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SI-Methods 58 

1. Neural dataset 1: fMRI (Pereira2018). We used the data from Pereira et al.’s (2018) Experiments 2 (n=9) and 3 (n=6) (10 59 

unique participants). (The set of participants is not identical to Pereira et al., 2018: i) one participant (tested at Princeton) was 60 

excluded from both experiments here to keep the fMRI scanner the same across participants; and ii) two participants who 61 

were excluded from Experiment 2 in Pereira et al., 2018, based on the decoding results in Experiment 1 of that study were 62 

included here, to err on the conservative side.) Stimuli for Experiment 2 consisted of 384 sentences (96 text passages, four 63 

sentences each), and stimuli for Experiment 3 consisted of 243 sentences (72 text passages, 3 or 4 sentences each). The two 64 

sets of materials were constructed independently, and each spanned a broad range of content areas. Sentences were 7-18 65 

words long in Experiment 2, and 5-20 words long in Experiment 3. The sentences were presented on the screen one at a time 66 

for 4s (followed by 4s of fixation, with additional 4s of fixation at the end of each passage), and each participant read each 67 

sentence three times, across independent scanning sessions (see Pereira et al., 2018 for details of experimental procedure 68 

and data acquisition). 69 

Preprocessing and response estimation: Data preprocessing was carried out with SPM5 (using default parameters, unless 70 

specified otherwise) and supporting, custom MATLAB scripts. (Note that SPM was only used for preprocessing and basic 71 

modeling—aspects that have not changed much in later versions; for several datasets, we have directly compared the outputs 72 

of data preprocessed and modeled in SPM5 vs. SPM12, and the outputs were nearly identical.) Preprocessing included motion 73 

correction (realignment to the mean image of the first functional run using 2nd-degree b-spline interpolation), normalization 74 

(estimated for the mean image using trilinear interpolation), resampling into 2mm isotropic voxels, smoothing with a 4mm 75 

FWHM Gaussian filter and high-pass filtering at 200s. A standard mass univariate analysis was performed in SPM5 whereby a 76 

general linear model (GLM) estimated the response to each sentence in each run. These effects were modeled with a boxcar 77 

function convolved with the canonical Hemodynamic Response Function (HRF). The model also included first-order temporal 78 

derivatives of these effects (which were not used in the analyses), as well as nuisance regressors representing entire 79 

experimental runs and offline-estimated motion parameters. 80 

Functional localization: Data analyses were performed on fMRI BOLD signals extracted from the bilateral fronto-temporal 81 

language network. This network was defined functionally in each participant using a well-validated language localizer task 82 

(Fedorenko et al., 2010), where participants read sentences vs. lists of nonwords. This contrast targets brain areas that 83 

support ‘high-level’ linguistic processing, past the perceptual (auditory/visual) analysis. Brain regions that this localizer 84 

identifies are robust to modality of presentation (e.g., Fedorenko et al., 2010; Scott et al., 2017), as well as materials and task 85 

(Diachek et al., 2020). Further, these regions have been shown to exhibit strong sensitivity to both lexico-semantic processing 86 

(understanding individual word meanings) and combinatorial, syntactic/semantic processing (putting words together into 87 

phrases and sentences) [1]–[7]. Following prior work, we used group-constrained, participant-specific functional localization 88 

(Fedorenko et al., 2010). Namely, individual activation maps for the target contrast (here, sentences>nonwords) were 89 

combined with “constraints” in the form of spatial ‘masks’—corresponding to data-driven, large areas within which most 90 

participants in a large, independent sample show activation for the same contrast. The masks (available from 91 

https://evlab.mit.edu/funcloc/ and used in many prior studies e.g., Jouravlev et al., 2019; Diachek et al., 2020; Shain et al., 92 

2020) included six regions in each hemisphere: three in the frontal cortex (two in the inferior frontal gyrus, including its orbital 93 

portion: IFGorb, IFG; and one in the middle frontal gryus: MFG), two in the anterior and posterior temporal cortex (AntTemp 94 

and PostTemp), and one in the angular gyrus (AngG). Within each mask, we selected 10% of most localizer-responsive voxels 95 

(voxels with the highest t-value for the localizer contrast) following the standard approach in prior work. This approach allows 96 

to pool data from the same functional regions across participants even when these regions do not align well spatially. 97 

Functional localization has been shown to be more sensitive and to have higher functional resolution (Nieto-Castanon & 98 

Fedorenko, 2012) than the traditional group-averaging approach (Holmes & Friston, 1998), which assumes voxel-wise 99 

correspondence across participants. This is to be expected given the well-established inter-individual differences in the 100 

mapping of function to anatomy, especially pronounced in the association cortex (e.g., Frost & Goebel, 2012; Tahmasebi et 101 

al., 2012; Vazquez-Rodriguez et al., 2019). 102 

We constructed a stimulus-response matrix for each of the two experiments by i) averaging the BOLD responses to each 103 

sentence in each experiment across the three repetitions, resulting in 1 data point per sentence per language-responsive 104 

voxel of each participant, selected as described above (13,553 voxels total across the 10 participants; 1,355 average, ±6 std. 105 

dev.), and ii) concatenating all sentences (384 in Experiment 2 and 243 in Experiment 3), yielding a 384x12,195 matrix for 106 

Experiment 2, and a 243x8,121 matrix for Experiment 3. 107 
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To examine differences in neural predictivity between the language network and other parts of the brain, we additionally 108 

extracted fMRI BOLD signals from two other networks: the multiple demand (MD) network (Duncan, 2010; Fedorenko et al., 109 

2013) and the default mode network (DMN) (Buckner et al., 2008; Buckner & DiNicola, 2019). These networks were also 110 

defined functionally using well-validated localizer contrasts (Fedorenko et al., 2013; Mineroff et al., 2018) using a similar 111 

procedure as the one used for defining the language network: combining a set of ‘masks’ with individual activation maps, and 112 

selecting top 10% of most localizer-responsive voxels within each mask. Both networks were defined using a spatial working 113 

memory task (Fedorenko et al., 2011, 2013). For the MD network, we used the hard>easy contrast, and for the DMN network, 114 

we used the fixation>hard contrast. As for the language network, the MD and DMN masks were derived from large sets of 115 

participants for those contrasts, and are also available at https://evlab.mit.edu/funcloc/. The MD network and the DMN 116 

included 29,936 (2,994±230) and 10,978 (1,098±7) voxels, respectively. 117 

 118 

2. Neural dataset 2: ECoG (Fedorenko2016). We used the data from Fedorenko et al.’s (2016) study (n=5). (The set of 119 

participants includes one participant, S2, who was excluded from the main analyses in Fedorenko et al., 2016 due to a small 120 

number of electrodes of interest; because we here used only language-responsiveness as the criterion for electrode selection, 121 

this participant had enough electrodes to be included.) Stimuli consisted of 80 hand-constructed 8-word long semantically 122 

and syntactically diverse sentences and 80 lists of nonwords (as well as some other stimuli not used in the current study). For 123 

the critical analyses, we selected a set of 52 sentences that were presented to all participants. The materials were presented 124 

visually one word at a time (for 450 or 700 ms), and participants performed a memory probe task after each stimulus (see 125 

Fedorenko et al., 2016 for details of the experimental procedure and data acquisition). 126 

Preprocessing and response estimation: We here provide only a brief summary, highlighting points of deviation from 127 

Fedorenko et al. (2016). The total numbers of implanted electrodes were 120, 128, 112, 134, and 98 for the five participants, 128 

respectively. Signals were digitized at 1200 Hz. Similar to Fedorenko et al. (2016), i) the recordings were high-pass filtered 129 

with a cut off frequency of 0.5 Hz; ii) reference, ground, and electrodes with high noise levels were removed, leaving 117, 130 

118, 92, 130, and 88 electrodes (for these analyses, we were more permissive with respect to noise levels compared to 131 

Fedorenko et al., 2016, to include as many electrodes in the analyses as possible; hence the numbers of analyzed electrodes 132 

are higher here than in the original study for 4 of the 5 participants); iii) spatially distributed noise common to all electrodes 133 

was removed using a common average reference spatial filter between electrodes with line noise smaller than a predefined 134 

threshold (electrodes connected to the same amplifier); and iv) a set of notch filters were used to remove the 60 Hz line noise 135 

and its harmonics. To extract the high gamma band activity—which has been shown to correspond to spiking neural activity 136 

in the vicinity of the electrodes [8]—we used a gaussian filter bank with centers at 73, 79.5, 87.8, 96.9, 107, 118.1, 130.4, and 137 

144 Hz, and standard deviations of 4.68, 4.92, 5.17, 5.43, 5.7, 5.99, 6.3, and 6.62 Hz, respectively. This approach differs from 138 

Fedorenko et al. (2016), where an IIR band-pass filter was used to select frequencies in the range of 70-170 Hz, and is likely 139 

more sensitive (Dichter et al. 2018). Finally, as in Fedorenko et al. (2016), the Hilbert transform was used to extract the analytic 140 

signal [9] (except here, the average of the Hilbert signal across the eight filters was used as high-gamma signal), z-scored for 141 

each electrode with respect to the activity throughout the experiment, and the signal envelopes were downsampled to 300 142 

Hz for further analysis (we did not additionally low-pass filter at 100 Hz, as in Fedorenko et al., 2016). 143 

Functional localization: Mirroring the fMRI approach, where we focused on language-responsive voxels, data analyses were 144 

performed on signals extracted from language-responsive electrodes. These electrodes were defined in each participant using 145 

the same localizer contrast as in the fMRI datasets. In particular, we examined electrodes in which the envelope of the high 146 

gamma signal was significantly higher (at p<.01) for trials of the sentence condition than the nonword-list condition (for 147 

details, see Fedorenko et al., 2016). 148 

We constructed a stimulus-response matrix by i) averaging the z-scored high-gamma signal over the full presentation window 149 

of each word in each sentence, resulting in 8 data points per sentence per language-responsive electrode (97 electrodes total 150 

across the 5 participants; 47, 8, 9, 15, and 18 for participants S1 through S5, respectively), and ii) concatenating all words in 151 

all sentences (416 words across the 52 sentences), yielding a 416x97 matrix. 152 

To examine differences in neural predictivity between language-responsive and other electrodes, we additionally extracted 153 

high gamma signals from a set of ‘stimulus-responsive’ electrodes. Stimulus-responsive electrodes were defined as electrodes 154 
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in which the envelope of the high gamma signal for the sentence condition was significantly different (at p<0.05 by a paired-155 

samples t-test) from the activity during the inter-trial fixation interval preceding the trial. This selection procedure resulted 156 

in 67, 35, 20, 29, and 26 electrodes. As expected, this set of electrodes included many of the language-responsive electrodes; 157 

for the analysis in SI Appendix SI-4, we exclude the language-responsive electrodes leaving 105 stimulus- (but not language-) 158 

responsive electrodes. 159 

3. Neural dataset 3: fMRI (Blank2014). We used the data from Blank et al. (2014) (n=5). (The set of participants includes 5 of 160 

the 10 participants in Blank et al., 2014, because we wanted each participant to have been exposed to the same materials 161 

and as many stories as possible; the 5 participants included here all heard eight stories.) Stimuli consisted of stories from the 162 

publicly available Natural Stories Corpus (Futrell et al., 2018). These stories, adapted from existing texts (fairy tales and short 163 

stories) were designed to be “deceptively naturalistic”: they contained an over-representation of rare words and syntactic 164 

constructions embedded in otherwise natural linguistic context. The stories were presented auditorily (each was ~5 min in 165 

duration), and following each story, participants answered 6 comprehension questions (see Blank et al., 2014 for details of 166 

the experimental procedure, data acquisition, and preprocessing). 167 

Functional localization: As in the Pereira2018 dataset, data analyses were performed on fMRI BOLD signals extracted from 168 

the language network. From each language-responsive voxel of each participant, the BOLD time-series for each story was 169 

extracted. Across the eight stories, the BOLD time-series included 1,317 time-points (TRs, time of repetition; TR=2s and 170 

corresponds to the time it takes to acquire the full set of slices through the brain). To align the neuroimaging data with the 171 

story text, we first split the text into consecutive 2-second intervals (corresponding to the fMRI TRs) based on the auditory 172 

recording; if a word straddled boundaries of intervals, it was assigned to the 2s interval in which that spoken word ended. 173 

Each of the resulting intervals thus included a story “fragment”, which could be a full short sentence, part of a longer sentence, 174 

or a transition between the end of one sentence and the beginning of another. Due to the temporal resolution of the HRF, 175 

whose peak’s latency is 4-6 seconds, we assumed that each time-point in the BOLD signal represented activity elicited by the 176 

text fragment that occurred 4s (i.e., 2 TRs) earlier. 177 

We constructed a stimulus-response matrix by i) averaging the BOLD signals corresponding to each TR in each story across 178 

the voxels within each ROI of each participant (averaging across the voxels within ROIs was done to increase the signal-to-179 

noise ratio), resulting in 1 data point per TR per language-responsive ROI of each participant (60 ROIs total across the 5 180 

participants), and ii) concatenating all story fragments (1,317 ‘stimuli’), yielding a 1,317x60 matrix. 181 

 182 

4. Behavioral dataset: Self-paced reading (Futrell2018). We used the data from Futrell et al. (2018) (n=179). (The set of 183 

participants excludes 1 participant for whom data exclusions—see below—left only 6 data points or fewer.) Stimuli consisted 184 

of ten stories from the Natural Stories Corpus (same materials as those used in Blank2014, plus two additional stories), and 185 

any given participant read between 5 and all 10 stories. The stories were presented online (on Amazon’s Mechanical Turk 186 

platform) visually in a dashed moving window display—a standard approach in behavioral psycholinguistic research [10]. In 187 

this approach, participants press a button to reveal each consecutive word of the sentence or story; as they press the button 188 

again, the word they just saw gets converted to dashes again, and the next word is uncovered. The time between button 189 

presses provides an estimate of overall language comprehension difficulty, and has been shown to be robustly sensitive to 190 

both lexical and syntactic features of the stimuli (Grodner & Gibson, 2005; Smith & Levy, 2013, inter alia) (see Futrell et al., 191 

2018 for details of the experimental procedure and data acquisition.) We followed data exclusion criteria in Futrell et al. 192 

(2018): for any given participant, we only included data for stories where they answered 5 or all 6 comprehension questions 193 

correctly, and we excluded reading times (RTs) that were shorter than 100 ms or longer than 3000 ms. 194 

 195 

We constructed a stimulus-response matrix by i) obtaining the RTs for each word in each story for each participant (848,762 196 

RTs total across the 179 participants; 338 average, ±173 std. dev.), and ii) concatenating all words in all sentences (10,256 197 

words across 485 sentences), yielding a 10,256x179 matrix. 198 

 199 

5. Computational models. We tested 43 language models that were selected to sample a broad range of computational designs 200 

across three major types of architecture: embeddings, recurrent architectures, and attention-based ‘transformer’ 201 

architectures. Here we provide a brief overview (see SI Appendix Table SI-10 for a summary of key features varying across the 202 
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models). GloVe [11] is a word embedding model where embeddings are positioned based on co-occurrence in the Common 203 

Crawl corpus; ETM (Dieng et al., 2019, 20ng dataset) combines word embeddings with an embedding of each word’s assigned 204 

topic; and word2vec [13]—abbreviated as w2v—provides embeddings which are trained to guess a word based on its context. 205 

lm_1b [14] is a 2-layer long short-term memory (LSTM) model trained to predict the next word in the One Billion Word 206 

Benchmark [15]; and the skip-thoughts model [16] is trained to reconstruct surrounding sentences in a passage. For all 38 207 

transformer models (pretrained models from the HuggingFace library [17]), we only evaluate the encoder and not the 208 

decoder; the encoders process long contexts (100s of words) with a deep neural network stack of multiple attention heads 209 

that operate in a feed-forward manner (except the Transformer-XL-wt103 and the two XLNet models, which use recurrent 210 

processing), and differ mostly in the choice of directionality, network architecture, and training corpora (SI Appendix Table 211 

SI-11). We highlight key features of different classes of transformer models (BERT, RoBERTa, XLM, XLM-RoBERTa, 212 

Transformer-XL-wt103, XLNet, CTRL, T5, AlBERT, and GPT) in the order in which they appear in the bar-plots (e.g., Fig. 2a), 213 

except for the three ‘distilled’ models [18], which we mention in the end. BERT transformers [19] (n=4; bert-base-uncased, 214 

bert-base-multilingual-cased, bert-large-uncased, bert-large-uncased-whole-word-masking) are optimized to train 215 

bidirectional representations taking into account context both to the left and right of a masked token. RoBERTa transformers 216 

[20] (n=2; roberta-base, roberta-large) as a variation of BERT improve training hyper-parameters such as masking tokens 217 

dynamically instead of always masking the same token. XLM models [21] (n=7; xlm-mlm-enfr-1024, xlm-clm-enfr-1024, xlm-218 

mlm-xnli15-1024, xlm-mlm-100-1280 , xlm-mlm-en2048) learn cross-lingual models by predicting the next (“clm”) or a 219 

masked (“mlm”) token in a different language. XLM-RoBERTa [22] (n=2; xlm-roberta-base, xlm-roberta-large) combines 220 

RoBERTa masking with cross-lingual training in XLM. Transformer-XL-wt103 [23] adds a recurrence mechanism to GPT (see 221 

below) and trains on the smaller WikiText-103 corpus. XLNet transformers [24] (n=2; xlnet-base-cased, xlnet-large-cased) 222 

permute tokens in a sentence to predict the next token. CTRL [25] adds control codes to GPT (see below) which influence text 223 

generation in a specific style. T5 transformers [26] (n=5; t5-small, t5-base, t5-large, t5-3b, t5-11b) train the same model across 224 

a range of tasks including the prediction of multiple corrupted tokens, GLUE [27], and SuperGLUE [28] in a text-to-text manner 225 

where the task is provided as a text prefix. AlBERT transformers [29] (n=8; albert-base-v1, albert-large-v1, albert-xlarge-v1, 226 

albert-xxlarge-v1, albert-base-v2, albert-large-v2, albert-xlarge-v2, albert-xxlarge-v2) use parameter-sharing and model inter-227 

sentence coherence. GPT transformers (n=5) are trained to predict the next token in a large dataset emphasizing document 228 

quality (openaigpt [30] on the Book Corpus dataset, gpt2, gpt2-medium, gpt2-large, and gpt2-xl [31] on WebText). Finally, 229 

distilled versions of models [18] (n=3; distilbert-base-uncased, distilgpt2, distilroberta-base) train compressed models on a 230 

larger teacher network. 231 

 232 

To retrieve model representations, we treated each model as an experimental participant (Figure 1) and ran the same 233 

experiment on it that was run on humans. Specifically, sentences were fed in sequentially into the model (for Pereira2018, 234 

Blank2014, and Futrell2018, sentences were grouped by topic / story to approximate the procedure with human participants). 235 

For embedding and recurrent models, sentences were fed in word-by-word; for transformers, the context before (but not 236 

after) each word was also fed into the models due to their lack of memory; the length of the context was determined by the 237 

models’ architectures. For recurrent models, the memory was reset after each story (Pereira2018, Blank2014 and 238 

Futrell2018), or each sentence (Fedorenko2016). 239 

 240 

After the processing of each word, we retrieved (“recorded”) model representations at every computational block (e.g., one 241 

LSTM cell or one Transformer encoder block). (Word-by-word processing increases computational cost but is necessary to 242 

avoid bidirectional models, like the BERT transformers, seeing the future.) When comparing against human recordings 243 

spanning more than one word such as a sentence (Pereira2018) or story fragment (Blank2014), we aggregated model 244 

representations: for the embedding models, we used the mean of the word representations; for recurrent and transformer 245 

models, we used the representation of the last word since these models already aggregate representations of the preceding 246 

context, up to a maximum context length of 512 tokens. 247 

 248 

6. Comparison of models to brain measurements. We treated the model representation at each layer separately and tested 249 

how well it could predict human recordings (for Pereira2018, we treated the two experiments separately, but averaged the 250 

results across experiments for all plots except Fig. 2c). To generate predictions, we used 80% of the stimuli (sentences in 251 

Pereira2018, words in Fedorenko2016 and Futrell2018, and story fragments in Blank2014; Fig. 1) to fit a linear regression 252 

from the corresponding 80% of model representations to the corresponding 80% of human recordings. We applied the 253 
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regression on model representations of the held-out 20% of stimuli to generate model predictions, which we then compared 254 

against the held-out 20% of human recordings with a Pearson correlation. This process was repeated five times, leaving out 255 

different 20% of stimuli each time, and we computed the per-voxel/electrode/ROI mean predictivity across those five splits. 256 

We aggregated these per-voxel/electrode/ROI scores by taking the median of scores for each participant’s 257 

voxels/electrodes/ROIs and then computing the median and median absolute deviation (m.a.d.) across participants (over 258 

per-participant scores). Finally, this score was divided by the estimated ceiling value (see Estimation of ceiling below) to yield 259 

a final score in the range of [0, 1]. We report the results for the best-performing layer for each model (SI Appendix SI-12) but 260 

controlled for the generality of layer choices in train/test splits (SI Appendix Fig. S2b,c). 261 

7. Estimation of ceiling. Due to intrinsic noise in biological measurements, we estimated a ceiling value to reflect how well 262 

the best possible model of an average human could perform. To do so, we first subsampled—for each dataset separately—263 

the data with n recorded participants into all possible combinations of s participants for all � ∈ [2, 	] (e.g. {2, 3, 4, 5} for 264 

Fedorenko2016 with n=5 participants). For each subsample s, we then designated a random participant as the target that we 265 

attempt to predict from the remaining � − 1 participants (e.g., predict 1 subject from 1 (other) subject, 1 from 2 subjects, …, 266 

1 from 4, to obtain a mean score for each voxel/electrode/ROI in that subsample. To extrapolate to infinitely many humans 267 

and thus to obtain the highest possible (most conservative) estimate, we fit the equation � = �
 × �1 − �� �
��� where x is 268 

each subsample’s number of participants, v is each subsample’s correlation score and �
 and �
 are the fitted parameters for 269 

asymptote and slope respectively. This fitting was performed for each voxel/electrode/ROI independently with 100 270 

bootstraps each to estimate the variance where each bootstrap draws x and v with replacement. The final ceiling value was 271 

the median of the per-voxel/electrode/ROI ceilings �
. 272 

For Fedorenko2016, a ceiling was estimated for each electrode in each participant, so each electrode’s raw value was divided 273 

by its own ceiling value. Similarly, for Blank2014, a ceiling was estimated for each ROI in each participant, so each ROI’s raw 274 

value was divided by its own ceiling value. For Pereira2018, we treated the two experiments separately, focusing on the 5 275 

participants that completed both experiments to obtain full overlap in the materials for each participant, and used 10 random 276 

sub-samples to keep the computational cost manageable. A ceiling was estimated for all voxels in the 5 participants who 277 

participated in both experiments. Each voxel’s raw predictivity value was divided by the average ceiling estimate (across all 278 

the voxels for which it was estimated). For Futrell2018, given the large number of participants and because most participants 279 

only had measurements for a subset of the stimuli, we did not hold out one participant but rather tested how well the mean 280 

RTs for one half of the participants predicted the RTs for the other half of participants. We further took 5 random subsamples 281 

at every 5 participants, starting from 1, and built 3 random split-halves, again to keep computational cost manageable. A 282 

ceiling was estimated for each participant, and each participant’s raw values were divided by this ceiling. (Note that this 283 

approach is even more conservative than the leave-one-out approach, because split-half correlations tend to be higher than 284 

one-vs.-rest, due to a reduction in noise when averaging (for each half).) 285 

 286 

8. Language Modeling. To assess the models’ performance on the normative next-word-prediction task, we used a dataset 287 

of 720 Wikipedia articles, WikiText-2 [32], with 2M training, 218k validation, and 246k test tokens (words and word-parts). 288 

These tokens were processed by model-specific tokenization with a maximum vocabulary size of 250k, selected based on 289 

the tokens’ frequency in the model’s original training dataset, and split up into blocks of 32 tokens each (both the vocabulary 290 

size and the length of blocks were constrained by computational cost limitations). We sequentially fed the tokens into 291 

models as explained in Methods_5 (Computational Models) and captured representations at each step from each model’s 292 

final layer (penultimate layer before the classifier if the model has a readout). To predict the next word, we fit a linear 293 

decoder from those representations to the next token over words in the vocabulary (n=50k), on the training tokens. This 294 

decoder is trained with a cross-entropy-loss � = − ∑ ��� log �  !"#

∑  !$#%$
& (�  where ���  is the true label for class c and sample i, and 295 

���  is the predicted probability of that class; the linear weights are updated with AdamW and a learning rate of 5e-5 in batches 296 

of 4 blocks until convergence as defined on the validation set. Importantly, note that we only trained weights of a readout 297 

decoder, not the weights of models themselves, in order to maintain the same model representations that we used in model-298 

to-brain and model-to-behavior comparisons. The final language modeling score is reported for each model as the 299 

perplexity, i.e. the exponent of the cross-entropy loss, on the held-out test set. We ensured that our pipeline could 300 

reproduce the lower perplexity values in e.g. [31] by fine-tuning the entire model and increasing the batch size. To be able 301 
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to test all models under the same conditions and with fixed representations that were used for brain prediction, we however 302 

had to use a lower batch size and only train a linear readout without fine-tuning which leads to the lower perplexity scores 303 

reported in Fig. 3. T5-11b is not part of this analysis because of lack of computational resources to run the model. 304 

 305 

9. Statistical tests. As a primary metric, model-to-brain predictivity scores are reported as the Pearson correlation coefficient 306 

(denoted by “r”). These correlation scores were obtained from aggregating over individual per-voxel/electrode/ROI scores. 307 

To avoid the assumption that the neural scores are Gaussian distributed, we aggregated these per-voxel/electrode/ROI scores 308 

by taking the median of scores for each participant’s voxels/electrodes/ROIs and then computing the median and median 309 

absolute deviation (m.a.d.) across participants.  310 

In addition to reporting an aggregated score across datasets, we show individual scores per dataset (visualized as bar plot 311 

insets). To obtain an error estimate for the correlation scores, we report the bootstrapped correlation coefficient, as 312 

computed by leaving out 10% of the scores and computing the r-value on the remaining 90% held-out scores (over 1,000 313 

iterations). 314 

All p-values less than 0.05 are summarized with one asterisk, p-values less than 0.005 with two asterisks, p-values less than 315 

0.0005 with three asterisks, and p-values less than 0.00005 are denoted by four asterisks. 316 

For interaction tests, we used two-sided t-tests with 1,000 bootstraps and 90% of samples per bootstrap. 317 
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 318 

Figure S1: Ceiling estimates for neural and behavioral datasets. Due to intrinsic noise in biological measurements, we 319 

estimated a ceiling value to reflect how well the best possible model of an average human could perform, based on sub-320 

samples of the total set of participants (see Methods-7). For each sub-sample, � − 1 participants are used to predict a held-321 

out participant (except in Futrell2018, where this is done on split-halves, as described in the text). Each dot represents a 322 

correlation between the average scores of the � − 1 participants and the left-out participant for a random sub-sample of the 323 

number of participants  �  indicated on the x-axis. We then bootstrapped 100 random combinations of those dots to 324 

extrapolate (gray lines) the highest possible ceiling if we had an infinite number of participants at our disposal. The parameters 325 

of these bootstraps are then aggregated by taking the median to compute an overall estimated ceiling (dashed gray line with 326 

95% CI in error-bars). We use this estimated ceiling to normalize model scores and here also report the number of participants 327 

at which the estimated ceiling would be met (which show that for Pereira2018 and Futrell2018, the number of participants 328 

we have is at and close to the asymptote value, respectively). Ceiling levels are .32 (Pereira2018), .17 (Fedorenko2016), .20 329 

(Blank2014), and .76 (Futrell2018). 330 

  331 
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 332 

Figure S2: Scores generalize across metrics and layers. a) Model scores on each dataset generalize across different choices 333 

of a similarity metric; here we plot the predictivity metric used in the manuscript on the x-axis against a model-to-brain 334 

similarity metric based on representational dissimilarity matrices (RDMs) between models and neural representations on the 335 

y-axis. Like in the predictivity metric, stimuli along with corresponding model activations and brain recordings were split 5-336 

fold but we then only compared the respective test splits given that the RDM metric does not employ fitting. Specifically, we 337 

followed [33] and computed the RDM for each model’s activations, and a separate RDM for each brain recording dataset, 338 

based on 1 minus the Pearson correlation coefficient between pairs of stimuli; then, we measured model-brain similarity via 339 

Spearman correlation across the two RDMs’ upper triangles. The RDM score for one model on one human dataset is then the 340 

mean over splits. We ran each model and compared resulting scores with the primarily used scores from the predictivity 341 

metric. Correlations for models’ scores between the predictivity and the RDM metrics are: Pereira2018 r=.57, p<0.0001; 342 

Fedorenko2016 r=.40, p<.01; Blank2014 r=.38, p<.05. b) Model scores per layer generalize across dataset splits; for every 343 

layer in each model we plot its brain score (using the predictivity metric) on two experimental splits (experiment 2 and 3) of 344 

the Pereira2018 dataset. Scores are very strongly correlated (r=.95, p<<0.000001), indicating that choosing a model’s layer 345 

on a separate dataset split will generalize to a held-out test split. c) Choice of layer generalizes across dataset splits; for each 346 

model we plot the difference between its score on Pereira2018 experiment 3 when choosing the layer on experiment 3 347 

directly (i.e. the max due to layer choice on “test set”) and its score on experiment 3 when choosing the layer on experiment 348 

2 (choice on “train set”). The layer is chosen based on the model’s maximum score across layers on the respective dataset 349 

split. Deviations between choosing the layer on a train or test set are minimal with error bars overlapping 0, indicating that 350 

there is no substantial difference between the two choices. 351 

  352 
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 353 

Figure S3: Brain surface visualization of model predictivity scores. Plots show surface projections of volumetric individual 354 

language-responsive functional ROIs in the left and right hemispheres (LH and RH) for five representative participants from 355 

Pereira2018. In each voxel of each fROI, we show a normalized predictivity value for two models that differ substantially in 356 

their ability to predict human data: GloVe (first two columns) and GPT2-xl (second two columns; for GPT2-xl, we show 357 

predictivity values from the overall best-performing layer, in line with how we report the results in the main text). (Note that 358 

the voxel locations are identical between GloVe and GPT2-xl, and are determined by an independent functional language 359 

localizer as described in the text; we here illustrate the differences in predictivity values, along with showing sample fROIs 360 

used in our analyses). Predictivity values were ceiling-normalized for each participant and each of 12 ROIs separately (a slight 361 

deviation from the approach in the main analysis, which was designed to control for between-region differences in reliability). 362 

The data were analyzed in the volume space and co-registered using SPM12 to Freesurfer’s standard brain CVS35 (combined 363 

volumetric and surface-based (CVS)) in the MNI152 space using nearest neighbor interpolation and no smoothing. The ceiled 364 

predictivity maps for the language localizer contrast (10% of most language-responsive voxels in each ‘mask’; Methods-1) 365 

were projected onto the cortical surface using mri_vol2surf in Freesurfer v6.0.0 with a projection fraction of 1. The surface 366 

projections were visualized on an inflated brain in the MNI152 space using the developer version of Freeview (assembly March 367 

10th, 2020). The bar plots in the rightmost column show the normalized predictivity values per ROI (median across voxels) in 368 

the language network for GPT2-xl. Error bars denote m.a.d. across voxels. The distribution of predictivity values across the 369 

language-responsive voxels, and the similar predictivity magnitudes across the ROIs in the bar graphs, both suggest that the 370 

results (between-model differences in neural scores) are not driven by one particular region of the language network, but are 371 

similar across regions, and between the LH and RH components of the network (see also SI-4). 372 
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 373 

SI-1 – Language specificity  374 

In the analyses reported in the manuscript, we focused on the language-responsive regions / electrodes. Here, for two 375 

datasets, we investigated the model-brain relationship outside the language network in order to assess the spatial specificity 376 

of our results, i.e., to test whether they obtain only, or more strongly, in the language network compared to other parts of 377 

the brain. For both datasets, we report analyses based on raw predictivity values, without normalizing by the estimated noise 378 

ceiling because the brain regions of the language network differ from other parts of the brain in how strongly their activity is 379 

tied to stimulus properties during comprehension (e.g., I. A. Blank & Fedorenko, 2017, 2020; Diachek et al., 2020; Shain et al., 380 

2020; Wehbe et al., 2020). This variability is important to take into account when comparing between functionally different 381 

brain regions/electrodes because we are interested in how well the models explain linguistic-stimulus-related neural activity. 382 

When we normalize the neural responses of a non-language-responsive region/electrode using a language comprehension 383 

task, we’re effectively isolating whatever little stimulus-related activity this region/electrode may exhibit, putting them on 384 

~equal or similar footing with the language-responsive regions/electrodes. (For completeness and ease of comparison with 385 

the main analyses, we also report analyses based on normalized predictivity values.) 386 

 387 

Fedorenko2016: The scores obtained from language-responsive electrodes were compared to those obtained from stimulus-388 

responsive electrodes, excluding the language-responsive ones (see Methods-2), for all 43 models. The number of language-389 

responsive electrodes across five participants was 97, and the number of stimulus-, but not language-, responsive electrodes 390 

across the participants was comparable (n=105). The analysis was identical to the main analysis (see Methods), besides 391 

omitting the ceiling normalization for the raw predictivity analyses. As described in Methods, normalization was performed 392 

for each electrode in each participant separately. 393 

For raw predictivity, neural responses in the language-responsive electrodes were predicted 49.21% better on average across 394 

models than the non-language-responsive electrodes (independent-samples two-tailed t-test: t=3.4, p=0.001). (For 395 

normalized predictivity, neural responses in the language-responsive electrodes were predicted 59.26% better on average 396 

across models than the non-language-responsive electrodes (t=2.24, p=0.03).) 397 

 398 

Pereira2018: The scores obtained from the language network were compared to those obtained from two control networks: 399 

the multiple demand (MD) network and the default mode network (DMN) (see Methods), for all 43 models. The number of 400 

voxels in the language network across participants was, on average, 1,355 (± 7 SD across participants), and the average 401 

number of voxels in the MD network and the DMN was comparable (MD: 2,994±230); DMN: 1,098±7). The analysis was 402 

identical to the main analysis (see Methods), besides omitting the ceiling normalization for the raw predictivity analyses. For 403 

the normalized predictivity analyses, the network predictivity values were normalized by their respective network ceiling 404 

values. 405 

For raw predictivity, neural responses in the language network ROIs were predicted 16.96% better on average across models 406 

than the MD network ROIs (independent-samples two-tailed t-test: t=2.26, p=0.03) and numerically (14.33%) better than the 407 

DMN ROIs (t=1.78, p=0.08). (For normalized predictivity, neural responses in the language network ROIs were predicted 408 

numerically (6.47%) worse on average than the MD network ROIs (t=-0.92, p=0.36) and also numerically (1.05%) worse than 409 

the DMN ROIs (t=-0.31, p=0.76).) 410 

 411 

These results suggest that—when allowing for inter-regional differences in the reliability of language-related responses—the 412 

model-to-brain relationship is stronger in the language-responsive regions/electrodes. However, we leave open the possibility 413 

that language models also explain neural responses outside the boundaries of the language network, perhaps because these 414 

models capture some parts of our general semantic knowledge, which is plausibly stored in a distributed fashion across the 415 

brain. For example, several earlier studies used simple embedding models to decode linguistic meaning from fMRI data (e.g., 416 

Wehbe et al., 2014; Huth et al., 2016; Anderson et al., 2017; Pereira et al., 2018) and reported reliable decoding not only 417 

within the language network, but also across other parts of association cortex. Given that we know that different large-scale 418 

cortical networks differ functionally in important ways (e.g., see Fedorenko & Blank, 2020, for a recent discussion of the 419 

language vs. MD networks), it will be important to investigate in future work the precise mapping between the language 420 

models’ representations and neural responses in these different functional networks. 421 

 422 
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SI-2 – Model performance on diverse language tasks vs. model-to-brain fit  423 

To test whether the next-word prediction task is special in predicting model-to-brain fit, we used the Pereira2018 dataset to 424 

examine the relationship between the models’ performance on diverse language processing tasks from the General Language 425 

Understanding Evaluation (GLUE) benchmarks (Wang et al., 2018) and neural predictivity. We used a subset of the high-426 

performing, transformer models (n=30 of the 38 where we could find published commitments of which features to use for 427 

GLUE). The GLUE benchmark encompasses nine tasks that can be classified into three categories: single-sentence judgment 428 

tasks (n=2), sentence-pair semantic similarity judgment tasks (n=3), and sentence-pair inference tasks (n=4). The two single-429 

sentence tasks are both binary classification tasks: models are asked to determine whether a given sentence is grammatical 430 

or ungrammatical (Corpus of Linguistic Acceptability, CoLA (Warstadt et al., 2018)), or whether the sentiment of a sentence 431 

is positive or negative (Stanford Sentiment Treebank, SST-2 (Socher et al., 2013)). In the semantic similarity tasks, models are 432 

asked to assert or deny the semantic equivalence of question pairs (Quora Question Pairs, QQP (Chen et al., 2018)) or sentence 433 

pairs (Microsoft Research Paraphrase Corpus, MRPC (Dolan & Brockett, 2005)), or to judge the degree of semantic similarity 434 

between two sentences on a scale of 1-5 (Semantic Textual Similarity Benchmark, STS-B (Cer et al., 2017)). Lastly, the 435 

benchmark contains four inference tasks, of which we include three (following Devlin et al., 2018), we exclude the Winograd 436 

Natual Language Inference, WNLI, task; see (12) in https://gluebenchmark.com/faq). In two of these tasks, models are asked 437 

to determine the entailment relationship between sentences in a pair using either tertiary classification: entailment, 438 

contradiction, neutral (Multi-Genre Natural Language Inference corpus, MNLI (Williams et al., 2018)), or binary classification: 439 

entailment or no entailment (Recognizing Textual Entailment, RTE (Dagan et al., 2006, Bar Haim et al., 2006, Giampiccolo et 440 

al., 2007, Bentivogli et al., 2009)). And in the third inference task, the Question Natural Language Inference, QNLI, task 441 

(Rajpurkar et al., 2016, White et al., 2017, Demszky et al., 2018), models are presented with question-answer pairs and asked 442 

to decide whether or not the answer-sentence contains the answer to the question. 443 

In order to evaluate model performance on GLUE benchmark tasks, each GLUE dataset was first converted into a format that 444 

is compatible with transformer model input using functionality from the GLUE data processor provided by Huggingface 445 

transformers (https://huggingface.co/transformers/). In particular, each set of materials is represented as a matrix that 446 

includes the following dimensions: item (and sentence for multi-sentence materials) ID, ID for each individual word (with 447 

reference to the vocabulary used by the transformer models), the label (e.g., grammatical vs. ungrammatical), and the 448 

‘attention mask’ which specifies which part(s) of the sentences the model should pay attention to (e.g., some ‘padding’ is 449 

commonly used to equalize the lengths of sentences/items to the target length of 128 tokens (again constrained by 450 

computational cost), and the attention mask is set to include only the actual words in the materials, and not the padding, and 451 

in some models to further constain which parts of the input to attend to—e.g., in GPT2 models, the rightward context is 452 

ignored). Next, each GLUE dataset was then fed into each model to obtain a sequence of hidden states at the output of the 453 

last layer of the model. Following default settings from Huggingface transformers, from these hidden states, we then 454 

extracted the token of interest: for bidirectional models such as BERT, this was the first input token—a special token ([cls]) 455 

that is appended to each item and designed for sequence classification tasks, and for unidirectional models such as GPT-2, 456 

XLNet or CTRL, this token corresponded to the last attended token (e.g., the last word/word-part in the sentence). In order 457 

to ensure a fair comparison between the models and to avoid the skewing of representations by individual task pre-training, 458 

dense linear pooling projection layers (specific to some transformer) are disregarded. Finally, we fit a linear decoder from the 459 

features of the extracted tokens of interest to the task label(s). For tasks with two or more labels, a cross-entropy loss function 460 

is used; for the task that uses a rating scale, the decoder is trained with a mean-square error (MSE) loss function. Similar to 461 

the next-word prediction task, the linear weights are updated with the AdamW optimizer and a learning rate of 5e-5 in batches 462 

of 8 blocks until convergence as defined on the validation set. Importantly, and also similar to the next-word-prediction task, 463 

we only trained weights of a readout decoder, not the weights of models themselves, in order to maintain the same model 464 

representations that we used in model-to-brain and model-to-behavior comparisons. To account for potential bias in the 465 

GLUE datasets, multiple metrics within tasks, as well as different metrics across tasks are reported in the GLUE benchmark. 466 

Following standards in the field, we follow GLUE evaluation metrics [27] and report the final task score as accuracy for SST-2, 467 

MNLI, RTE, and QNLI, Matthew's Correlation for CoLA, the average of accuracy and F1 score for MRPC, and QQP, and the 468 
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average of Pearson and Spearman correlation for STS-B. The results are shown in Fig. S5. None of the tasks significantly 469 

predicted neural scores, suggesting that next-word prediction may be special in its ability to predict brain-like processing. As 470 

with language modeling, we were unable to evaluate T5-11b on these benchmarks due to lack of computational resources. 471 

 472 

 473 

Figure S4: Performance on next-word prediction selectively predicts model-to-brain fit. Performance on GLUE tasks was 474 

evaluated as described in SI-5. Only the next-word prediction correlations but none of the GLUE correlations were significant. 475 

  476 
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 477 

Figure S5: Models’ neural predictivity for each dataset is correlated with behavioral predictivity. In Fig. 4b, we showed that 478 

the models’ neural predictivity (averaged across the three neural datasets: Pereira2018, Fedorenko2016, Blank2014) 479 

correlates with behavioral predictivity. Here, we show that this relationship also holds for each neural dataset individually: 480 

Pereira2018: p<0.0001, Fedorenko2016: p<0.01, Blank2014: p<0.01. 481 

 482 

 483 

 484 

 485 

Figure S6: Performance on GLUE tasks does not predict model-to-behavior fit. In Fig. 4c, we showed a significant positive 486 

correlation of next-word prediction performance with predictivity on behavioral reading times. Here we test whether 487 

performance on GLUE tasks predicts behavioral scores (performance on GLUE tasks was evaluated as described in SI-5). Only 488 

the next-word prediction correlations but none of the GLUE correlations were significant. Notations as in Figure 3 for the 489 

GLUE average (a) and individual tasks (b). 490 

  491 
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 492 

Figure S7: Model architecture contributes to brain predictivity and untrained performance predicts trained performance. 493 

In Fig. 5, we showed that untrained models already achieve robust brain predictivity (averaged across the three neural and 494 

one behavioral datasets). Here, we show that this relationship also holds for each dataset individually: Pereira2018: 495 

p<<0.00001, Fedorenko2016: p<0.05, Blank2014: p<0.00001. 496 

  497 



16 

 

 498 

Figure S8: Controls for untrained models. a) Neural and behavioral scores of GPT2-xl, the best-performing model, with vs. 499 

without training, and of a random embedding of the same size. A large feature size alone is not sufficient: a random 500 

embedding matched in size to GPT2-xl scores worse than untrained GPT2-xl in all four datasets (3 neural, and 1 behavioral). 501 

These results suggest that model architecture critically contributes to model-to-brain and model-to-behavior fits. b) Overlap 502 

of bi- and tri-grams in train/test stimuli splits of benchmarks is minimal, and despite single-word overlap memorization of 503 

per-word responses is insufficient (a). c) The relationship between model performance with vs. without training on the 504 

wikitext-2 next-word-prediction task. Consistent with model performance with vs. without training on neural and behavioral 505 

datasets (Fig. 5), untrained models perform reasonably well. Training improves scores by 80% on average, and most 506 

prominently for GPT models, in teal (where the quality of the training data is optimized; see Computational models in 507 

Methods). GPT’s poor performance on next-word prediction might be explained by very high representational similarities 508 

across words pre-training in its last layer [38]. d) Scores for untrained models obtained via linear predictivity generalize to 509 

scores obtained via RDM correlations. The RDM metric does not use any fitting. Correlations for untrained models’ scores 510 

between the predictivity and the RDM metric are: Pereira2018 r=.67, p<0.000005; Fedorenko2016 r=.45, p<.005; Blank2014 511 

r=.08, n.s. See Fig. S2 for details on the RDM metric. 512 

 513 

  514 
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SI-3 – Effects of model architecture and training on neural and behavioral scores 515 

 516 

The 43 language models included in the current study span three major types of architecture: embedding models, recurrent 517 

models, and attention-based transformer architectures. However, in addition to this coarse distinction, the individual models 518 

vary widely in diverse architectural and training features. A rigorous examination of the effects of different model features 519 

on model-to-brain/behavior fit would require careful pairwise comparisons of minimally different models, which is not 520 

possible for ‘off-the-shelf’ models without extremely expensive re-training from scratch under many/all possible 521 

combinations of architecture, training diet, optimization objective, and other hyper-parameters. However, we here undertook 522 

a preliminary exploratory investigation. In particular, for a subset of model features (Table SI-9), we computed a Pearson 523 

correlation between the feature values and the averaged model score across all four datasets (3 neural, and 1 behavioral). 524 

We included five architectural features. Three features were continuous: i) number of hidden layers, which varied between 1 525 

and 48 (mean 16.02, std. dev. 11.02); ii) number of features (units across considered layers), which varied between 300 and 526 

78,400 (mean 20,971.26, std. dev. 18,362.91); and iii) the size of the embedding layer, which varied between 128 and 48,000 527 

(mean 872.28, std. dev. 744.33). And the remaining two features were binary: iv) uni- vs. bi-directionality (32/43 models were 528 

bi-directional), and v) the presence of recurrence (5/43 models had recurrence). And we included two training-related 529 

features: i) training data size (in GB), which varied between 0.2 and 336 (mean 351.06 std. dev. 726.81); and ii) vocabulary 530 

size, which varied between 30,000 and 3,000,000 (mean 223,096.95 std. dev. 561,737.36). All training data numbers were 531 

taken from the original model papers, and if training data was specified in tokens, a conversion rate of 4 bytes per token was 532 

used. We further excluded the multilingual XLM and BERT models when examining the effect of training data size, because 533 

those numbers could not be confidently verified. For comparison, we also included performance on the next-word-prediction 534 

task that we examined in the main text. 535 

 536 

The results are shown in Fig. S10. As expected—given the results reported in the main text for the individual datasets (Fig. 3, 537 

4c)—next-word prediction performance robustly predicts model-to-brain/behavior fit (r = 0.49, p < 0.01). These results 538 

suggest that optimizing for predictive representations may be a critical shared feature of biological and artificial neural 539 

networks for language. How do architectural and training-related features compare to next-word-prediction task 540 

performance in their effect on neural/behavioral predictivity? Two architectural size features are most correlated with model 541 

performance: number of hidden layers (r = 0.56, p < 0.001), and number of features (r = 0.68, p << 0.0001). This is expected 542 

given that the most recent models with the highest performance on linguistic tasks are also the largest ones that researchers 543 

are able to run on modern hardware. The two training-related features—training data size and vocabulary size—are 544 

significantly negatively correlated with model performance. To rule out the possibility that the negative effect of training-545 

related features is driven by models with relatively small training datasets and vocabulary size (e.g., ETM; Table S11) that have 546 

low brain/behavior predictivity, we ran an additional analysis considering only transformer models (n=38): even in these 547 

generally highly predictive models, more training data (r = -0.29, p = 0.11 [not plotted]) or larger vocabulary size (r = -0.21, p 548 

= 0.25 [not plotted]) do not appear to be beneficial, although the negative correlations are non-significant. 549 

 550 

Does the collection of model designs investigated in this paper inform the hyperparameters that should be optimized for in 551 

any new model to achieve high predictivity? To provide a preliminary answer to this question, we performed an exploratory 552 

analysis in the form of stepwise forward model selection and examined (a) the most parsimonious model that explains the 553 

data, and (b) how much variance the selected features explain cumulatively (Fig. S10b). High overall explained variance 554 

indicates that the combination of features selected by the model is predictive of model performance, whereas low overall 555 

explained variance indicates that crucial predictive hyperparameters are still being neglected. In the forward regression 556 

analysis, we add predictors based on the highest R2-adjusted value of the new model, as long as variance increases by adding 557 

a new factor. This analysis revealed that adding training dataset size and recurrence does not lead to variance increase. 558 

Significance markers indicate the p-value for significance of adding each term, and for each regression step we plot the added 559 

explained variance (in R2-adjusted) of the variable chosen by the model. The overall cumulative R2-adjusted value of the 560 

selected model is 0.822. 561 
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 562 

 563 

Figure S9: Effects of model architecture vs. training on neural and behavioral scores. a) We compared the effects on neural 564 

and behavioral scores (the averaged model score across all four datasets) of three kinds of features: (i) architectural 565 

properties, (ii) training-dependent variables, and, for comparison, iii) performance on the next-word-prediction task examined 566 

in the main text (Fig. 3, 4c). b) Alternative combination of predictors with stepwise forward regression model. New predictors 567 

are added based on the highest R2-adjusted value of the new model, as long as variance increases by adding a new factor 568 

(thus excluding training dataset size and recurrence). Significance markers indicate the p-value for significance of adding 569 

model terms. For each regression step, we plot the added explained variance (in R2-adjusted) of the variable chosen by the 570 

model. The overall cumulative R2-adjusted value of the selected model is 0.822. As in a), the preferred explanatory variable is 571 

the number of features. Stepwise forward regression based on significance leads to the same model-choice. Note that, as 572 

above, t5-11b is excluded for regression based on next-word-prediction, and multilingual models are excluded for regression 573 

on training size.   574 

 575 

 576 

  577 
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 578 

Table S1: Overview of model designs. 579 

 580 

  581 
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 582 

Figure S10: Distribution of layer preference (best performing layer) per voxel for GPT2-xl for Pereira2018. A per-voxel per-583 

participant raw predictivity value (as opposed to overall ceiled predictivity scores in Fig. 2c) was obtained in the language 584 

network by computing the mean over cross-validation splits and experiments. For each voxel, the layer with the highest 585 

predictivity value was estimated as the “preferred” layer (argmax over layer scores). As in the main analyses, the voxels in the 586 

language network were included. Zero on the x-axis corresponds to the embedding layer of the model. The upper plot is 587 

averaged across all participants in Pereira2018 (n=10). The lower panel shows the participant-wise layer preference for five 588 

representative participants. Across participants, most voxels show the highest predictivity value for later layers of GPT2-xl. 589 

Within participants, the layer preference across voxels varies but is often clustered around particular layers. Investigations of 590 

how predictivity fluctuates across model layers, and/or between the language network and other parts of the brain, is left for 591 

future work. 592 

 593 

 594 
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 595 
 596 

Figure S11: Brain scores of each model’s best, first, and last layer. To test the importance of intermediate representations, 597 

we directly compared layer performances at the beginning and end of each model with the model’s best-performing layer. In 598 

nearly all networks with multiple layers, both the token embedding (first layer) as well as the task-specific output (last layer) 599 

underperform significantly compared to the respective best layer. This suggests that the combination of architecture and 600 

weights in the networks is a major driver for brain-like representations, beyond potential semantic information that is already 601 

present in the model input codes. Lexical similarity determined by optimizing for next-word prediction present in the output 602 

layer is also not sufficient, instead pointing to intermediate representations as the most predictive (see also Fig. 2c). 603 

 604 

 605 

 606 
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