL *et al.* Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. *Atmos. Environ.* 2019; **218:** 117020.
- Wang T, Lin X and Peng SS *et al.* Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century. *Chin. Sci. Bull.* 2014; **59 (34):** 4681–4691.
- 31 Meinshausen M, Jeffery L and Guetschow J *et al.* National post-2020 greenhouse gas targets and diversity-aware leadership. *Nat. Clim. Chang.* 2015; **5**:1098-1106.
- 32 Pan X, Elzen MD and Höhne N *et al.* Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. *Environ. Sci. Policy* 2017; **74:** 49-56.
- 33 Gallagher KS, Zhang F and Orvis R *et al.* Assessing the Policy gaps for achieving China's climate targets in the Paris Agreement. *Nat. Commun.* 2019; **10:** 1256.
- 34 Chai Q and Xu H. Modeling an emissions peak in China around 2030: Synergies or trade-offs between economy, energy and climate security. *Adv. Clim. Chang. Res.* 2014; **5:** 169-180.
- 35 Elzen MD, Fekete H and Höhne N *et al.* Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? *Ener. Policy* 2016; **89**: 224-236.
- 36 Grubb M, Fu S and Spencer T *et al.* A review of Chinese CO₂ emission projections to 2030: the role of economic structure and policy. *Clim. Policy* 2015; 15: S7-S39.
- 37 Zhou N, Fridley D and Khanna NZ *et al.* China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model. *Ener. Policy* 2013; **53**: 51-62.
- 38 He JK. Analysis of CO₂ emissions peak: China's objective and strategy. *China Popul. Resour. Environ.* 2014; **12**: 189-198.
- 39 Zhang XL, Karplus VJ and Qi T *et al.* Carbon emissions in China: How far can new efforts bend the curve? *Energy Econ.* 2016; **54:** 388-395.
- 40 Li N, Chen WY and Rafaj P *et al.* Air Quality Improvement Co-benefits of Low-Carbon Pathways toward Well Below the 2 degrees C Climate Target in China. *Environ. Sci. Technol.* 2019; **53**: 5576-5584.
- 41 State Council of the People's Republic of China. *Notice of the state council on issuing the threeyear action plan for winning the Blue Sky defense battle.* Beijing: China Environmental Science Press, 2018.
- 42 China National Environmental Monitoring Centre. *National Urban Air Quality Report*.