Supplemental Materials

Molecular Biology of the Cell Kishimoto *et al*.

Supplemental Materials

Molecular Biology of the Cell

Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma

membrane

Kishimoto et al.

Supplemental Figure 1. Tetrad dissection analysis shows the synthetic growth defect of the *crf1* Δ *lem3* Δ *skf1* Δ and *dnf3* Δ *lem3* Δ *skf1* Δ mutants. (A) An illustration of tetrad dissection analysis. (B) Tetrad dissection analysis of the *crf1* Δ */CRF1 SFK1/sfk1* Δ *lem3* Δ */lem3* Δ diploid. Cells were sporulated, dissected, and grown at either 30 or 25°C for 4 d. Colonies were replica-plated onto selective media to determine the segregation of the marked mutant alleles. Tetrad genotypes (TT, NPD, and PD) are indicated, and the identities of the triple mutant segregants are shown in parentheses (red circles). (C) Synthetic growth defects of the *dnf3* Δ *lem3* Δ *sfk1* Δ mutant. Tetrad analysis was performed as in (B).

Supplemental Figure 2. Growth curves of wild-type and $crf1\Delta lem3\Delta skf1-2$ cells. Cells were precultured in YPDA medium to the mid-log phase at 30°C. Then, the cells were reinoculated in YPDA at time 0 and cultured at 30 or 37°C. Optical density was measured every 1.5 h. Values represent the mean \pm S.D. from three independent experiments.

Supplemental Figure 3. Phospholipid distributions in the double mutants of *lem3* Δ , *crf1* Δ , *dnf3* Δ , and *sfk1-2* mutations. (A) The *crf1* Δ and *dnf3* Δ mutations increased the sensitivity to PapB and duramycin in the *lem3* Δ mutant. Tenfold serial dilutions of the indicated cell cultures were spotted onto a YPDA plate containing PapB or duramycin, followed by incubation at 30°C for 2 d. (B) The *crf1* Δ *lem3* Δ *sfk1-2* triple mutant showed a higher sensitivity to duramycin in the dose-response curve experiment. The cells were cultured in the absence or presence of indicated concentrations of duramycin for 20 h at 30°C. Optical density at 600 nm was measured, and the cell growth was plotted as a percentage of the OD₆₀₀ without duramycin. Values represent the mean \pm S.D. from five independent experiments. (C) GFP -Lact-C2 was normally localized to the PM in the *lem3* Δ *sfk1-2*, *crf1* Δ *sfk1-2*, *crf1* Δ *lem3* Δ double mutants. Cells were cultured as in Figure 2E. (D) GFP-evt-2PH was normally localized to the PM in the *lem3* Δ *sfk1-2*, *crf1* Δ *sfk1-2*,

Supplemental Figure 4. Analysis of phospholipid composition. PC, phosphatidylinositol (PI), PS, and PE are quantified as a mol percentage of total phospholipids. The data represent the mean \pm S.D. derived from the analysis of four to five independent samples. "n.s," indicates no significant difference between all combinations as determined by the Tukey–Kramer test.

Supplemental Figure 5. Filipin staining in the *lem3* Δ *sfk1* Δ , *crf1* Δ *sfk1* Δ , and *crf1* Δ *lem3* Δ double mutants. Cells were cultured and stained with filipin as in Figure 5A. Bar, 5 µm.

Supplemental Figure 6. Ergosterol-dependent PM localization of GFPenvy-D4H. (A) Decrease of free ergosterol by the depletion of Erg11. Cells were cultured as in Figure 5E. Ergosterol contents were analyzed by TLC as described in the "Materials and Methods". *Right panel*: the percentage of free ergosterol of the glucose-cultured cells relative to that of the galactose-cultured cells was determined and is expressed as the mean \pm S.D. derived from the analysis of four independent samples. An asterisk indicates a significant difference, as determined by two-tailed Student's t-test (p < 0.05). (B) Fluconazole treatment inhibits the GFPenvy-D4H distribution to the PM. Wild-type cells harboring pRS316-GFPenvy-D4H were grown in SDA-Ura medium to the mid-log phase at 30°C and then treated with 100 μ M fluconazole or mock treated, followed by incubation for 6 h at 30°C. *Right panel*:

the percentage of cells with GFPenvy-D4H at the PM was determined and is expressed as the mean \pm S.D. of three independent experiments (n > 257 cells in total for each condition). An asterisk indicates a significant difference, as determined by two-tailed Student's t-test (p < 0.05). (C) The distribution of GFPenvy-D4H in mutants of genes encoding the enzymes in the late steps of ergosterol biosynthesis (*ERG2-6*). Cells were cultured in SDA-Ura medium at 30°C to the mid-log phase. (D) GFPenvy-D4H was localized to the PM in the *lem3* Δ *sfk1-2*, *crf1* Δ *sfk1-2*, and *crf1* Δ *lem3* Δ double mutants. Cells were cultured as in Figure 2E, except that SDA-Ura medium was used. (E) The PM localization of GFPenvy-D4H was partially recovered by *KES1* overexpression in the *crf1* Δ *lem3* Δ *sfk1-2* triple mutant. Cells harboring pRS316-GFPenvy-D4H and either YEplac181-KES1 or YEplac181 were cultured as in Figure 2E except that SD-Leu-Ura medium was used. Arrows indicate the PM localization of GFPenvy-D4H. *Right panel*: the percentage of cells with GFPenvy-D4H at the PM was determined and is expressed as the mean \pm S.D. of three independent experiments (n > 121 in total for each strain). An asterisk indicates a significant difference, as determined by two-tailed Student's t-test (p < 0.05). Bars, 5 µm.

Supplemental Figure 7. TF-Chol is retained in the PM of the *lem3* Δ *sfk1-2*, *crf1* Δ *sfk1-2*, and *crf1* Δ *lem3* Δ double mutants. Cells were cultured and labeled with TF-Chol as described in the "Materials and Methods". Bar, 5 µm.

Supplemental Figure 8. Identification of esterified ergosterol. TLC analysis of total sterols was performed as in Figure 7A. To detect esterified ergosterol, total lipids were extracted from cells in the stationary phase.

Supplemental Figure 9. Lipid droplets are increased in the $crf1\Delta lem3\Delta sfk1-2$ triple mutant. (A) Nile red staining in the $lem3\Delta sfk1\Delta$, $crf1\Delta sfk1\Delta$, and $crf1\Delta lem3\Delta$ double mutants. Cells were cultured in YPDA medium to the mid-log phase at 30°C, followed by Nile red staining. Nile red staining was performed as described in the "Materials and Methods". (B) Accumulation of Tgl1-GFP (left) and Faa4-GFP (right) puncta in the $crf1\Delta lem3\Delta sfk1-2$ triple mutant. Cells were cultured as in Figure 2E. All images were acquired and processed under the same conditions for comparison of fluorescence intensity. Bars, 5 µm.

Supplemental Figure 10. Classification of Sfk1-mCherry-expressing cells with low or high expression patterns. (A) Fluorescence intensity profile of a cell showing the "partially polarized" pattern of GFPenvy-D4H. Fluorescence signals were quantified along the dotted line from the mother cell to the bud. The brightness of Sfk1-3xmCherry was adjusted as in Figure 9B. Bar, 3 μ m. (B) Classification of Sfk1-mCherry-expressing cells with low or high expression patterns. The cells in Figure 9E were examined. Low or high expression of Sfk1-mCherry was determined for each cell on the basis of our threshold value, which was set at 300% of the fluorescence intensity of endogenously expressed Sfk1-3xmCherry. Fluorescence intensity at the PM was quantitated as described in the "Materials and Methods". The ratio of the fluorescence at the PM (F_{pm})/that of whole cell (F_{whole cell}) was determined and expressed with a boxplot (whiskers: maximum and minimum values; box: first quartile, median, and third quartile; circle: average). *Bars*: Endo, endogenous expression of Sfk1-mCherry; High, multicopy plasmid of *SFK1-mCherry* and high expression of Sfk1-mCherry. The numbers of cells analyzed were 13, 34, and 22 for Endo, Low, and High, respectively. An asterisk indicates a significant difference, as determined by the Tukev–Kramer test (p < 0.05).

Strain ^{a,b}	Mating type	Genotype	Reference or source
YKT38	a	Wild-type (<i>lys2-801 ura3-52 his3</i> Δ-200 <i>trp1</i> Δ-63 <i>leu2</i> Δ-1)	(Misu et al., 2003)
YKT715	a	lem3A::TRP1	(Saito et al., 2004)
YKT2329	a	crf1 \L:: HphMX4	This study
YKT2117	a	$sfkl\Delta::KanMX6$	(Mioka et al., 2018)
YKT2330	а	$lem3\Delta::TRP1 sfk1\Delta::KanMX6$	This study
YKT2331	а	crf1\[]::HphMX4 sfk1\[]::KanMX6	This study
YKT2332	α	$crf1\Delta$::HphMX4 lem3 Δ ::TRP1	This study
YKT2333	а	$crf1\Delta$::HphMX4 lem3 Δ ::TRP1 sfk1 Δ ::KanMX6	This study
YKT2334	α	$dnf3\Delta$::HIS3MX6 sfk1 Δ ::KanMX6	This study
YKT783	а	CRF1-GFP::KanMX6	This study
YKT1412	α	vrp1A::LUE2 CRF1-GFP::KanMX6	This study
YKT2335	а	DNF3-3xGFP::CaURA3	This study
YKT2336	а	vrp1A::LUE2 DNF3-3xGFP::CaURA3	This study
YKT2337	а	sfk1-2::KILEU2	This study
YKT2338	а	lem3 Δ ::TRP1 sfk1-2::KILEU2	This study
YKT2339	а	crf1\D::HphMX4 sfk1-2::KlLEU2	This study
YKT2340	a	crf1∆::HphMX4 lem3∆::TRP1 sfk1-2::KlLEU2	This study
YKT917	α	$dnf3\Delta$::HIS3MX6	This study
YKT2341	а	$dnf3\Delta$::HIS3MX6 lem3 Δ ::TRP1	This study
YKT2343	а	URA3::GFP-Lact-C2	(Takeda et al., 2014)
YKT2344	а	lem3A::TRP1 sfk1-2::KILEU2 URA3::GFP-Lact-C2	This study
YKT2345	а	crf1\[]::HphMX4 sfk1-2::KILEU2 URA3::GFP-Lact-C2	This study
YKT2346	а	crf1∆::HphMX4 lem3∆::TRP1 URA3::GFP-Lact-C2	This study
YKT2347	а	crf1\Delta::HphMX4 lem3A::TRP1 sfk1-2::KILEU2 URA3::GFP-Lact-C2	This study
YKT2348	а	URA3::GFP-evt-2PH	This study
YKT2349	а	lem3\Delta::TRP1 sfk1-2::KILEU2 URA3::GFP-evt-2PH	This study
YKT2350	а	crf1\[]::HphMX4 sfk1-2::KILEU2 URA3::GFP-evt-2PH	This study
YKT2351	а	crf1∆::HphMX4 lem3∆::TRP1 URA3::GFP-evt-2PH	This study
YKT2352	a	crf1\Delta::HphMX4 lem3Δ::TRP1 sfk1-2::KILEU2 URA3::GFP-evt-2PH	This study
YKT2354	а	URA3::GFP-SNC1	(Zendeh-boodi et al., 2013)
YKT2355	a	crf1\[]::HphMX4 lem3\[]:TRP1 sfk1-2::KlLEU2 URA3::GFP-SNC1	This study

Supplemental Table 1. S. cerevisiae strains used in this study

Continued

Strain ^{a,b}	Mating type	Genotype	Reference or source
YKT1187	a	PDR5-GFP::KanMX6	This study
YKT2356	а	crf1Δ::HphMX4 lem3Δ::TRP1 sfk1-2::KILEU2 PDR5-GFP::KanMX6	This study
YKT2357	а	VPH1-3xGFP::CaURA3	This study
YKT2358	а	crf1Δ::HphMX4 lem3Δ::TRP1 sfk1-2::KlLEU2 VPH1-3xGFP::CaURA3	This study
YKT2400	а	HIS3MX6::P _{GAL1} -3HA-ERG11	This study
YKT2119	а	erg6Δ::KanMX6 TRP1	(Mioka et al., 2018)
YKT2401	а	erg2A::TRP1	This study
KKT12	а	erg3\Delta::HphMX4 TRP1 (Kishimoto	
YKT2402	а	erg5Δ::HIS3MX6	This study
KKT252	а	erg4Δ::HphMX4 TRP1	(Kishimoto et al., 2005)
YKT2403	α	URA3::upc2-1	This study
YKT2404	а	lem3A::TRP1 sfk1-2::NatMX6 URA3::upc2-1	This study
YKT2405	а	crf1Δ::HphMX4 sfk1-2::NatMX6 URA3::upc2-1	This study
YKT2406	а	crf1\Delta::HphMX4 lem3A::TRP1 URA3::upc2-1	This study
YKT2407	а	crf1\Delta::HphMX4 lem3A::TRP1 sfk1-2::NatMX6 URA3::upc2-1	This study
YKT2408	а	TGL1-GFP::CaURA3	This study
YKT2409	a	lem3A::TRP1 sfk1-2::KILEU2 TGL1-GFP::CaURA3	This study
YKT2410	a	crf1	This study
YKT2411	а	crf1∆::HphMX4 lem3∆::TRP1 TGL1-GFP::CaURA3	This study
YKT2412	а	crf1\Delta::HphMX4 lem3A::TRP1 sfk1-2::KlLEU2 TGL1-GFP::CaURA3	This study
YKT2413	a	FAA4-GFP::CaURA3	This study
YKT2414	а	lem3A::TRP1 sfk1-2::KILEU2 FAA4-GFP::CaURA3	This study
YKT2415	а	crf1	This study
YKT2416	а	crf1Δ::HphMX4 lem3Δ::TRP1 FAA4-GFP::CaURA3	This study
YKT2417	а	crf1Δ::HphMX4 lem3Δ::TRP1 sfk1-2::KlLEU2 FAA4-GFP::CaURA3	This study
YKT2418	а	FAA4-mCherry::KanMX6 URA3::upc2-1	This study
YKT2419	а	crf1\Delta::HphMX4 lem3A::TRP1 sfk1-2::KILEU2 FAA4-mCherry::KanMX6	This study
		URA3::upc2-1	
YKT2420	a	are1 Δ ::KanMX6	This study
YKT2421	a	are2A::HIS3MX6	This study
YKT2422	а	$crf1\Delta$::HphMX4 lem3\Delta::TRP1 sfk1-2::KILEU2 are1\Delta::KanMX6	This study

Supplemental Table 1 Continued

Continued

Strain ^{a,b}	Mating type	Genotype	Reference or source			
YKT2423	a	$crf1\Delta$::HphMX4 lem3\Delta::TRP1 sfk1-2::KlLEU2 are2 Δ ::HIS3MX6	This study			
YKT2428	a	SFK1-3xmCherry::KanMX6	This study			
 ^a YKT strains are isogenic derivatives of YEF473 (Longtine <i>et al.</i>, 1998). Only relevant genotypes are described. ^b KKT12 and KKT252 strains are isogenic derivatives of BY4743 (Brachmann <i>et al.</i>, 1998). 						

Supplemental Table 1 Continued

Reference

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast *14*, 115-132.

Kishimoto, T., Yamamoto, T., and Tanaka, K. (2005). Defects in structural integrity of ergosterol and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Mol Biol Cell *16*, 5592-5609.

Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast *14*, 953-961.

Mioka, T., Fujimura-Kamada, K., Mizugaki, N., Kishimoto, T., Sano, T., Nunome, H., Williams, D.E., Andersen, R.J., and Tanaka, K. (2018). Phospholipid flippases and Sfk1p,

a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane. Mol Biol Cell 29, 1203-1218.

Misu, K., Fujimura-Kamada, K., Ueda, T., Nakano, A., Katoh, H., and Tanaka, K. (2003). Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae. Mol Biol Cell *14*, 730-747.

Saito, K., Fujimura-Kamada, K., Furuta, N., Kato, U., Umeda, M., and Tanaka, K. (2004). Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell *15*, 3418-3432.

Takeda, M., Yamagami, K., and Tanaka, K. (2014). Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae. Eukaryot Cell *13*, 363-375.

Zendeh-boodi, Z., Yamamoto, T., Sakane, H., and Tanaka, K. (2013). Identification of a second amphipathic lipid-packing sensor-like motif that contributes to Gcs1p function in the early endosome-to-TGN pathway. J Biochem *153*, 573-587.

Plasmid	Characteristics	Reference or source
YEplac195	URA3 2µm	(Gietz and Sugino, 1988)
YEplac181	LEU2 2µm	(Gietz and Sugino, 1988)
pRS306	URA3	(Sikorski and Hieter, 1989)
pRS316	URA3 CEN	(Sikorski and Hieter, 1989)
pRS315	LEU2 CEN	(Sikorski and Hieter, 1989)
pBluescript II SK+		(Alting-Mees and Short, 1989)
pKT2210 [pRS316-SFK1]	SFK1 URA3 CEN	This study
pKT2180 [pRS315-SFK1]	SFK1 LEU2 CEN	This study
pKT1252 [pRS315- <i>LEM3</i>]	LEM3 LEU2 CEN	(Kishimoto et al., 2005)
pKT2211 [pRS315-CRF1]	CRF1 LEU2 CEN	This study
pKT2212 [YEplac195-OSH2]	OSH2 URA3 2µm	This study
pKT2213 [YEplac195-OSH3]	OSH3 URA3 2µm	This study
pKT2175 [YEplac195-KES1]	KES1 URA3 2µm	This study
pKT2114 [YEplac195- KES1 ^{E117A}]	KES1 ^{E117A} URA3 2µm	This study
pKT2115 [YEplac195- KES1 ^{L111D}]	KES1 ^{L111D} URA3 2µm	This study
pKT2116 [YEplac195- KES1 ^{Y97F}]	KES1 ^{Y97F} URA3 2µm	This study
pKT2217 [YEplac195-OSH5]	OSH5 URA3 2µm	This study
pKT2218 [YEplac195-OSH6]	OSH6 URA3 2µm	This study
pKT2219 [YEplac195-OSH7]	OSH7 URA3 2µm	This study
pKT2220 [pRS316-GFP-D4H]	P _{TPII} -GFP-D4H URA3 CEN	This study
pKT2221 [pRS316-GFPenvy-D4H]	P _{TPII} -GFPenvy-D4H URA3 CEN	This study
pKT2017 [YEplac181-KES1]	KES1 LEU2 2µm	This study
pKT2222 [pBluescript II SK+-DNF3-3xGFP]	DNF3-Cterminal-3xGFP CaURA3	This study
pKT2224 [pBluescript II SK+-VPH1-3xGFP]	VPH1-Cterminal-3xGFP CaURA3	This study
pKT2225 [pBluescript II SK+-SFK1-3xmCherry]	SFK1-Cterminal-3xmCherry CaURA3	This study
pKT2226 [pRS306-GFP-evt2-2PH]	P _{TPII} -GFP-evt2-2PH URA3	This study
pKT2227 [YEplac181-SFK1-mCherry]	SFK1-mCherry LEU2 2µm	This study
pKT2228 [pRS306-upc2-1]	upc2-1 URA3	This study
pKT2230 [YEplac195-KanMX6]	KanMX6 URA3 2µm	This study
pKT2231 [YEplac195-KES1-KanMX6]	KES1 KanMX6 URA3 2µm	This study
pKT2232 [pColdI-GFP-D4H]	GFP-D4H	This study
pKT2233 [pColdI-GFPenvy-D4H]	GFPenvy-D4H	This study

Supplemental Table 2. Plasmids used in this study

Reference

Alting-Mees, M.A., and Short, J.M. (1989). pBluescript II: gene mapping vectors.

Nucleic Acids Res 17, 9494.

Gietz, R.D., and Sugino, A. (1988). New yeast-Escherichia coli shuttle vectors

constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527-534.

Kishimoto, T., Yamamoto, T., and Tanaka, K. (2005). Defects in structural integrity of ergosterol and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Mol Biol Cell *16*, 5592-5609.

Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics *122*, 19-27.