Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting information

Graphite-Type Activated Carbon from Coconut Shell: a Natural Source for

Eco-friendly Non-volatile Storage Devices

Nilanka M. Keppetipola,^a Maithri Dissanayake,^b Pubudu Dissanayake,^b Buddhika Karunarathne,^b Marie Anne Dourges,^a David Talaga,^a Laurent Servant,^a Céline Olivier,^a Thierry Toupance,^a Satoshi Uchida,^c Kirthi Tennakone,^{b d} G. R. Asoka Kumara,^{*b} Ludmila Cojocaru^{*a}

^a Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, 351 Cours de la Libération, F-33405 Talence Cedex, France

^b National Institute of Fundamental Studies, Hantana Road, 20000 Kandy, Sri Lanka

^c The University of Tokyo, Research Center for Advanced Science and Technology (RCAST), 4-6-1, Komaba, Meguro, Tokyo

153-8904, Japan

 $^{\rm d}$ Georgia State University, Department of Physics , Atlanta, USA

Table S1 Configurations of the supercapacitors, precursors amount, materials for electrolyte, and	d current collectors used in
this study.	

Active materials	Binders		Current	Electrolytes	Separators	
Activated carbon	PVP ^a	PVDF ^b	C black ^c	collectors		
(wt%)	(wt%)	(wt%)	(wt%)			
96	4	-	-	FTO ^d	6 M KOH	Filter paper ^g
96	4	-	-	FTO ^d	1.5 M H ₂ SO ₄	Filter paper ^g
85	-	10	5	Ti plates ^e ,	1.5 M H ₂ SO ₄	Filter paper ^g
85	-	10	5	Expanded	1.5 M H ₂ SO ₄	Filter paper ^g
				graphite		
85	-	10	5	Expanded	Pure MPPyFSI ^f	Filter paper or
				graphite		Polyethylene ^h

Binders: ^aPolyvinylpyrrolidone (PVP) Mw 8000, Alfa Aesar; ^bPolyvinylidene fluoride (PVDF) Alfa Aesar; ^ccarbon black, Alfa Aesar; Current collectors: ^dSnO₂:F (FTO), Solaronix; ^eTi plates, The Nilaco Corporation; Ionic Liquids electrolytes: ^f1-Methyl-1-propy-pyrrolizium bis(fluorosulfonyl)imide (MPPyFSI), IL-120, Dai-ichi kogyo seiyaku co., Itd ; Separators: ^gWatman filter paper; ^hSETELA, polyethylene film Toray Industries Inc.

Fig. S1 Normalized Raman spectra and curve fit of activated carbon AC1. A similar fitting band combination was used for all the activated carbon samples.

Fig. S2 TG thermograms for the activated carbon AC1-AC5.

Fig. S3 a) Digital photograph of the supercapacitor based on activated carbon electrodes prepared for this study and the cross-sectional view of the electrode based on activated carbon. b) Cyclic voltammograms measured for the supercapacitors with the FTO:AC-KOH-filter paper-KOH-AC:FTO configuration based on different activated carbon electrodes (AC1-AC5) at 5 mV s⁻¹ scan rate. c) Charge-discharge curves for the supercapacitors with the FTO:AC-KOH-filter paper-KOH-AC:FTO configuration based on different activated carbon electrodes (AC1-AC5) at 0.5 A g⁻¹ constant current. d) Specific capacitance calculated from the CV curves (green dots) versus BET surface area (blue dots) and total pore volume (red dots).

Samples	S _{BET} , (m ² g ⁻¹)	$C_s(C_d)^{CV}$ (F g ⁻¹)	$C_s(C_d)^{CD}$ (F g ⁻¹)
AC1	539±16	52.4 (13.1)	42.4 (10.6)
AC2	858±25	76.9 (19.2)	73.0 (18.3)
AC3	952±28	75.2 (18.8)	69.0 (17.3)
AC4	1054±31	75.6 (18.9)	71.2 (17.8)
AC5	1998±58	106 (26.5)	106.0 (26.5)

Table S2 Calculated capacitance values for each activated carbon-based supercapacitor with the FTO:AC-KOH-filter paper-KOH-AC:FTO configuration, CV measured at 5 mV s⁻¹ scan rate and galvanostatic CD at specific current 0.5 A g⁻¹.

 $C_s(C_d)^{CV}$ specific and device capacitance calculated from CV curves; $C_s(C_d)^{CV}$ specific and device capacitance calculated from CD curves.

Fig. S4 Electrochemical characterization of the supercapacitor based on AC5 electrodes with configuration FTO:AC5-KOHfilter paper-KOH-AC5:FTO (a) Cyclic voltammograms collected at scan rates between 2 and 100 mV s⁻¹. (b) Specific capacitance calculated from cyclic voltammetry at different scan speeds. (c) Charging-discharging curves at different current densities. (d) Specific capacitance is calculated from charging-discharging curves at different current densities.

Scan speed	$C_s(C_d)^{CV}$	Specific current A g ⁻¹	C _s (C _d) ^{CD}
mV s⁻¹	(F g ⁻¹)		(F g ⁻¹)
2	109.5 (27.4)	0.2	96.7 (24.2)
5	102.7 (25.7)	0.5	89.9 (22.5)
10	97.7 (24.4)	1.0	82.7 (20.7)
20	91.4 (22.8)	2.0	72.2 (18.0)
50	79.1 (19.8)		
100	66.1 (16.5)		

Table S3 Calculated capacitance values for each activated carbon-based supercapacitor with the FTO:AC5-KOH-filter paper-KOH-AC5:FTO configuration, CV measured at different scan rates and galvanostatic CD at different specific current.

 $C_s(C_d)^{CV}$ specific and device capacitance calculated from CV curves; $C_s(C_d)^{CV}$ specific and device capacitance calculated from CD curves.

Table S4 Simulated parameters based on the equivalent circuit shown in Figure 5a.

Impedance parameters	AC1	AC5	Units
S _{BET} ^a	539±16	1998±58	m ² g ⁻¹
R ₁	23	22	Ω
W	16	7.9	$\Omega~{ m s}^{{ m -1/2}}$
Q ₁	1.2x10 ⁻⁴	32x10 ⁻⁶	F s ⁿ⁻¹
n	0.79	0.84	-
R _a	0.5	9.7	Ω
C ₁	16.2 x10 ⁻⁴	46.0 x10 ⁻⁴	F g ⁻¹
C ₃	10	22	F g⁻¹
R ₃	249	1668	Ω
C at 10 ⁻² Hz	44	82	F g ⁻¹

*The capacitance (C_1) of the AC1 and AC5 was calculated from the impedance analysis using Q_1 , n and R_a , the capacitance C_3 extracted from the impedance fitting and divided by the mass of activated carbon from the electrodes.

Table S5 Calculated capacitance values for activated carbon AC5 based supercapacitor, CV measured at 5 mV s⁻¹ scan rate,and galvanostatic CD at specific current 0.5 A g⁻¹.

Supercapacitor	ESR	C _s (C _d) ^{CV}	C _s (C _d) ^{CD}	E	Р
configuration	(Ω)	(F g ⁻¹)	(F g⁻¹)	(Wh kg ⁻¹)	(W kg ⁻¹)
1.5 M H ₂ SO ₄ :filter	paper				
FTO glasses	22.9	105.9 (26.5)	94.48 (23.6)	2.6	224.5
Expanded graphite	0.7	132.3 (33.1)	118.0 (29.5)	3.3	225.1
Titanium plates	7.0	144.9 (36.2)	123.0 (30.8)	3.4	225.4

 $C_s(C_d)^{CV}$ specific and device capacitance calculated from CV curves; $C_s(C_d)^{CV}$ specific and device capacitance calculated from CD curves. E and P calculated using device capacitance (C_d)^{CD}

Table S6 Calculated capacitance values for activated carbon AC5 based supercapacitor with ionic liquid, CV measured at 5 mV s⁻¹ and galvanostatic CD at specific current of 1 A g⁻¹.

Supercapacitor	ESR	C _s (C _d) ^{CV}	C _s (C _d) ^{CD}	E	Р
configuration	(Ω)	(F g ⁻¹)	(F g⁻¹)	(Wh kg ⁻¹)	(W kg ⁻¹)
MPPyFSI:filter paper					
FTO glasses	58.3	153.8 (38.5)	153.7 (38.4)	65.4	2123.0
Expanded graphite	22.7	224.5 (56.1)	233.5 (58.4)	99.3	2267.6
Titanium plates	32.7	161.0 (40.3)	170.9 (42.7)	72.7	2037.2
MPPyFSI:polyethylene					
Expanded graphite	4.3	219.4 (54.8)	216.6 (54.1)	92.1	2046.9

 $C_s(C_d)^{CV}$ specific and device capacitance calculated from CV curves; $C_s(C_d)^{CV}$ specific and device capacitance calculated from CD curves. E and P calculated using device capacitance $(C_d)^{CD}$.

Fig. S5 Stability tests of charging-discharging curves (1 V charging voltage, 1 A g⁻¹ discharge current) of sealed supercapacitor, Ti plates as electrodes, AC5 active material, filter paper as separator and ionic liquid MMPyFSI as electrolyte.