

Figure S1. Knockdown of EPSPS-encoding gene aroA in M. smegmatis using CRISPR interference (CRISPRi). Upper part: Location of PAM sequences inside aroA locus used in this study. From left to right: 5'- NNAGGAT-3', 5'-NNAGCAG-3' and 5'- NNAGCAT-3'. The repression strength of each PAM sequence, according to Rock et al. (2017) (1), is also depicted. Lower part: Schematic representation of CRISPRi system associated with aroA locus at a target region adjacent to PAM "5'-NNAGCAG-3". Dead Cas9 (dCas9) is represented in peach color, sgRNA as a single RNA chain in blue with annealing portion in green and paired with the non-template (NT) strand of target DNA. The "5'-AGCAG-3'" from PAM is depicted in red in the template (T) strand of target DNA in 3'-5' orientation.

6-Chloroguanine riboside

Figure S3. SDS-PAGE of samples from the purification steps of WT *Ms*EPSPS. Lane M:
BenchMark Protein Leadder (Invitrogen). Lane 1: crude extract from soluble fraction of cell disruption.
Lane 2: soluble fraction from the first column (Q-Sepharose Fast Flow). Lane 3: soluble fraction from
the second column (Phenyl Sepharose HP). Lane 4: soluble fraction from the third column (Mono Q
HR 16/10).

48 Figure S4. Representative spectrum of peptide containing the D61W mutation obtained by LC-

49 MS/MS of MsEPSPS D61W protein. Peptide sequence: WTDLMIEAIR. Point mutation marked in

- 50 **bold**. Fragment b- and y-ions and their neutral loses are indicated.
- 51

Figure S5. Representative spectrum of peptide containing the E321N mutation obtained by
LC-MS/MS of *Ms*EPSPS E321N protein. Peptide sequence: EADGHLEVTGAHEYGGFEADLHDVG
NLAPTVAALAALAK. Point mutation marked in **bold**. Fragment b- and y-ions and their neutral loses
are indicated.

Figure S6. Representative spectrum of peptide containing the R134A mutation obtained by
 LC-MS/MS of *Ms*EPSPS R134A protein. Peptide sequence: SAPIAPLLDGLRR. Point mutation

```
62 marked in bold. Fragment b- and y-ions and their neutral loses are indicated.
```

EPSPS	Substrate	Fixed- saturating (µM)	Substrate	Varying range (µM)	
WT	S3P	800	PEP	25 - 900	
D61W	S3P	600	PEP	25 - 1200	
E321N	S3P	600	PEP	25 - 10000	
R134A	S3P	600	PEP	300 - 2900	

 Table S1. Fixed and varying concentrations of substrates used in kinetic assays of MsEPSPS.

Supplementary Results

MESG synthesis. High-resolution mass spectra (HRMS) were obtained on an LTQ Orbitrap Discovery mass spectrometer (Thermo Fisher Scientific). This system combines an LTQ XL linear ion-trap mass spectrometer and an Orbitrap mass analyzer. The analyses were performed through the direct infusion of the sample in MeOH/H₂O (1:1) with 0.1% formic acid (flow rate 10 mL/min) in a positive-ion mode using electrospray ionization (ESI). For elemental composition, calculations used the specific tool included in the Qual Browser module of Xcalibur (Thermo Fisher Scientific, release 2.0.7) software. ¹³C NMR spectra were acquired on an Avance III HD Bruker spectrometer (Pontifical Catholic University of Rio Grande do Sul); chemical shifts (δ) were expressed in parts per million (ppm) relative to TMS (tetramethylsilane) used as an internal standard.

97			Refe	rences			
98							
99	[1] Rock JN	И, Hopkins FF, C	havez A, Dia	llo M, Chase	e MR, Gerrick ER	, Fortur	ne SM.
100	2017. Prog	rammable transc	riptional repre	ession in my	cobacteria using	an orth	ogonal
101	CRISPR	interference	platform.	Nature	Microbiology,	2:	1–9.
102	https://doi.o	org/10.1038/nmio	crobiol.2016.2	274			