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S1 Model Construction

The Standard Component Modeling (SCM) framework used to create our model of nutrient signaling is
described here in brief. SCM classifies biochemical reactions based on their time scales. The slow timescale
reactions (Class I ) are represented by mass-action rate laws

d[A]

dt
= kp − kd[A], (1)

where kp is the rate of production and kd is the rate of degradation of species A.
The intermediate timescale reactions (Class II ) are represented by a generic, sigmoidal, ‘soft-Heaviside’

function. For example, a protein P undergoing a post-translational modification would be described by the
differential equation

d[P]

dt
= γ([PT]H(σ, w)− [P]), (2)

where [PT] represents the total amount of species P, and H is the soft-Heaviside function, given by

H(σ,W ) =
1

1 + e−σW
, W = ω0 +

N�

i=1

ωi[Xi]

H is a sigmoid function used to represent a switch-like biochemical mechanism. Here the W term is composed
of a linear combination of the concentrations of the regulators Xi of P with appropriate signed coefficients
ωi, along with a scaling factor σ which determines the steepness of the response. The γ parameter governs
the time scale of this reaction. In this work, [PT] = 1 for every Class II variable in a wild-type cell, and we
set [PT] = 0 to simulate a cell deleted for the gene encoding P. Thus, the value of a Class II variable, which
lies between 0 and 1, denotes the fraction of the given signaling component in a particular post-translational
modification state.

Finally the reactions occurring on fast time scales, such as the formation of protein complexes, are
represented by the Class III equations governed by the stoichiometric relationships between the constituents
of the protein complexes. Thus, the stoichiometric association of components X and Y to produce a complex
C would be represented as

C = min(X,Y ) (3)

The kinetic expressions defining the ODE model are presented in the next section. A majority of the
expressions (21 out of 25) are Class II equations. The model has four Class I equations, describing the
dynamics of Glutamine and cAMP, Ribosomal components (Rib), and Protein accumulation. Finally the
model has two Class III equations: First, the charging of tRNAs as a fast association between total uncharged
tRNAs and intracellular amino acids, represented by Glutamine. Second, the assembly of active Ribosomes
(aRib) is represented as the fast association of Ribosomal components (Rib) and unphosphorylated initiation
factor eIF2α.
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S1.1 Kinetic expressions

Nutrient signal sensing and transduction

d[Glutamine]

dt
= (kacc−glu[Glutamineext] + kacc−proProline + kacc−nh4NH4[Gln1]Carbon)− kdegr[Glutamine]

d[Cyr1]

dt
= γcyr([Cyr1T]H(σcyr,ωcyr−gluCarbon[Ras]− ωcyr − ωcyr−snf [Snf1])− [Cyr1])

d[Ras]

dt
= γras([RasT]H(σras,−ωras−pka[PKA] + ωras−gluCarbon + ωras) − [Ras])

d[EGO]

dt
= γego([EGOT]H(σego,ωego−gap[EGOGAP]([Glutamine]ext+

0.5NH4 + 0.01Proline)− ωego(1− [Glutamine])− ωego−basal)− [EGO])

d[EGOGAP]

dt
= γgap([EGOGAPT]H(σgap,ωgap−N (1− [Glutamine])− ωgap−torc[TORC1])− [EGOGAP])

d[cAMP]

dt
= kcamp−cyr[Cyr1]ATP − kcamp−pde[PDE][cAMP]− kcamp−deg[cAMP]

d[PDE]

dt
= γpde([PDET]H(σpde,ωpde−pka[PKA]− ωpde) − [PDE])

d[Sak]

dt
= [SakT]H(σsak,ωsak − ωsak−pka[PKA])− [Sak]

Master regulators

d[TORC1]

dt
= γtor([TORC1T]H(σtor,ωtorc−glut[Glutamine]+

ωtorc−ego[EGO]− ωtorc−egoin(1− [EGO])− ωtorc − ωtorc−snf [Snf1])− [TORC1])

d[Snf1]

dt
= γsnf ([Snf1T]H(σsnf ,−ωsnf−glcCarbon + ωsnf−sak[Sak]− ωsnf) − [Snf1])

d[PKA]

dt
= γpka([PKAT]H(σpka,ωpka−camp[cAMP]− ωpka − ωpka−sch9[Sch9])− [PKA])

d[Sch9]

dt
= γsch9([Sch9T]H(σsch9,ωsch9−torc[TORC1]− ωsch9) − [Sch9])
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Downstream responses

d[Gcn2]

dt
= γgcn2([Gcn2T]H(σgcn2,ωgcn − ωgcn−torc[Sch9])− [Gcn2])

d[Gcn4]

dt
= γgcn4([Gcn4T]H(σgcn4,

ωgcn4−gcn2−trnamin([Gcn2], 74.5([tRNAtotal]−min([tRNAtotal], [Glutamine])))

− ωgcn4) − [Gcn4])

d[eIF]

dt
= γeif ([eIFT]H(σeif ,ωeif − ωeif−gcn2[Gcn2])− [eIF])

d[Gln3]

dt
= γgln3([Gln3T]H(σgln,−ωgln3 + ωgln−snf [Snf1] + ωgln−sit(1− [TORC1]))− [Gln3])

d[Gln1]

dt
= γgln1([Gln1T]H(σgln1,ωgln1−gln3[Gln3]− ωgln1) − [Gln1])

d[Rtg13]

dt
= γrtg13([Rtg13T]H(σrtg,−ωrtg−torc[TORC1] + ωrtg) − [Rtg13])

d[Gis1]

dt
= γgis1([Gis1T]H(σgis1,−ωgis−pka[PKA]− ωgis−sch[Sch9] + ωgis) − [Gis1])

d[Mig1]

dt
= γmig([Mig1T]H(σmig1,ωmig−pka[PKA]− ωmig−snf [Snf1] + ωmig) − [Mig1])

d[Dot6]

dt
= γdot6([Dot6T]H(σdot,−ωdot−sch−pka[Sch9][PKA] + ωdot) − [Dot6])

d[Tps1]

dt
= γtps([Tps1T]H(σtps,ωtps−pka([PKAT]− [PKA])− ωtps) − [Tps1])

d[Trehalase]

dt
= γtre([TrehalaseT]H(σtrehalase,ωtre−pka[PKA]− ωtre) − [Trehalase])

d[Protein]

dt
= kpr[ATP]min(min([Rib], [eIF]),min([tRNAtotal], [Glutamine]))[Protein]

d[Rib]

dt
= ktranscription(1− [Dot6])− kmRNA−degr[Rib]

Some heuristics have been used in order to model the following components.

Amino acid sensing The detailed mechanism of amino acid sensing is beyond the scope of this model. In
order to simplify this pathway, it is assumed that the EGO complex integrates all nitrogen signals.
Thus the activation of the EGO complex is determined by the strength of the activating signal, which
is represented by

[Glutamineext] + 0.5[NH4] + 0.01[Proline]

with the coefficients being derived from best fits to Sch9 activation data from [30].

Ribosome Biogenesis Here we abstract away the complexities of the synthesis of ribosome components
and represent the ‘synthesis’ of ribosomes by a mass action law, regulated by the RIBI repressor Dot6.

d[Rib]

dt
= ktranscription(1− [Dot6])− kmRNA degr[Rib]

Protein Translation We abstract away the complexities of ribosome assembly and assume that a ribo-
some is functional when a stoichiometric ratio of the ribosomal precursor (Rib), charged tRNA, and
unphosphorylated initiation factor eIF2α is present.

d[Protein]

dt
= kpr[ATP]min(aRib, tRNA∗)[Protein]
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tRNA∗ = min(tRNAtotal,Glutamine)

aRib = min(Rib, eIF),

where tRNA∗ represents the charged tRNA pool, and aRib represents the actively translating ribo-
somes.

The experimental data used to calibrate the model comprises genetic perturbations to individual catalytic
subunits of the complex regulators. For the most part, it is beyond the scope of the current model to
represent the activities of individual subunits, and we treat a regulatory complex as a single entity in the
model. However, this assumption fails in cases where experimental evidence indicates that the catalytic
subunits have distinct activities. We discuss two such instances below.

� PKA has three catalytic subunits Tpk1, Tpk2, and Tpk3. Experimental data from strains with single
Tpk subunits (cf. Mbonyi et al. 1990) indicate that each of these subunits have distinct catalytic
activities, where TPK1 and TPK3 exhibit similar activities, while TPK2 is similar to wt . The model
currently is able to capture the phenotypes of strains with Tpk1 and Tpk3 subunits by setting the total
amount of PKA to 0.3 of the wt activity. However this assumption is not sufficient to model the strain
with a single Tpk2 subunit, and we currently do not attempt to model the Tpk2 subunit of PKA.

� PDE has two catalytic subunits, Pde1 and Pde2. The pde1Δ, pde2Δ, and the pde1Δpde2Δ strains all
show very different cAMP phenotypes with respect to glucose upshifts (cf. Ma 1999, Figure 1A). Our
model succeeds in capturing the phenotype of only the pde1Δ strain, i.e. the PDE2 subunit. We do
not attempt to model the pde2Δ strain.

In both the above cases, a single model representation is unable to explain the behavior of various
catalytic subunits. A goal for a future version of the model is to incorporate data specific to various subunits
by uniquely representing the various genetic mutant strains.

S2 Robustness analysis

This section describes the details of the parameter robustness analysis. The motivation for this analysis is the
concept of model sloppiness developed by Gutenkunst et al., 2007 [78] who investigated the characteristics
of a cost function quantifying the deviation of model predictions from a set of experimental data. The value
of the cost function depends on the values of the parameters in the model. In their investigations Gutekunst
et al. found that the cost as a function of model parameters typically exhibits a ‘stiff/sloppy’ structure, i.e.,
while one can identify a few parameter combinations that tightly constrain the cost function, a majority
of parameter combinations do not significantly constrain the cost function. Here, we are interested in the
so-called stiff parameter directions, which are highly constrained by data. We carry out this investigation in
the following stages:

1. We define a cost function that measures the fit between the experimental data and model predictions,
described in Section S2.1.

2. We use the cost function to improve the global fit of the model to the data using an MCMC sampling
strategy described in Section S2.2.

3. We approximate the structure of this cost function in parameter space by computing the Hessian of this
surface around the optimal parameter set using the method described in [79]. Details of this method
are provided in Section S2.3.

4. We generate a sample of parameter sets constrained by the eigenvectors of the Hessian matrix, and
iteratively refine the Hessian, as described in Sections S2.4,S2.5.

5. Finally, we study the properties of this refined Hessian to identify the stiff and sloppy parameter
directions in our model, given the set of curated experimental data used to constrain the model. This
is described in Sections S2.7S2.6S2.8S2.9.
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S2.1 The goodness-of-fit cost function

This quadratic cost function C(p), which includes both the time series data and the steady-state pertubation
data as described in ‘Results’, is defined as follows:

C(p) =
1

N

N�

i

(yti(p)− xt
i)

2 +
1

M

M�

i

(yui (p)− xu
i )

2, (4)

where N is the number of time points (t) and M the number of perturbations (u), p is the candidate
parameter vector, y(p) is the model prediction and x is the literature-derived activity of the variable under
consideration. While the number of time points exceed the number of perturbation data points, we do not
preferentially weight one type of data over the other.

S2.2 MCMC sampling to improve estimate of parameter values

Figure S1: Results of MCMC sampling. The black line shows the total model cost. The contributions from the time
course term and from the perturbation term are shown in pink and blue, respectively. The lowest cost, designated
by the green circle at iteration 2900, defines the ‘optimal’ parameter set.

Having defined the quadratic cost function, we used a Markov Chain Monte Carlo (MCMC) sampling
strategy to improve the fit to the data. Briefly, in every MCMC iteration, the last accepted parameter set
is perturbed as follows: for each parameter with value p in the last accepted set, a new value p� is sampled
from a normal distribution N (µ = p,σ = 0.025p). The cost function is evaluated for this new parameter
set and this set is accepted with probability e−βΔC , where ΔC = C(p�) − C(p). We chose β = 3.6 based
on the magnitude of the change in cost that we observed in each iteration. Starting from the hand-tuned
parameter set, we repeat MCMC sampling 10,000 times. The change in cost across the iterations is shown
in Figure S1.

S2.3 Defining a Hessian approximation based on a sample of parameter sets

In this section, we derive the expressions used to compute the Hessian.
Let p∗ denote the parameter set that minimizes C(p), i.e., C(p∗) = Cmin, then

∇C(p)|p∗ = 0.
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Thus, for every p in the neighborhood of p∗, we can carry out a Taylor series expansion around p∗.
Omitting the higher order terms:

C(p) ≈ C(p∗) + (p− p∗)TH(p− p∗) = C(p∗) +ΔpTHΔp, (5)

where 2H = ∇2C is the Hessian of the cost function.
Next, we define some notation as introduced in Magnus and Neudecker [94]. For an m × n matrix A,

the vectorization operation vec(A) results in a mn × 1 column vector that stacks the columns of A. If A
is an n× n symmetric matrix, then the operation vech(A) stacks the lower triangular columns, yielding an
n(n+1)

2 × 1 column vector. There exists a unique matrix D, called the duplicator matrix, with dimensions

n× n(n+1)
2 , and a unique matrix L called the eliminator matrix with dimensions n(n+1)

2 × n2, such that

vec(A) = D vech(A)

vech(A) = L vec(A)

The Kronecker product (denoted by ⊗) of an m×n matrix A and an s× t matrix B is an mn× st matrix

A⊗B = (aij)B,

where aij is the ijth entry of A. For any three matrices A, B and C the following holds true

vec(ABC) = (CT ⊗A)vec(B)

Suppose we choose S parameter sets pi, 1 ≤ i ≤ S in the neighborhood of p∗. We can construct a
quadratic error function EH which will be minimized when H approximates the true Hessian of the function.

EH =
1

2

S�

i=1

�
C(pi)− C(p∗)− (pi − p∗)TH(pi − p∗)

�2

Using ΔCi = C(pi)− C(p∗) and Δpi = (pi − p∗), we have

∂EH

∂H
= 0 =

S�

i

(ΔCi −ΔpT
i HΔpi)ΔpiΔpT

i (6)

We wish to solve for H given a set of parameter vectors p. For a model with k parameters, we will have
to solve for k2 terms in H. However, we can decrease the size of this problem by considering the fact that
the Hessian should be a symmetric matrix. Thus, we need to solve only for the terms in the lower triangle.

Simplifying Equation 6, we have
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S�

i

ΔCiΔpiΔpT
i =

S�

i

ΔpT
i HΔpiΔpiΔpT

i

S�

i

ΔCivech(ΔpiΔpT
i ) =

S�

i

(ΔpT
i HΔpi)vech(ΔpiΔpT

i )

=

S�

i

(ΔpT
i ⊗Δpi)vec(H)vech(ΔpiΔpT

i )

=

S�

i

vec(ΔpiΔpT
i )

T vec(H)vech(ΔpiΔpT
i )

=

S�

i

vech(ΔpiΔpT
i )D

TDvech(H)vech(ΔpiΔpT
i )

=

S�

i

vech(ΔpiΔpT
i )vech(ΔpiΔpT

i )
TDTDvech(H)

=

S�

i

QDTDvech(H) where Q = vech(ΔpiΔpT
i )vech(ΔpiΔpT

i )
T

If we define R =
�

i ΔCivech(ΔpiΔpT
i ), we have that

R = QDTDvech(H)

In other words,vech(H) = (QDTD)−1R

and

vec(H) = D(QDTD)−1R (7)

Here, R is symmetric and D is the appropriate duplicator matrix.

S2.4 Sampling new parameter sets constrained by the approximate Hessian

Using the approximate Hessian matrix computed as described in Equation 7, we next wish to use the
eigenvectors of this matrix to contrain the search for new parameter vectors. Intuitively we wish to avoid the
eigenvector directions corresponding to ‘large’ eigenvalues which are the stiff directions. We know that the
dimensions of the cost ellipsoids are proportional to 1

λ1/2 where λ is an eigenvalue of the Hessian. Thus we can

weight the eigenvectors by a factor of 1
λ1/2 , which favors the sloppiest eigenvector directions. In practice we

want a candidate parameter vector to respect all the stiff and sloppy directions. We first generate a random
vector α, which we then transform to respect the stiff and sloppy directions. We describe the transformation
matrix below.

We start by translating the frame of reference our system to p∗ so that we can generate vectors Δp =
p− p∗ which produce a relative increase in model cost ΔC = C − Cmin. Rewriting Equation 5,

ΔC(p) ≈ ΔpTHΔp

To avoid an ill-conditioned Hessian, where the eigenvalues span many orders of magnitude, we choose
ΔlTp HΔlp = ΔC where Δlp = log(p)− log(p∗), with the logarithm of a vector being taken elementwise.

To sample from this new ellipsoid, we first create a random vector α which will lie inside the cost ellipsoid.
we sample a vector α̃ of random numbers drawn from N (0, 1). Next, we compute α

α =
α̃√
α̃T α̃

u
√
�,
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where u is a scalar drawn from the uniform distribution on [0,1] and � = 2Cmin = 2× 0.026 is the maximum
value of ΔC we wish to consider. The factor

√
� scales the magnitude of the unit vector α̃√

α̃T α̃
to the edge

of the ellipsoid. The final factor u ensures that the vector lies inside the ellipsoid, as we want to sample the
volume, not just the surface of the ellipsoid.

The final step needed to generate a candidate parameter vector is to transform it to respect the stiff
and sloppy directions. Using an eigenvalue decomposition, we write H = V ΛV T (where V is the eigenvalue
matrix and Λ is the eigenvector matrix). (Note that we compute the absolute values of the eigenvalues
and replace every eigenvalue that is less than 0.1 by 0.1. This step ensures that H is positive definite,
but limits the length of the longest ellipsoid axes.) Our constrained parameter vector should take the form
Δlp = V Λ−1/2α. This will satisfy the cost constraint as follows

ΔlTp HΔlp = αTΛ−1/2V TV ΛV TV Λ−1/2α = αTα ≤ �

Reordering terms, we have

p = elogp∗+V Λ1/2α = p∗. ∗ eV Λ−1/2α (8)

where the .∗ operator denotes element-wise multiplication, and the exponentiation in the eV Λ−1/2α is carried
out element-wise.

S2.5 Iterative refinement of the approximate Hessian

The following steps describe our methodology to initialize a approximation to the Hessian and then refine
this approximation iteratively.

1. To compute an initial approximation of the Hessian, we used Latin Hypercube Sampling around
2.5%ranges around p∗ in order to sample parameter vectors close to p∗. We evaluated the cost for each
parameter set. For each range explored, we recorded the parameter sets with cost less than 2Cmin.

2. Next, using Equation 7, an approximate Hessian was constructed using the accepted parameter sets
from the Latin Hypercube sample. This step was designated as iteration 0.

3. Using the approximate Hessian generated in the previous step, 30,000 parameter sets were generated
using Equation 8. The goodness-of-fit cost was evaluated for each parameter set and any parameter
set satisfying a cost cutoff of 3Cmin was accepted.

4. Using these accepted parameter sets, the approximate Hessian was recomputed, a new ensemble of
30,000 parameter sets was generated, and the cost evaluation and parameter set acceptance procedure
was repeated, while continually expanding the ensemble of accepted parameter sets.

5. The previous step was repeated four times.

In our parameter search we fix the values of the total amounts of protein, the PT parameters to 1.0 since
we currently do not have accurate abundances of the regulators in the model, accounting for 21 parameters.
We also set the sigma parameters in each Class II equation to their nominal values presented in Table S2,
accounting for another 21 parameters. Lastly, 5 parameters serve as model inputs, namely ATP, Carbon,
Glutaminetextext, Ammonia, and Proline. Thus we fix the values of 49 of the 128 kinetic parameters, The
remaining 81 parameters were varied in this analysis. At the end of the four iterations, we obtained a total
of 24,066 parameter sets.

S2.6 Fewer than 16% of the eigenvectors are required to capture all the stiff
directions

We studied the eigenvector of the refined-approximate Hessian H in order to identify the parameters that
contribute to the stiff directions. We deemed a parameter as making a substantial contribution to an
eigenvector if the absolute value of its ‘loading’ ( i.e., its weight in the eigenvector) was greater than one
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standard deviation of all the loadings across all eigenvectors. Figure S2(a) shows the number of unique
parameters with substantial contributions to the ordered eigenvectors of H. Since we vary 81 parameters,
the matrix H has 81 eigenvectors. We observe that 90% (72 of 81) of the parameters make substantial
contributions to the first 13 eigenvectors. Thus, all parameters contribute substantially in the first 16% (13
of 81) of the stiff directions.

Finally, we observe an initial slump in the number of unique parameters, implying that only 28 parameters
contribute substantially to the first seven stiff directions, i.e., around 34% of the parameters contribute to
the stiffest directions, indicated by the red lines in Figure S2(a).
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(a) Eigenvectors of H sorted in decreasing order of their
corresponding eigenvalue
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(b) PCs sorted in increasing order of their explained vari-
ance ratio

Figure S2: Comparison between the parameters with high weights in eigenvectors. On the x-axis are the sorted
eigenvectors, such that the eigenvector corresponding to the largest eigenvalue gets a rank of 1. Each plot shows
the number of unique parameters with substantial coefficients in the each eigenvector. The gray lines mark the
number of eigenvectors required to capture 90% of the parameters. The black horizontal line marks the total number
of parameters varied in our analysis, namely 81. The plot on the left is derived from the eigenvectors from the
approximate Hessian, whereas the plot on the right represents the results from the principal components resulting
from carrying out PCA on the collection of parameter sets, i.e., the eigenvectors of the covariance matrix sorted by
the inverse of their eigenvalues. The red lines indicate a characteristic inflection point in the trend of parameters
contributing substantially to eigenvectors which we interpret as the stiff directions.

S2.7 Comparison between the eigenvectors of the Hessian and the inverse co-
variance matrix

We also compared the quality of the approximate Hessian derived from our iterative scheme, with the
inverse of the covariance matrix (Σ−1) of the ensemble of parameter sets [95]. Since the eigenvectors of
the Σ−1 matrix are identical to those of Σ, we obtained the principal components (PCs) of the ensemble
of parameter sets (i.e. the eigenvectors of the covariance matrix). We then sorted the PCs in increasing
order of the explained variance such that the PC with the smallest explained variance (proportional to its
eigenvalue) received a rank of 1. Figure S2 (b) shows the parameters with substantial weights in these
sorted eigenvectors. We note that the trends displayed by the PCs are qualitatively similar to those of the
eigenvectors of the approximate Hessian in Figure S2 (b). We next examined if the eigenvectors and PCs
were actually identical by studying their pairwise dot products. Figure S3 presents a heatmap of the pairwise
dot products. A brighter color indicates a number closer to 1, indicating greater similarity. There is a very
good correspondence between the first 8-10 eigenvectors and PCs, indicating that our iterative scheme is
able to confidently estimate the stiffest directions in parameter space.
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Figure S3: We compared the eigenvectors of the approximate Hessian with the principal components of the ensemble
of parameter sets. The eigenvectors were sorted in descending order of their corresponding eigenvalue. The PCs were
sorted in ascending order of their corresponding explained variance ratio (which is proportional to their eigenvalue).
The heatmap shows the dot product of the eigenvectors and the PCs, with a brighter color implying a higher value.

S2.8 The relative ranges explored agree with the amount of data used to con-
strain the corresponding variable

Motivated by the success of our iterative Hessian-directed search in identifying the stiff directions of the
cost function, we next examined the relationship between the stiff parameters and the data constraining
the model. We first studied the relative ranges of parameter values explored for each parameter. These are
visualized as ratios of parameter values with respect to p∗ on a log10 scale in Figure S4. The parameters
are sorted according to the relative ranges explored. The ensemble of parameter sets was further analyzed.
The parameter ranges vary from¡ 1 to 2 orders of magnitude. Figure S4 summarizes these parameter ranges.
One feature that stands out from this sorting is that the gamma parameters which govern the time scales are
mostly found in the top half of the plot, with broad ranges. This is likely a consequence of the lack of time
series data used to constrain most of the variables in the model. Examining the parameters with narrower
ranges, at the bottom of the plot, we notice that while many parameters do occur in the equations of variables
that are constrained by data, this is not the case for other parameters. Examples include ωcyr (regulates
basal dynamics Cyr1), ωtorc ego (regulates the stimulation of TORC1 by Gtr1/2) and ωgis (regulates basal
dynamics of Gis1) ( Figure S4) While the ranges in the figure indicate that the model is very sloppy in
general, the occurrence of these ‘unconstrained’ parameters at the bottom of the figure was surprising. In
order to investigate the influence these parameters had on the model, we decided to carry out a detailed
parameter perturbation analysis.

S2.9 Model structure exerts an important influence on the stiff/sloppy classi-
fication of parameters

In order to study the relationships among parameters, the model structure and the model constraints, we first
ranked the parameters in the model by their contribution to the stiff directions. For this, an arbitrary cutoff
of one standard deviation of the distribution of weights for parameters across all eigenvectors was chosen.
Then, the parameters with absolute weights greater than the chosen cutoff were designated to contribute
substantially to a given eigenvector. Finally, a cumulative list of parameters was constructed, where the
rank of a given parameter is the eigenvector number in which it first appears with signficant weight.

From the comparison of the eigenvectors of the covariance matrix and the approximate Hessian, it can
be observed that there is a good correspondence between the first 8 or 9 eigenvectors (Figure S3). These
were designated the high confidence directions, and the parameters occurring in these directions are marked
in bold in Table S3 respectively. A striking finding from this table is that among the top-ranked parameters,
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Figure S4: Ranges of parameters explored over all parameter sets at the end of four iterations. The smallest and
largest value of each parameter over the ensemble were chosen, and the log10 value of the ratio with respect to the
p* value was used to define the range.

many are not constrained by data, i.e., they do not appear in equations whose dynamics are constrained by
data.

While the ranks of parameters in Table S3 indicate a complex relationship between model constraints
and model structure influencing the structure of the cost surface, we were interested in the distribution of
parameters that do appear in equations constrained by data. To investigate this distribution, starting from
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Figure S5: Parameter robustness is governed by model topology and experimental data. The arrows indicate the
parameters that occur in equations constrained by data.
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p∗ we picked each parameter one at a time and perturbed its value in a ±2.5%, ±10%, and ±10-fold range
and obtained the fitting cost in each instance. We also measured the model cost when the parameter was
set to 0. Figure S5 shows the results of this analysis. The color of the heatmap is the log 10 fold increase
in cost over Cmin. The cost values are truncated to a 10-fold increase so that smaller costs are visible. We
observe that while a perturbation of up to ±10% has little effect on model cost, a 10-fold change produces
a dramatic increase in model cost for the parameters on top of the ranked list, while those at the bottom of
the list show a decreased effect, in agreement with the ranking of stiffness. The arrows in Figure S5 indicate
the parameters which occur in equations constrained by data. We observe that these parameters do not
exhibit any type of clustering, and are distributed across the entire list.

These observations indicate that, despite a small amount of data available to constrain the model, the
model structure (in particular the pathway crosstalk and feedback interactions) might play an important
role in indirectly constraining other parts of the model that are not directly constrained by data.

S3 Alternative interpretations of rapamycin treatment

As discussed in the section “Testing the model against observed phenotypes of mutant strains”, 22 experi-
ments that we collected from the literature relate to rapamycin treatment in various mutant strains. There
are three ways of interpreting the immediate effect of rapamycin on a strain grown in rich medium. First,
via the Sch9 branch of TORC1 signaling, rapamycin can lead to an inhibition of ribosome biogenesis. In our
model, this would be represented as an upregulation of Dot6 activity. Second, via the Tap42-Sit4 branch of
TORC1 signaling, the activities of Gln3 and Gcn4 can result in an upregulation of nitrogen starvation and
adaptation responses. Finally, via mechanisms not currently present in the model, TORC1 can directly or
indirectly impinge on the cell cycle machinery to cause a G1 arrest [96]. We considered the first two defini-
tions of the effect of rapamycin on cells. As shown in Figure S6, both the Dot6 and Gln3Gcn4 definitions
show a trend of decreasing median cost until 11 of 22 experiments are explained. We next describe the causes
of model mismatch across both definitions of rapamycin.

Model mismatches Eleven of the 22 experiments are explained by less than 50% of the parameter sets
using either definition of rapamycin treatment (Table S1). Four of the 11 rapamycin treatment experiments
involve strains carrying mutations downstream of TORC1. SCH9DE encodes a constitutively active Sch9
kinase. tap42-11 is a temperature senstitive allele of TAP42, which encodes a protein involved in transmitting
the TORC1 signal to Sit4 and other stress response TFs. The single mutant strains SCH9DE and tap42-
11 are slightly resistant to rapamycin treatment, whereas the double mutant strain SCH9DEtap42-11 is
fully resistant [97]. Using our definition of rapamycin treatment based on Gln3 and Gcn4 activities, strains
involving tap42-11 are predicted to be rapamycin resistant. However, since neither of these TFs are regulated
by Sch9, the SCH9DE strain is predicted to be rapamycin sensitive. Additionally, three strains, namely
gln3Δgat1Δ, gcn4Δ, and an overexpression mutant 2µ URE2 are all predicted to be rapamycin sensitive as
a consequence of our chosen definition (Sections S5.6S5.28S5.7).

Seven of the 11 rapamycin treatment experiments that we have curated include mutants of the carbon
signaling pathway. These experiments clearly indicate that mutations affecting the carbon signaling pathways
influence the nitrogen adaptation response, and the model’s failure to explain these results give us insight into
the crosstalk between carbon and nitrogen pathways. As mentioned in the description of the PKA pathway
in the Results section of the main text, our model supports some results from Schmelzle et al., but not from
Zurita-Martinez et al., originating from strain specific differences. These observations account for three of the
eight mismatches (‘14-bcy1’, ‘15-ira1’, and ‘16-ira1ira2’ described in Sections S5.14S5.15S5.16). Schmelzle
et al. examined three hyperactivating PKA strains in a gln3Δgat1Δ background, (‘19-RAS2v19gln3gat1’,
‘20-TPK1gln3gat1’, and ‘22-bcy1gln3gat’ described in Sections S5.19S5.20S5.22). These strains were shown
to be rapamycin resistant. However, our model predicts that these strains are sensitive to rapamycin.
Our model does not currently include a direct interaction between PKA and TORC1. Similarly, the last
rapamycin treatment mismatch relates to a snf1Δ strain which was observed to show rapamycin resistance
[58]. While our model assumes that Snf1 inhibits TORC1, Snf1 will be inactive during growth on YPD,
hence the model predicts that a snf1 deletion will not affect Gln3 activity in this nutrient condition. Further
mechanistic details of crosstalk between PKA, Snf1 and TORC1 will be needed in order to resolve these
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mismatches.

Figure S6: Dependence of model cost on explanatory capacity, across the entire collection of alternative sets of
parameter values. Rapamycin experiments are defined using Dot6 as a model readout.
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Exp ID Dot6 Gln3Gcn4
20-TPK1 gln3 gat1 26.46 1.93

6-gln3 gat1 27.64 1.93
37-tap42-11 27.64 56.34

34-snf1 27.64 0.09
27-gln3 gcn4 27.64 100.0

22-bcy1 gln3 gat1 27.64 1.93
16-ira1 ira2 27.64 0.03

19-RAS2v19 gln3 gat1 27.64 1.93
14-bcy1 27.64 0.03

7-2µ URE2 27.64 1.79
15-ira1 27.64 0.03
10-gat1 72.36 83.39
9-gln3 72.36 83.39
28-gcn4 72.36 0.0
8-wt 72.36 97.25

35-reg1 72.36 98.02
36-ure2 72.36 98.07
18-tpk1 73.05 97.65
17-ras2 73.25 97.76
21-bcy1 73.54 97.96

38-SCH9DE 96.66 0.63
39-SCH9DE tap42 96.66 99.88

Table S1: List of rapamycin experiments, with confidence in model predictions. Confidence in qualitative predic-
tions is expressed as the percentage of parameter sets that make the correct prediction. The in silico experiments
corresponding to the experiment IDs are presented in Sections S5.
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Name Value
Cyr1 T 1.00e+00
Dot6 T 1.00e+00
EGO T 1.00e+00
EGOGAP T 1.00e+00
Gcn2 T 1.00e+00
Gcn4 T 1.00e+00
Gis1 T 1.00e+00
Gln1 T 1.00e+00
Gln3 T 1.00e+00
Mig1 T 1.00e+00
PDE T 1.00e+00
PKA T 1.00e+00
Ras T 1.00e+00
Rtg13 T 1.00e+00
Sak T 1.00e+00
Sch9 T 1.00e+00
Snf1 T 1.00e+00
TORC1 T 1.00e+00
Tps1 T 1.00e+00
Trehalase T 1.00e+00
eIF T 1.00e+00
gamma gcn2 4.71e+00
gamma mig 6.56e-01
gammacyr 8.96e+00
gammaego 5.07e+01
gammaeif 4.71e-01
gammagap 5.62e-01
gammagln1 6.35e-02
gammagln3 8.09e-02
gammapde 2.82e-01
gammapka 2.68e+00
gammaras 1.82e+00
gammasch9 4.63e+00
gammasnf 8.20e-01
gammator 7.55e+00
gammatps 4.71e-01
gammatre 3.42e-01
k acc glu 4.92e-02
k acc nh4 1.47e-03
k acc pro 2.15e-04
k camp cyr 1.09e+01
k camp deg 8.38e-02
k camp pde 1.41e+01

Name Value
k degr 8.98e-02
k mRNA degr 7.30e-02
k pr 2.02e-02
k transcription 2.36e-01
sigma cyr 3.50e+00
sigma dot 2.00e+01
sigma ego 5.00e+00
sigma eif 1.00e+00
sigma gap 1.00e+00
sigma gcn2 2.00e+01
sigma gcn4 5.00e+00
sigma gis1 1.00e+01
sigma gln 1.00e+01
sigma gln1 1.00e+00
sigma mig1 2.70e-01
sigma pde 1.90e+00
sigma pka 1.00e+00
sigma ras 1.00e+00
sigma rtg 1.00e+01
sigma sak 2.00e+01
sigma sch9 8.00e+00
sigma snf 3.00e+00
sigma tor 5.00e+00
sigma tps 5.00e+00
sigma trehalase 1.00e+01
tRNA scale 7.45e+01
tRNA total 2.47e+00
w cyr 1.35e+00
w cyr glu 5.13e+00
w cyr snf 1.19e-01
w dot 2.93e-01
w dot sch pka 1.63e-01
w ego 2.84e-01
w ego basal 1.10e-02
w ego gap 2.21e+00
w eif 3.73e+00
w eif gcn2 2.76e-01
w gap N 7.76e+00
w gap torc 8.83e+01
w gcn 1.15e-01
w gcn torc 1.29e+00
w gcn4 7.43e-01
w gcn4 gcn2 trna 1.53e+00

Name Value
w gis 1.30e+00
w gis pka 3.30e+00
w gis sch 8.42e-01
w gln sit 8.61e-01
w gln snf 3.90e+00
w gln1 2.22e-01
w gln1 gln3 5.20e-01
w gln3 6.39e-01
w mig 1.06e+01
w mig pka 2.31e+00
w mig snf 1.21e+00
w pde 3.83e-01
w pde pka 2.89e+00
w pka 5.81e-02
w pka camp 1.02e+02
w pka sch9 1.75e+01
w ras 2.08e-02
w ras glu 2.07e-01
w ras pka 1.87e+00
w rtg 1.86e-01
w rtg torc 8.77e-01
w sak 2.05e-01
w sak pka 3.75e-01
w sch9 5.65e-01
w sch9 torc 1.96e+00
w snf 5.38e-01
w snf glc 1.15e+00
w snf sak 1.52e+00
w torc 5.39e-01
w torc ego 8.77e-01
w torc egoin 3.03e-01
w torc glut 8.63e-01
w torc snf 4.37e-01
w tps 5.30e-02
w tps pka 5.74e-01
w tre 1.07e+00
w tre pka 3.07e+00
ATP 1.0
Carbon 1.0
Glutamine ext 1.0
NH4 0.00e+00
Proline 0.00e+00

Table S2: Parameter values constituting the optimal parameter set, obtained from 10,000 steps of MCMC sampling.
This set of values is used to define the simulation of a wt strain under HCHN conditions. Four time scale parameters
describing the activation of transcription factors namely γgcn4, γrtg13, γgis1, γdot6 are set to 1, since there is no short
time scale data available to constrain their dynamics.
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Index Parameter Ranks Data?
1 w sch9 1 Yes (T,P)
2 w cyr glu 1 No
3 w cyr 1 No
4 k degr 1 Yes (T,P)
5 w sch9 torc 1 Yes (T,P)
6 w torc snf 1 No
7 w torc glut 1 No
8 w torc egoin 1 No
9 k acc glu 1 No
10 w ego 1 No
11 w torc ego 1 No
12 w torc 1 No
13 w gln3 2 Yes (T,P)
14 k camp pde 2 Yes (T,P)
15 k camp cyr 2 Yes (T,P)
16 w ras pka 2 No
17 w mig 2 Yes (T,P)
18 w gln sit 3 Yes (T,P)
19 gammagap 4 No
20 w ego gap 4 No
21 w snf glc 6 Yes (T,P)
22 w snf 6 Yes (T,P)
23 w gap torc 6 No
24 w sak pka 6 No
25 w sak 6 No
26 w pka sch9 6 No
27 w pka camp 7 No
28 w gcn4 8 Yes (P)
29 w gis 8 Yes (P)
30 w ego basal 8 No
31 w gis pka 8 Yes (P)
32 w ras 8 No
33 gamma gcn2 8 No
34 w rtg 8 Yes (P)
35 k transcription 8 No
36 k mRNA degr 8 No
37 gammasnf 8 Yes (T,P)
38 gammasch9 8 Yes (T,P)
39 gammapde 8 No
40 gammagln1 8 No
41 gammaeif 8 No

Index Parameter Ranks Data?
42 gammaego 8 No
43 gammacyr 8 No
44 w tps 8 No
45 w gln1 gln3 8 No
46 w snf sak 9 Yes (T,P)
47 w pde 9 No
48 w mig snf 9 Yes (T)
49 w ras glu 9 No
50 w tre pka 9 Yes (P)
51 w gap N 9 No
52 w tre 9 Yes (P)
53 w gcn 10 No
54 w dot 10 No
55 gammatps 10 No
56 w pde pka 10 No
57 w dot sch pka 10 No
58 w gcn torc 10 No
59 w gcn4 gcn2 trna 10 Yes (P)
60 w pka 11 No
61 k acc nh4 11 No
62 gammaras 11 No
63 k camp deg 11 Yes (T,P)
64 tRNA sensitivity 11 No
65 gammator 11 No
66 w gln snf 11 Yes (T,P)
67 w eif 11 No
68 gamma mig 11 Yes (T)
69 w cyr snf 12 No
70 w eif gcn2 12 No
71 w tps pka 12 No
72 w gln1 12 No
73 gammatre 13 Yes (P)
74 gammagln3 14 Yes (T,P)
75 w gis sch 14 Yes (P)
76 k acc pro 14 No
77 tRNA total 14 No
78 gammapka 16 No
79 w mig pka 16 Yes (T)
80 w rtg torc 18 Yes (P)
81 k pr 20 No

Table S3: Ranked list of parameters. The ‘Data?’ column indicates whether or not the equation in which a parameter
appears is contrained by any type of data. If it is constrained, the column further indicates the type of data, ‘T’ for
timecourses or ‘P’ for perturbations. The parameters highlighted in bold indicate those appearing in the first 10 stiff
directions.
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Strain Model definition Description
Δsch9 Sch9 T = 0 Total amount of model variable
Δtor1 TORC1 T = 0 Total amount of model variable
Δsnf1 Snf1 T = 0 Total amount of model variable

Δgtr1/2 EGO T = 0 Total amount of model variable
Δpde1/2 PDE T = 0 Total amount of model variable
Δlst4/7 EGOGAP T = 0 Total amount of model variable
Δras2 Ras T = 0 Total amount of model variable
Δsak1 Sak T = 0 Total amount of model variable
Δgcn2 Gcn2 T = 0 Total amount of model variable
Δcyr1 Cyr1 T = 0 Total amount of model variable

Δtpk1/2/3 PKA T = 0 Total amount of model variable
GCN2-S557 w gcn torc = 0 TORC1 regulation of Gcn2
GLN3 ΔST w gln snf = 0 Snf1 regulation of Gln3
GLN3 ΔTT w gln sit = 0 TORC1 regulation of Gln3

Δbcy1 w pka sch9 = 0 Bcy1 mediated downregulation of PKA by Sch9
Δira1/2 w ras pka = 0 Ira1/2 mediated downregulation of Ras2 by PKA

Table S4: Summary of model representation of 16 mutants investigated in Section ’Predictions of global cellular
responses to nutrient states’. The columns represent the strain, the parameter change used to represent the strain in
the model, and an interpretation of the parameter in the context of the model, respectively.

S4 Steady-state and time-course predictions

In Figure 4 we presented global transcription factor states in response to complex nutrient shifts in 16 mutant
strains and wt . 11 out of 16 mutant strains correspond to deletions of molecular species present in the model
(Sch9, TORC1, Snf1, Gtr1/2, EGOGAP (Lst4/7), PDE, Ras2, Sak1, Gcn2, Cyr1, PKA). The remaining 5
mutant strains do not correspond directly to model variables. Δbcy1 and Δira1/2 correspond to molecular
species implicitly represented by regulatory interactions in our model. GCN2-S557, GLN3 ΔST, and GLN3
ΔTT represent mutant strains that abolish some but not all regulatory interactions impinging on targets,
namely the Gcn2 kinase and the Gln3 transcription factor respectively. Table S4 summarizes how the 16
strains are represented in the model.

This section includes supplementary results that quantify the robustness of the model. Figure S5 is an
alternate presentation of Figure 4. Each cell in the table records the percentage of parameter sets that agree
that a given TF is ON in a given strain (defined by the row), in a given nutrient condition (defined by the
column).

In addition to Figure 4, which depicts the robustness of the steady state responses of key transcription
factors, we also investigated the robustness of the time-course predictions made by the model in Figure
S8S9S10S11, which show the predicted time-courses of four prominent variables in the model, Snf1, Sch9,
PKA, and cAMP. One hundred randomly sampled parameter sets were used to simulate the responses of
these variables in various strains (rows) in various nutrient conditions (columns). Further, we quantified
the deviation of these time-courses from those predicted by the optimal parameter set using the mean sum
of squared errors (MSE). We defined a parameter set to be robust for that prediction, if the time-course
deviation was less than the an assigned cutoff on the MSE. Figure S7 summarizes the robustness of time-
course predictions, following the same color conventions as Figure 4.
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Figure S7: Robust time courses of Snf1, Sch9, PKA, and cAMP across the indicated strains in the 8 qualitatively
distinct nutrient states. The figure summarizes the deviation of simulated trajectories across 500 randomly sampled
parameter sets with respect to that from the reference parameter set. We use mean sum of squared errors (MSE) to
measure the deviation. Green and red bars indicate the fraction of parameter sets with MSE less than and greater
than a chosen cutoff respectively. Light colors indicate robust timecourse, with greater than 90% of the parameter
sets producing MSE less than a cutoff. Conversely, bright colors indicate fragile predictions with more than 10% of
parameter sets making fragile predictions.
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Figure S8: Snf1 dynamics across 100 randomly sampled parameter sets.
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Figure S9: Sch9 dynamics across 100 randomly sampled parameter sets.
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Figure S10: PKA dynamics across 100 randomly sampled parameter sets.
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Figure S11: cAMP dynamics across 100 randomly sampled parameter sets.
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S5 Comparison of model predictions with qualitative experimen-
tal data

This section records the curated qualitative experiments, along with the model simulations using the optimal
parameter set. Each experiment has a unique experiment ID, a table containing the interpreted and predicted
states of transcription factors, along with the simulated values at steady state, a description of the experiment
containing a reference to the original publication, the strain used, and the experiment performed, and the
parameters used to represent the strain and the shift experiment in the model. Finally, the simulated time
courses of the six model readouts and the interpretation of the simulation are described.

As described in Section S3, we use two definitions of rapamycin experiments. The sample simulations
here use the Gln3Gcn4 definition of rapamycin treatment. Experiments involving rapamycin treatment are
thus indicated using the text Readout used is Gln3 Gcn4. For the general trend of predictions using the
alternate definition using Dot6, please see Table S1. (Note that the results shown here only correspond to
one parameter set of our collection of 18,000 alternate sets of parameter values.)

S5.1 1-rho0

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.487
Dot6 - - 0.312
Gcn4 - - 0.024
Rtg13 Off Off 0.274
Gln3 - - 0.983

Description: Liu et al, 1999 studied a rho0 strain (PSY142 ρ0) grown in YP + 5% glucose.
Representation:

Preshift Parameters
ATP 0.1
Carbon 0.1
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Initial Conditions

Mutant definition
Parameters

kaccglu 0.0369
kaccpro 0.0002
kaccnh4 0.0011

Initial conditions

Model agrees with experiment.
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S5.2 2-rho0

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.482
Dot6 - - 1.121
Gcn4 - - 0.722
Rtg13 On On 0.683
Gln3 - - 0.999

Description: Liu et al, 1999 studied a rho0 strain (PSY142 ρ0) grown in YP + 2% raffinose.
Representation:

Preshift Parameters
ATP 0.1
Carbon 0.1
Glutamineext 1.0

Postshift Parameters
ATP 0.7
Carbon 0.7
Glutamineext 0.5

Postshift Initial Conditions

Mutant definition
Parameters

kaccglu 0.0369
kaccpro 0.0002
kaccnh4 0.0011

Initial conditions

Model agrees with experiment.

S5.3 3-rtg1

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.498
Dot6 - - 0.532
Gcn4 - - 0.024
Rtg13 Off Off 0.279
Gln3 - - 0.992

Description: Liu et al, 1999 studied a rtg1 strain (PSY142 ρ0) grown in YNBD + 0.02% Glutamate.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.9

Postshift Initial Conditions

Mutant definition
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Parameters
Rtg13T 0.75
kaccglu 0.0369
kaccpro 0.0002
kaccnh4 0.0011

Initial conditions

Model agrees with experiment.

S5.4 4-rtg1

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.094
Gcn4 - - 0.945
Rtg13 Off On 0.613
Gln3 - - 1.000

Description: Liu et al, 1999 studied a rtg1 strain (PSY142 ρ0) grown in YNBD.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0

Postshift Initial Conditions

Mutant definition
Parameters

Rtg13T 0.75
kaccglu 0.0369
kaccpro 0.0002
kaccnh4 0.0011

Initial conditions

Model does not agree with experiment.
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S5.5 5-snf1

TF Interpreted Simulated Simulation
Gis1 Off On 0.884
Mig1 On Off 1.325
Dot6 - - 1.977
Gcn4 - - 0.872
Rtg13 - - 0.728
Gln3 - - 0.999

Description: Gasmi et al, 2014 studied a snf1 strain (BY4741) grown in Minimal + (0.2%casa) + 2%
Ethanol.

Representation:
Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 0.1
Carbon 0.1
Glutamineext 0.2

Postshift Initial Conditions

Mutant definition
Parameters
Snf1T 0.0

Initial conditions
Snf1 0.0

Model does not agree with experiment.

S5.6 6-gln3 gat1

Readout used is Gln3 Gcn4
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TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off Off 0.000

Description: Beck et al, 1999 studied a gln3 gat1 strain (wt) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Gln3T 0.0

Initial conditions
Gln3 0.0

Model does not agree with experiment.

S5.7 7-2µ URE2

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off On 0.999

Description: Beck et al, 1999 studied a 2µ URE2 strain (wt) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

wgln3 1.2784 Initial conditions

Model does not agree with experiment.
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S5.8 8-wt

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Beck et al, 1999 studied a wt strain (wt) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition

Parameters Initial conditions
Model agrees with experiment.

S5.9 9-gln3

Readout used is Gln3 Gcn4
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TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 0.650

Description: Beck et al, 1999 studied a gln3 strain (wt) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Gln3T 0.65

Initial conditions
Gln3 0.0

Model agrees with experiment.

S5.10 10-gat1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 0.650

Description: Beck et al, 1999 studied a gat1 strain (wt) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Gln3T 0.65

Initial conditions
Gln3 0.0

Model agrees with experiment.
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S5.11 11-gln3

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.037
Gcn4 - - 0.806
Rtg13 - - 0.702
Gln3 Off On 0.649

Description: Crespo et al, 2002 studied a gln3 strain (TB123) grown in SD + 1mM MSX.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
kaccglu 0.0

Postshift Initial Conditions

Mutant definition

Parameters
Gln3T 0.65

Initial conditions
Gln3 0.0
Glutamine 0.01

Model does not agree with experiment.
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S5.12 12-gln3 gat1

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.037
Gcn4 - - 0.806
Rtg13 - - 0.702
Gln3 Off Off 0.000

Description: Crespo et al, 2002 studied a gln3 gat1 strain (TB123) grown in SD + 1mM MSX.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
kaccglu 0.0

Postshift Initial Conditions

Mutant definition

Parameters
Gln3T 0.0

Initial conditions
Gln3 0.0
Glutamine 0.01

Model agrees with experiment.

S5.13 13-wt

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.037
Gcn4 - - 0.806
Rtg13 - - 0.702
Gln3 On On 0.999

Description: Crespo et al, 2002 studied a wt strain (TB123) grown in SD + 1mM MSX.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
kaccglu 0.0

Postshift Initial Conditions

Mutant definition

Parameters Initial conditions
Model agrees with experiment.
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S5.14 14-bcy1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off On 1.000

Description: Zurita-Martinez et al, 2005 studied a bcy1 strain (S1278b) grown in YP Glucose + 50nM
rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
wpkasch9 0.0 Initial conditions

Model does not agree with experiment.
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S5.15 15-ira1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off On 1.000

Description: Zurita-Martinez et al, 2005 studied a ira1 strain (S1278b) grown in YP Glucose + 50nM
rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

wraspka 0.9362 Initial conditions

Model does not agree with experiment.

S5.16 16-ira1 ira2

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off On 1.000

Description: Zurita-Martinez et al, 2005 studied a ira1 ira2 strain (S1278b) grown in YP Glucose +
50nM rapamycin.

Representation:
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Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

wraspka 0.1872 Initial conditions

Model does not agree with experiment.

S5.17 17-ras2

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.001
Mig1 - - 1.399
Dot6 - - 1.637
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Zurita-Martinez et al, 2005 studied a ras2 strain (MLY41a) grown in YP Glucose + 50nM
rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
RasT 0.0 Initial conditions

Model agrees with experiment.
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S5.18 18-tpk1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.411
Dot6 - - 1.578
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Zurita-Martinez et al, 2005 studied a tpk1 strain (MLY41a) grown in YP Glucose + 50nM
rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
PKAT 0.66 Initial conditions

Model agrees with experiment.
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S5.19 19-RAS2v19 gln3 gat1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off Off 0.000

Description: Schmelzle et al, 2003 studied a RAS2v19 gln3 gat1 strain (TB50a) grown in YPD +
200ng/mL rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Gln3T 0.0
wraspka 0.0

Initial conditions

Model does not agree with experiment.

S5.20 20-TPK1 gln3 gat1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.177
Mig1 - - 1.338
Dot6 - - 1.874
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off Off 0.000

Description: Schmelzle et al, 2003 studied a TPK1 gln3 gat1 strain (TB50a) grown in YPD + 200ng/mL
rapamycin.

Representation:
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Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

Gln3T 0.0
wpkacamp 0.0

Initial conditions

Model does not agree with experiment.

S5.21 21-bcy1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.177
Mig1 - - 1.338
Dot6 - - 1.874
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Schmelzle et al, 2003 studied a bcy1 strain (TB50a) grown in YPD + 200ng/mL rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

wpkacamp 0.0 Initial conditions

Model agrees with experiment.
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S5.22 22-bcy1 gln3 gat1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off Off 0.000

Description: Schmelzle et al, 2003 studied a bcy1 gln3 gat1 strain (TB50alpha) grown in YPD +
200ng/mL rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters

Gln3T 0.0
wpkacamp 1021.0983

Initial conditions

Model does not agree with experiment.
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S5.23 23-wt

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.037
Gcn4 On On 0.806
Rtg13 - - 0.702
Gln3 - - 0.999

Description: Cherkasova et al, 2010 studied a wt strain (H1642) grown in SC + 10mM 3AT.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0
kaccnh4 0.0001

Postshift Initial Conditions

Mutant definition

Parameters Initial conditions
Model agrees with experiment.

S5.24 24-gcn2

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.037
Gcn4 Off Off 0.024
Rtg13 - - 0.702
Gln3 - - 0.999

Description: Cherkasova et al, 2010 studied a gcn2 strain (H1895) grown in SC + 10mM 3AT.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0
kaccnh4 0.0001

Postshift Initial Conditions

Mutant definition
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Parameters
Gcn2T 0.0 Initial conditions

Model agrees with experiment.

S5.25 25-snf1

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.504
Dot6 - - 1.037
Gcn4 Off On 0.806
Rtg13 - - 0.702
Gln3 - - 0.999

Description: Cherkasova et al, 2010 studied a snf1 strain (HQY343) grown in SC + 10mM 3AT.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0
kaccnh4 0.0001

Postshift Initial Conditions

Mutant definition
Parameters
Snf1T 0.0 Initial conditions

Model does not agree with experiment.
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S5.26 26-gcn2 snf1

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.504
Dot6 - - 1.037
Gcn4 Off Off 0.024
Rtg13 - - 0.702
Gln3 - - 0.999

Description: Cherkasova et al, 2010 studied a gcn2 snf1 strain (HQY344) grown in SC + 10mM 3AT.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0
NH4 2.0
kaccnh4 0.0001

Postshift Initial Conditions

Mutant definition
Parameters
Gcn2T 0.0
Snf1T 0.0

Initial conditions

Model agrees with experiment.

S5.27 27-gln3 gcn4

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off Off 0.000
Rtg13 - - 0.866
Gln3 Off Off 0.000

Description: Valenzuela et al, 2001 studied a gln3 gcn4 strain (CLA-303) grown in YPD 200ng/mL
rapamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0
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Mutant definition
Parameters
Gcn4T 0.0
Gln3T 0.0

Initial conditions

Model agrees with experiment.

S5.28 28-gcn4

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 On Off 0.000
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Valenzuela et al, 2001 studied a gcn4 strain (CLA-300) grown in YPD 200ng/mL ra-
pamycin.

Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 0.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Gcn4T 0.0 Initial conditions

Model does not agree with experiment.

65



S5.29 29-rph1 gis1

TF Interpreted Simulated Simulation
Gis1 Off Off 0.000
Mig1 On On 1.465
Dot6 - - -0.048
Gcn4 - - 0.024
Rtg13 - - 0.061
Gln3 - - 0.755

Description: H. Ronne et al, 1999 studied a rph1 gis1 strain (H874) grown in SD glucose -ura.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Initial Conditions

Mutant definition
Parameters
Gis1T 0.0 Initial conditions

Model agrees with experiment.
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S5.30 30-rph1 gis1

TF Interpreted Simulated Simulation
Gis1 Off Off 0.000
Mig1 Off Off 1.168
Dot6 - - 2.078
Gcn4 - - 0.608
Rtg13 - - 0.664
Gln3 - - 1.000

Description: H. Ronne et al, 1999 studied a rph1 gis1 strain (H874) grown in YP ethanol.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 0.1
Carbon 0.1
Glutamineext 1.0

Postshift Initial Conditions

Mutant definition
Parameters
Gis1T 0.0 Initial conditions

Model agrees with experiment.

S5.31 34-snf1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.504
Dot6 - - 1.108
Gcn4 Off On 0.955
Rtg13 - - 0.866
Gln3 Off On 1.000

Description: Bertram et al, 2002 studied a snf1 strain (SZy686) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Snf1T 0.0 Initial conditions
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Model does not agree with experiment.

S5.32 35-reg1

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.478
Dot6 - - 1.108
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Bertram et al, 2002 studied a reg1 strain (JC426) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
wsnfglc 0.0 Initial conditions

Model agrees with experiment.
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S5.33 36-ure2

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 On On 0.955
Rtg13 - - 0.866
Gln3 On On 1.000

Description: Bertram et al, 2002 studied a ure2 strain (SZy145) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
wgln3 0.0 Initial conditions

Model agrees with experiment.

S5.34 37-tap42-11

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.503
Dot6 - - 1.108
Gcn4 Off Off 0.398
Rtg13 - - 0.866
Gln3 Off On 0.570

Description: Huber et al, 2009 studied a tap42-11 strain (TB50) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0
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Mutant definition
Parameters
wgcn 0.0
wglnsit 0.0

Initial conditions

Model does not agree with experiment.

S5.35 38-SCH9DE

Readout used is Gln3 Gcn4

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.467
Dot6 - - -0.103
Gcn4 Off Off 0.024
Rtg13 - - 0.866
Gln3 Off On 1.000

Description: Huber et al, 2009 studied a SCH9DE strain (TB50) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Sch9T 1.0
wsch9 -10

Initial conditions
Sch9 1.0

Model does not agree with experiment.
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S5.36 39-SCH9DE tap42

TF Interpreted Simulated Simulation
Gis1 - - 0.000
Mig1 - - 1.467
Dot6 - - -0.103
Gcn4 Off Off 0.024
Rtg13 - - 0.866
Gln3 Off On 0.596

Description: Huber et al, 2009 studied a SCH9DE tap42 strain (TB50) grown in YPD + rapamycin.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0
TORC1T 0.0

Postshift Initial Conditions

TORC1 0

Mutant definition
Parameters
Sch9T 1.0
wsch9 -10
wgcn 0.0
wglnsit 0.0

Initial conditions
Sch9 1.0

Model does not agree with experiment.
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S5.37 40-sch9

TF Interpreted Simulated Simulation
Gis1 On Off 0.046
Mig1 - - 1.264
Dot6 - - 1.825
Gcn4 - - 0.963
Rtg13 - - 0.577
Gln3 - - 1.000

Description: Roosen et al, 2005 studied a sch9 strain (W303-1) grown in YP + glycerol.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 0.01
Carbon 0.01
Glutamineext 1.0

Postshift Initial Conditions

Mutant definition
Parameters
Sch9T 0.0

Initial conditions
Sch9 0.0

Model does not agree with experiment.

S5.38 41-sch9 gis1

TF Interpreted Simulated Simulation
Gis1 Off Off 0.000
Mig1 - - 1.264
Dot6 - - 1.825
Gcn4 - - 0.963
Rtg13 - - 0.577
Gln3 - - 1.000

Description: Roosen et al, 2005 studied a sch9 gis1 strain (W303-1) grown in YP + glycerol.
Representation:

Preshift Parameters
ATP 1.0
Carbon 1.0
Glutamineext 1.0

Postshift Parameters
ATP 0.01
Carbon 0.01
Glutamineext 1.0

Postshift Initial Conditions

Mutant definition
Parameters
Gis1T 0.0
Sch9T 0.0

Initial conditions
Gis1 0.0
Sch9 0.0

Model agrees with experiment.
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