Supplemental Materials

Molecular Biology of the Cell

Na *et al*.

Supplementary materials

Figure S1. (A) Specific DEGs detected in "actin cytoskeleton" and "focal adhesion" categories, with their ARHGAP4/EGFP fold changes in red (upregulation) and blue (downregulation) color (upper) and with their mutual relationship in a Venn diagram (lower). Mutual relationships are comprised of known relationships provided by the database, and the connection between each of the related two genes are indicated by the lines. Among them, 6 DEGs (green) are shared by the two categories. (B) Immunoblots showing the expression of integrin molecules in HEK293 and MCF10A cells with (ARHGAP4-Ov) or without (GFP) ARHGAP4 overexpression.

Figure S2. (A) MCF10A cells expressing EGFP or EGFP-ARHGAP4 were extracted and analyzed for immunoprecipitation with magnetic beads conjugated with an equal GFP antibody. (B) Immunoprecipitates and interacting proteins were stained by Silver Stain MS Kit (Wako). Coimmunoprecipitation shows that ARHGAP4 was pulled down with GFP-tagged SEPT2 and SEPT9, but not with GFP protein in MCF10A cells. (C) SEPT2 enables pull-down of GFP-tagged ARHGAP4, but not GFP. (D) SEPT9 enables pull-down of GFP-tagged ARHGAP4, but not GFP.

Figure S3. (A) BXPC3 cells were extracted and analyzed for immunoprecipitation with magnetic beads conjugated with ARHGAP4 antibody. an equal (B) Immunofluorescence shows colocalization of ARHGAP4, SEPT2, and SEPT9 in BXPC3 cells. Magnified views of the white rectangular regions in Merge are shown on the right panel, in which A, S, and M stand for ARHGAP4, SEPT, and Merge, respectively. The both ends of the survey line are connected by the dotted lines in Magnification. Note that the survey line is omitted in M to show the uncropped images. (C) Intensity distribution along the length of the white lines in B, showing ARHGAP4 (green) and SEPT2 (upper, red) or SEPT9 (lower, red) with an r representing the Pearson correlation coefficient. Scale, 20 µm.

Figure S4. Confocal microscopic images of Immunofluorescence shows colocalization of ARHGAP4, SEPT2, and SEPT9 in HEK293 cells. The lower graphs show the relationship of the intensity of each protein along the line shown in the upper images, in which the regression lines were determined by the least-squares method with an r representing the Pearson correlation coefficient. Scale, 20 μ m.

в

Figure S5. (A) Immunofluorescence of paxillin and paxillin-Y118 to observe the effect of ARHGAP4 depletion on FAs compared to control. Scale, 25 μ m. (B) Bright-field of HEK293 cells treated with si-Control or si-ARHGAP4. Plots of individual cell area. Scale, 5 mm.

Figure S6. Immunofluorescence of ARHGAP4 and paxillin in Bxpc3 cells suggests that there is no obvious colocalization between them. The right graph shows the intensity distribution along the length of the white lines in the left images, showing ARHGAP4 (green) and paxillin (red) with an r representing the Pearson correlation coefficient Scale, 20 µm.

Figure. S7. Fluorescence images of EGFP-vinculin during the FRAP experiments

performed on control cells, ARHAGP4-depeletion cells, and ARHAGP4-depletion cells with fibronectin coating. The white boxes in the images at Original are magnified on the right. The areas with the dotted white boxes were photobleached (time = 0 second), which partly recovered in fluorescence intensity at time = 200 seconds. The time evolution (Figure 3F) was analyzed to determine the extent of the recovery related to the stability of the FAs (Figure 3G). Scale, 20 μ m.

Figure. S8. Immunofluorescence of cells expressing GFP or the mutants described. The boxes in the paxillin images are magnified in the right columns. Scale, 25 µm.

Figure S9. Immunofluorescence of cells overexpressed with EGFP, EGFP-labeled SEPT2, or EGFP-labeled SEPT9 shows the nucleus (a), EGFP (b), paxillin (c), paxillin-Y118 (d), and merge magnification of paxillin and paxillin-Y118 (e). Scale, 25 µm.

Figure S10. Immunoblots show that SEPT2 and SEPT9 depletion upregulates ARHGAP4 expression; meanwhile, ARHGAP4 depletion does not affect SEPT2 and SEPT9. The siRNAs for this figure are different with those of Figure 6A.

Table S1. The DEGs caused by ARHGAP4.

- Table S2. The DEGs in "cytoskeleton" and "focal adhesion" pathway.
- Table S3. The primer sequences used to construct the plasmids.
- Table S4. The siRNA sequences.
- Table S5. The antibodies used in this study.

Table S1 The DEGs caused by ARHGAP4 (Fold change > 1.5)							
Gene_Symbol	Gene_ID	N_EGFP	N_GAP4				
ZZZ3	26009	7.005300	6.745060				
ZZEF1	23140	6.257500	6.305360				
ZYX	7791	7.298810	7.405070				
ZYG11B	79699	7.695230	7.389130				
ZYG11A	440590	2.273910	2.364040				
ZXDC	79364	5.443190	5.650680				
ZXDB	158586	4.861100	5.522130				
ZXDA	7789	2.374260	2.374260				
ZWINT	11130	6.058510	6.306430				
ZWILCH	55055	7.600110	7.230580				
ZW10	9183	6.788850	6.314760				
ZUFSP	221302	4.398270	3.699020				
ZSWIM8-AS1	100507331	3.739100	3.981370				
ZSWIM8	23053	5.235050	5.759950				
ZSWIM7	125150	3.944600	3.944600				
ZSWIM6	57688	6.523100	6.846710				
ZSWIM5	57643	4.197910	3.305620				
ZSWIM4	65249	4.526510	4.814170				
ZSWIM3	140831	3.488470	3.219190				
ZSWIM2	151112	1.603330	1.872180				
ZSWIM1	90204	6.241020	6.312010				
ZSCAN9	7746	3.950330	3.786500				
ZSCAN5CP	649137	2.393100	2.475050				
ZSCAN5B	342933	1.941610	1.803550				
ZSCAN5A	79149	5.265820	5.703880				
ZSCAN4	201516	1.982880	1.907180				
ZSCAN32	54925	5.384820	5.653330				
ZSCAN31	64288	2.643080	2.785490				
ZSCAN30	100101467	3.806040	3.770210				
ZSCAN29	146050	5.789390	5.913420				
ZSCAN26	7741	4.312510	4.228530				
ZSCAN25	221785	4.878110	4.715910				
ZSCAN23	222696	2.880910	3.364700				
ZSCAN22	342945	5.527550	5.732880				
ZSCAN21	7589	5.979200	5.963560				
ZSCAN20	7579	4.336440	4.381650				
ZSCAN2	54993	3.999520	4.201790				
ZSCAN18	65982	3.784170	3.692270				
ZSCAN16-AS1	100129195	3.127560	3.385490				
ZSCAN16	80345	3.301000	3.478920				
ZSCAN12P1	221584	4.044050	4.150050				
ZSCAN12	9753	3.863210	2.973970				
ZSCAN10	84891	3.943350	4.177670				
ZSCAN1	284312	4.155140	4.610530				

Table S2 The DEGs in "cytoskeleton" and "focal adhesion" pathway

	Aliases for	ARHGAP4/EGFP	The function of cellular processes			Γ	- Representative References		
	KDR Gene	Fold change	Cancer-related	Movement-related	Proliferation-relate	ytoskeleton-relate			
KDR	Kinase Insert Domain Receptor, Vascular Endothelial Growth Factor Receptor 2, VEGFR, FLK1	4.831496	Ο	Ο	Ο	Ο	1. VEGFR2 and VEGF-C Suppresses the Epithelial-Mesenchymal Transition Via YAP in Retinal Pigment Epithelial Cells. Y. Du et al. Current Molecular Medicine, 2018 2. Vascular Endothelial Growth Factor Regulates Focal Adhesion Assembly in Human Brain Microvascular Endothelial Cells Through Activation of the Focal Adhesion Kinase and Related Adhesion Focal Tyrosine Kinase. Hava Karsenty Avraham et al. J Biol Chem, 2003 3. Apatinib Affect VEGF-mediated Cell Proliferation, Migration, Invasion via Blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT Pathways in Cholangiocarcinoma Cell, Manping Huang et al. BMC Gastroenterol, 2018		
ITGA10	Integrin Subunit Alpha 10	3.219798	×	Ο	Ο	Ο	 Integrin-α10 Dependency Identifies RAC and RICTOR as Therapeutic Targets in High-Grade Myxofibrosarcoma, Tomoyo Okada et al, Cancer Discov, 2016 Prednisolone Induces Osteoporosis-Like Phenotypes via Focal Adhesion Signaling Pathway in Zebrafish Larvae, Lei Huo et al, Biol Open, 2018 Integrin α10, a Novel Therapeutic Target in Glioblastoma, Regulates Cell Migration, Proliferation, and Survival, Matilda Munksgaard Thorén et al. Cancers, 2019 		
ITGB4	Integrin Subunit Beta 4	2.197114	Ο	Ο	Ο	Ο	 ITGB4-mediated Metabolic Reprogramming of Cancer-Associated Fibroblasts, Jin Sol Sung et al. Oncogene, 2020 Activation of Focal Adhesion Kinase Through an Interaction With β4 Integrin Contributes to Tumorigenicity of Colon Cancer, Yu-Ling Tai et al. FEBS Lett. 2016 Deletion of TMEM268 Inhibits Growth of Gastric Cancer Cells by Downregulating the ITGB4 Signaling Pathway. Dubeiqi Hong et al. Cell Death Differ. 2019 Metallopanstimulin-1 Regulates Invasion and Migration of Gastric Cancer Cells Partially Through Integrin β4. Zhong yin Yang et al. Carcinogenesis. 2013 		
FN1	Fibronectin 1, Cold-Insoluble Globulin, Migration- Stimulating Factor	2.088750	Ο	Ο	Ο	Ο	 Down-regulation of FN1 Inhibits Colorectal Carcinogenesis by Suppressing Proliferation, Migration, and Invasion, Xun Cai et al. J Cell Biochem. 2018 Fibronectin Is Up-Regulated in Podocytes by Mechanical Stress. Felix Kliewe et al. FASEB J. 2019 Fibronectin 1 Promotes Melanoma Proliferation and Metastasis by Inhibiting Apoptosis and Regulating EMT. Bifei Li et al. Onco Targets Ther. 2019 Fibronectin promotes cervical cancer tumorigenesis through activating FAK signaling pathway. Yuzhen Zhou et al. J Cell Biochem 		
CCND2	Cyclin D2, G1/S-Specific Cyclin-D2, MPPH3	1.794610	Ο	Ο	Ο	Ο	 Long noncoding RNA FOXD2-AS1 promotes glioma malignancy and tumorigenesis via targeting miR-185-5p/CCND2 axis. Shen F et al. J Cell Biochem. 2019 miR-198 Represses the Proliferation of HaCaT Cells by Targeting Cyclin D2. Jian Wang et al. Int J Mol Sci. 2015 Loss of a negative feedback loop involving pea3 and cyclin d2 is required for pea3- induced migration in transformed mammary epithelial cells. Ladam F et al. Mol Cancer Res. 2013 		
PPP1R12C	Protein Phosphatase 1 Regulatory Subunit 12C, Myosin-Binding Subunit 85, P85, Leukocyte Receptor Cluster (LRC) Member 3, AAVS1	1.648496	Ο	×	×	Ο	 Identification of Tumor-Educated Platelet Biomarkers of Non-Small-Cell Lung Cancer. Meiling Sheng et al. Onco Targets Ther. 2018 Novel roles for scleraxis in regulating adult tenocyte function. Anne E.C et al. BMC Cell Biology. 2018 Altered Expression of Human Smooth Muscle Myosin Phosphatase Targeting (MYPT) Isovariants With Pregnancy and Labor. Jon Lartey et al. Plos One. 2016 		
SHC4	SHC Adaptor Protein 4, Rai- Like Protein, SHCD	1.592839	Ο	Ο	Ο	Ο	 The ShcD Signaling Adaptor Facilitates Ligand-Independent Phosphorylation of the EGF Receptor, Melanie K B Wills et al. Mol Biol Cell. 2014 Role of TGF-β in the Motility of ShcD-overexpressing 293 Cells. Sara Amer et al. Mol Med Rep. 2019 Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells Is Revealed by the ShcD/RaLP Adaptor Protein, Margherita Y Turcoet al. Stem Cells. 2012 Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. Wills MK et al. J Biol Chem. 2017 		
THBS2	Thrombospondi n 2, TSP2	1.582406	Ο	Ο	Ο	Ο	 THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. Tian Q et al. J BUON. 2018 Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. Ao R et al. J Cell Biochem. 2018 Transcriptomic profile reveals molecular events associated to focal adhesion and invasion in canine mammary gland tumour cell lines. Cordeiro XG et al. Vet Comp Oncol 		
PGF	Placental Growth Factor, PGFL, PIGF	1.541121	Ο	Ο	Ο	Ο	 Placental growth factor promotes epithelial-mesenchymal transition-like changes in ARPE-19 cells under hypoxia. Zhang Y et al. Mol Vis. 2018 PIGF Knockdown Inhibited Tumor Survival and Migration in Gastric Cancer Cell via PI3K/Akt and p38MAPK Pathways. Hassan Akrami et al. Cell Biochem Funct. 2016 		
RAC3	Rac Family Small GTPase 3, Ras-Related C3 Botulinum Toxin Substrate 3, P21-Rac3, Rho Family, Small GTP Binding Protein Rac3	-1.523997	Ο	Ο	Ο	Ο	 Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway. Zhang C et al. J Cancer. 2017 Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. Steffen A et al. J Cell Sci. 2013 Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. Donnelly SK et al. J Cell Biol. 2017 		
VEGFC	Flt4-L, Vascular Endothelial Growth Factor C,VRP, LMPH1D	-1.585403	Ο	Ο	0	Ο	 Suppression of Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) and Vascular Endothelial Growth Factor C (VEGFC) Inhibits Hypoxia-Induced Lymph Node Metastases in Cervix Cancer. Naz Chaudary et al. Gynecol Oncol. 2011 VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Ndiaye PD et al. Theranostics. 2019 		

RAP1B	GTP-Binding Protein Smg P21B, Ras Family Small GTP Binding Protein RAP1B, RAS-Related Protein RAP1B, K-REV	-1.587152	Ο	Ο	Ο	Ο	 Rap1b enhances the invasion and migration of hepatocellular carcinoma cells by upregulating Twist 1. Tang Z et al. Exp Cell Res. 2018 Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Rho SS et al. Dev Cell. 2019
PDPK1	3- Phosphoinositid e Dependent Protein Kinase 1, PkB Kinase Like Gene 1, PDPK2P, PDPK2, HPDK1	-1.741137	Ο	Ο	Ο	Ο	1. miR-16-2-3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. Han T et al. Int J Mol Med. 2019.2019.2.PDK1 induces JunB, EMT, cell migration and invasion in human gallbladder cancer. Lian S et al. Oncotarget. 20152.3. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination. Di Blasio L et al. Cancers. 2017
ITGA4	Integrin Subunit Alpha 4, CD49D, Antigen CD49D, Alpha-4 Subunit Of VLA- 4 Receptor	-1.767046	Ο	Ο	Ο	Ο	 MiR-30s Family Inhibit the Proliferation and Apoptosis in Human Coronary Artery Endothelial Cells Through Targeting the 3'UTR Region of ITGA4 and PLCG1. Ma F et al. J Cardiovasc Pharmacol. 2016 Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Zhou Z et al. J Dairy Sci. 2018
PRKCA	Protein Kinase C Alpha, Aging- Associated Gene 6, PRKACA, AAG6	-1.848276	Ο	Ο	Ο	Ο	 A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Rosenberg S et al. Nat Commun. 2018 Inhibition of ZL55 cell proliferation by ADP via PKC-dependent signalling pathway. Muscella A et al. J Cell Physiol. 2018 Protein kinase C α enhances migration of breast cancer cells through FOXC2-mediated repression of p120-catenin. Pham TND et al. BMC Cancer. 2017
BCL2	Regulator, Protein Phosphatase 1, Regulatory Subunit 50,	-1.889455	Ο	Ο	Ο	Ο	 Regulating the BCL2 Family to Improve Sensitivity to Microtubule Targeting Agents. Whitaker RH et al. Cells. 2019 miR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma. Zhao Y et al. Oncol Lett. 2018 BCL-2: Long and winding path from discovery to therapeutic target. Schenk RL et al. Biochem Biophys Res Commun. 2017
ITGB1	Integrin Subunit Beta 1, Glycoprotein lia, MSK12, GPIIA, FNRB, MDF2, VLA-4 Subunit Beta, CD29	-2.394791	Ο	Ο	Ο	Ο	 β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain. Fujioka T et al. EBioMedicine. 2017 Integrin-β1 regulates chondrocyte proliferation and apoptosis through the upregulation of GIT1 expression. Zhang LQ et al. Int J Mol Med. 2015 CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. Lugano R et al. J Clin Invest. 2018
CYFIP2	Cytoplasmic FMR1 Interacting Protein 2, P53- Inducible Protein 121, PIR121, EIEE65	2.907441	Ο	Ο	Ο	Ο	 Inhibition of CYFIP2 promotes gastric cancer cell proliferation and chemoresistance to 5-fluorouracil through activation of the Akt signaling pathway. Jiao S et al. Oncol Lett. 2017 PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Blagg SLet al. Curr Biol. 2003 Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non- redundant Functions in Vivo. MatthiasSchaks et al. Curr Biol. 2018
GIT1	GIT ArfGAP 1, ARF GTPase- Activating Protein GIT1, G Protein-Coupled Receptor Kinase- Interactor 1	1.674546	Ο	Ο	Ο	Ο	1. Inhibiting GIT1 reduces the growth, invasion, and angiogenesis of osteosarcoma.Zhang Z et al. Cancer Manag Res. 20182.Periodic Mechanical Stress Stimulates GIT1-Dependent Mitogenic Signals in RatChondrocytes Through ERK1/2 Activity.Ren K et al. Cell Physiol Biochem. 20183. MiR-138 inhibits cell proliferation and reverses epithelial-mesenchymal transition innon-small cell lung cancer cells by targeting GIT1 and SEMA4C. Li J et al. J Cell Mol Med.2015
IQGAP2	IQ Motif Containing GTPase Activating Protein 2, Ras GTPase- Activating-Like Protein IQGAP2	1.586580	Ο	Ο	Ο	Ο	 Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/β-catenin signaling. Deng Z et al. Int J Oncol. 2016 IQGAP2 Inhibits Migration and Invasion of Gastric Cancer Cells via Elevating SHIP2 Phosphatase Activity. Xu L et al. Int J Mol Sci. 2020 IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Xie Y et al. Biochim Biophys Acta. 2012 IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Schmidt VA et al. Blood, 2003
FGFR2	Fibroblast Growth Factor Receptor 2, KGFR, Jackson- Weiss Syndrome, Keratinocyte Growth Factor Receptor	1.568266	Ο	Ο	Ο	Ο	 Cancer Mutations in FGFR2 Prevent a Negative Feedback Loop Mediated by the ERK1/2 Pathway. Szybowska P et al. Cells. 2019 FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. Stehbens SJ et al. J Cell Sci. 2018 FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Chang MM et al. Cancer Sci. 2018
KRAS	KRAS Proto- Oncogene, GTPase, Cellular Transforming Proto- Oncogene, PR310 C-K-Ras Oncogene, Transforming Protein P21, K- Ras P21 Protein	-1.503141	Ο	Ο	Ο	Ο	 Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. von Karstedt S et al. Cancer Cell. 2015 Effects of PTEN Loss and Activated KRAS Overexpression on Mechanical Properties of Breast Epithelial Cells. Linthicum W et al. Int J Mol Sci. 2018
NRAS	NRAS Proto- Oncogene, GTPase, V-Ras Neuroblastoma RAS Viral Oncogene Homolog, N-Ras Protein Part 4, CMNS	-1.511321	Ο	Ο	Ο	Ο	 Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Liu S et al. Cancer Med. 2017 Mechanisms of Regulation of Pseudopodial Activity by the Microtubule System. A D Bershadsky et al. Symp Soc Exp Biol. 1993
BDKRB2	Bradykinin Receptor B2, BK-2 Receptor, BKR2	-1.574823	Ο	О	Ο	Ο	 IRX1 influences peritoneal spreading and metastasis via inhibiting BDKRB2- dependent neovascularization on gastric cancer. Jiang J et al. Oncogene. 2011 Serum bradykinin levels as a diagnostic marker in cervical cancer with a potential mechanism to promote VEGF expression via BDKRB2. Zhou Y et al. Int. J Oncol. 2019
MYH10	Myosin Heavy Chain 10, Nonmuscle Myosin Heavy Chain IIB, Cellular Myosin Heavy Chain, Type B	-1.723702	Ο	Ο	Ο	Ο	 Myosin Heavy Chain 10 (MYH10) Gene Silencing Reduces Cell Migration and Invasion in the Glioma Cell Lines U251, T98G, and SHG44 by Inhibiting the Wnt/β-Catenin Pathway. Wang Y et al. Med Sci Monit. 2018 Mosaic loss of non-muscle myosin IIA and IIB is sufficient to induce mammary epithelial proliferation. Nguyen-Ngoc KV et al. J Cell Sci. 2017

'O'' represents that there are related papers "×" represents that there aren't related papers

Table S3 The primer sequences are used to construct the plasmids

Gene name	Forward primers sequence 5'> 3'	Reverse primers sequence 5'> 3'
Septin2-plasmid construction	CGAATTCCATGTCTAAGCAACAGC	GCACAATTGCATTACACGTGGTGCCCGA
Septin9-plasmid construction	GCTGTACAAGATGAAGAAGTCTTACT	GCACAATTGCACTACATCTCCGGGGGCTT
ARHGAP4-plasmid constrction	gtcgacggtaccgcgggcccATGGCCGCTCACGGGAAG	atctagatccggtggatcccTCAGTGTGGGCTTGGGGGGTC

Table S4 The siRNA sequences

Gene Symbol	Full Gene Name	Company	Gene ID	siRNA ID	Sense siRNA Sequence	Antisense siRNA Sequence
ARHGAP4	Rho GTPase activating protein 4	Thermo Fisher Scientific	393	s1586	GUAUAACCAGAGACUCUUUtt	AAAGAGUCUCUGGUUAUACtg
	Rho GTPase activating protein 4	Thermo Fisher Scientific	393	s1587	ACCGAAACCUUCUACCUCAtt	UGAGGUAGAAGGUUUCGGUct
Septin2	Septin2	Thermo Fisher Scientific	4735	s9418	GCCUAUUCCUAACUGAUCUtt	AGAUCAGUUAGGAAUAGGCtg
	Septin2	Thermo Fisher Scientific	4735	s9419	GAAAAUCGACUCUCAUAAAtt	UUUAUGAGAGUCGAUUUUCct
Septin9	Septin9	Thermo Fisher Scientific	10801	s21222	CGCACGAUAUUGAGGAGAAtt	UUCUCCUCAAUAUCGUGCGtg
	Septin2	Thermo Fisher Scientific	10801	s21223	CAAUGACCAGUACGAGAAAtt	UUUCUCGUACUGGUCAUUGat

Application/Concentration Antibdoy Product code Company IP IF WB Proteintech 16697-1-AP 1:50 1:1000 ARHGAP4 ARHGAP4 Abcam ab226835 1:2000 $2 \mu g/mg$ Proteintech 11397-1-AP 1:1000 Septin2 ab179436 Septin2 Abcam 1:2000 $2 \mu g/mg$ Septin9 Proteintech 10769-1-AP 1:1000 $2 \mu g/mg$ ab32084 Paxillin Abcam 1:100 1:1000 610088 **BD** Biosciences 1:500 1:1000 FAK Integrin $\beta 1$ CST #4706 1:1000 GAPDH Wako 014-25524 1:5000 mFX73 GFP Wako $2 \mu g/mg$ mFX75 GFP Wako 1:1000 Wako 147-09521 IgG $2 \mu g/mg$

Table S5 The antibodies used in this study