
1

Supplemental Information

For the paper “A generative neural network for maximizing fitness and diversity of

synthetic DNA and protein sequences”.

Supplemental Figures

Figure S1. Diversity Cost Functions. Related to Figure 1. (A) Sequence similarity cost

function: The cosine similarity penalty is applied directly on the one-hot representation of the

generated sequence pair (and). The sequence pair was produced by the generator given

two input vectors (and) as seeds. (B) Multiple offsets are considered when calculating

the cosine similarity between one-hot sequences and . For a given offset, and are

multiplied elementwise, aggregated and normalized by the sequence length. Green squares

indicate matching nucleotides between and (which contributes to the similarity). The

worst-case (highest) value across all considered offsets is chosen as the cosine similarity. (C)

Latent similarity cost function: The cosine similarity penalty is applied on the latent feature

vectors (and) produced by the activations of one of the fully connected layers within the

predictor, when running the model on the generated sequence patterns and . (D) Vectors

 and are multiplied elementwise and summed. The sum is normalized by the L2-norm of

 multiplied by the L2-norm of , resulting in a cosine similarity metric.

A
 equence imilarity enalty

 inimize

 osine imilarity

 atent imilarity enalty

 inimize

 osine imilarity

 redictor

Dense ayer

 redictor

Dense ayer

D

 osine
max

 osine

 .

 .

 .

 ffset

 osine

 ositive alue

 ero

Negative alue

 osine

 atch

Not atch

2

A

F

D

 aximum soform andom

 redictor

 ultinomial

 tochastic

Neurons

 enerated

 ot

 equences

 ample

Nucleotides

 arget soform se

 enerator enerator

 unish imilarity

 redictor

 arget

 soform

 ective
 soform

i
i inimize

 red

 arget

 arget

 red

 red

 soform

 eight pdates eight pdates

 .

e
d
ia
n

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

s
o
fo
rm

o
g

d
d
s

e
d
ia
n

d
it
 D
is
ta
n
c
e

 n
t

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 ampled x

 ampled x

 ampled x

 ampled x

No ntropy enalty ith ntropy enalty

 enerator

 atent

Dense

Deconv

Deconv

Deconv

 onv

 onv

 onv

 redictor

 onv

 ax ool

 onv

Dense

Drop

Dense

 oftmax

 soform
i
i

 redicted

 soform se log

 .

 .

 .

 .

 redicted

 soform se

.

.

.

.

n

 .

 redicted soform se log odds

s
e
rv
e
d

s
o
fo
rm

s
e

lo
g
 o
d
d
s

A A A est et

 arget soform roportions

A

e
n
e
ra
te
d

e
q
u
e
n
c
e
s

Nucleotide position

 .

 .

 .

 .

 .

a
rg
e
t s

o
fo
rm

s
e

N
N
 i
n
fe
rr
e
d

 s
o
fo
rm

s
e .

 .

 .

 .

 .

 arget soform se

 .

n per step

n per target

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

s
o
fo
rm

o
g

d
d
s

a
te
n
t

 D
is
ta
n
c
e

D
e
n
s
e

d
it
 D
is
ta
n
c
e

 n
t .

a
te
n
t

 D
is
ta
n
c
e

A

 equence

 argin .

 atent

 argin .

 equence

 argin .

 atent

 argin .

 equence

 argin .

 atent

 argin .

 equence

 argin .

 atent

 argin .

n

.

.

.

.

.

3

Figure S2. Generator and Predictor Architectures, Generation Examples, Training

Curves and Latent Diversity Costs. Related to Figure 2. (A) Left: The APA predictor.

Convolutional, pooling, dropout and dense layers transform the one-hot coded input sequence

into an APA isoform proportion prediction. Right: Predicted vs. observed isoform log odds on

the test set of (Bogard et al., 2019), R2 = 0.85, n = 80,212. (B) The generator follows a typical

DC-GAN architecture. Dense and (de-)convolutional layers transform the input seed vector

into a sequence PWM of nucleotide log probabilities. (C) The one-hot sequence outputted by

the generator is passed as input to the APA fitness predictor, which in turn outputs an isoform

proportion prediction. This prediction is used in a symmetric KL-divergence loss to fit the

generator to a fixed target isoform proportion. (D) Example sequences generated by four of

the five deep exploration network instances evaluated in Figure 2B: The 25%, 50%, 75% and

100% (‘Max’) generators. (E) Example sequences generated by the 100%-target (‘Max’) APA

isoform DEN, using four different random seeds as input to the generator. (F) DENs were

validated against real RNA-Seq measurements using a nearest neighbor approximation. Five

new generators were trained to produce polyA signals for the APA isoform targets 5%, 25%,

50%, 75%, 100% (‘Max’), but this time with a shorter (60 nt) freely tunable sequence so as to

reduce “curse of dimensionality”-effects in the nearest neighbor search. The first four DENs

were trained with 30% allowable sequence similarity margin. The Max-target DEN was trained

with 50% similarity margin. The subset of measured APA sequences from (Bogard et al., 2019)

with a TOMM5 3’ UTR template (which only has 60 nt of randomized sequence) was collected

(n = 125,949) and the first dense layer activations predicted by APARENT were used as

features when storing the sequences in a nearest neighbor database. Next, 1,000 sequences

were generated from each of the five DENs. The 50 nearest neighbors from the measured

dataset were looked up for each of the 1,000 generated sequences, and the mean measured

isoform proportion of those 50 neighbors were used as the estimate for each generated

sequence. (Top) Measured mean isoform proportions (from RNA-Seq data) for the 50 nearest

neighbors of each of the generated sequences (n = 1,000). Mean and Std dev of isoform

proportions: (Target 5%) 6.00% +- 3.03%, (Target 25%) 25.1% +- 6.95%, (Target 50%) 53.2%

+- 7.05%, (Target 75%) 73.7% +- 7.18%, (Target Max) 88.05% +- 0.05%. (Bottom) Sequence

diversity for each of the five generators, illustrated by sampling 20 sequences per

target/generator and plotting the nucleotides on a 2-dimensional pixel grid. The first four target-

isoform generators have 0% duplication rate at 100,000 sampled sequences, and the 100%-

target (‘Max’) generator has a 0.1% duplication rate at 100,000 samples. Hexamer entropy

ranged between 7.89 and 9.00 bits depending on the generator (of 12 bits max). (G) Example

sequences generated by the five DENs trained in Figure S2F. (H) Evaluation of three different

sequence pattern representations: (1) Sampling a number of discrete one-hot-coded patterns

from the generated PWM (1 or 10 samples) and using them as input to the predictor (gradients

are propagated by a softmax straight-through gradient estimator), (2) Passing the softmax-

relaxed PWM directly as input or (3) passing both representations as input to the predictor and

walking down the average gradient. The methods were evaluated by training a DEN to

generate maximally used (100%-target) polyA signals with a 50% sequence similarity margin,

and tracking the predicted median fitness score (isoform log odds) and median normalized

sequence edit distance across the first 5,000 weight updates. The metrics were computed on

a random sample of 160 generator seeds per weight update (step). Note that, regardless of

input representation, the metrics were always computed using the consensus one-hot-coded

pattern extracted from the generated PWMs (guaranteeing well-formed input to the predictor).

Reported are the median curves of five independent runs. (Left curves) The results of training

the DEN without any entropy penalty. (Right curves) The results of training when enforcing an

4

entropy penalty on the generated PWM, with a target mean nucleotide conservation of 1.95

bits. (I) A comparison of the Max-target APA isoform DEN when trained with two different

diversity costs: In one setting (black violin), the DEN was trained with the sequence cosine

similarity penalty (see Figure S1A-B) with an allowable margin of 0.6 (allowing 60% of

nucleotides to be identical without incurring cost). In the second setting (white violin), the DEN

was trained with the latent cosine similarity penalty (see Figure S1C-D) with an allowable

margin of 0.7 (allowing a 70% cosine similarity without incurring cost). The two DENs were

used to generate 4,096 sequences each. Shown are the predicted fitness scores (isoform log

odds), pairwise L1-distances of latent feature vectors from the penalized latent space,

normalized sequence edit distances, and pairwise L1-distances in an independently trained

APA variational autoencoder (see STAR methods for details on how the autoencoder is

trained).

5

F
it
n
e
s
s

c
o
re

F
it
n
e
s
s

c
o
re

F
it
n
e
s
s

c
o
re

F
it
n
e
s
s

c
o
re

 illoran iters radient Ascent ingle radient ulti imulated Annealing iters

 .

F
it
n
e
s
s

c
o
re

 .

 .

 .

 .

F
it
n
e
s
s

c
o
re

 .

 .

 .

 .

F
it
n
e
s
s

c
o
re

 .

 .

 .

F
it
n
e
s
s

c
o
re

 terations terations terations terations

 illoran iters radient Ascent ingle radient ulti imulated Annealing iters

 terations terations terations terations

A

e
n
e
ra
te
d

e
q
u
e
n
c
e
s

Nucleotide position A

d
it D

is
ta
n
c
e
 n

t

.

.

.

.

.

 th erc.

 th erc.

.

a
m
p
le
s

.

Fitness

 core

 dit

Distance

 .

 .

 .

 .

 .

 equence amples

 il il il il il

 .

 .

 .

 .

 .

 .

 AN nif data x

 AN nif data x

 AN op x

 AN op x

F AN thr qt . ep

F AN thr qt . ep

A AN iters

 radient Ascent ingle

 radient Ascent ulti

 imulated Annealing

D N eq. margin .

D N eq. margin .

A
 D
ra
g
o
N
N

F AN thr qt . ep

F AN thr qt . ep

F AN thr qt . ep

F AN thr qt . ep

 enerative Algorithm

 ANs F ANs ingle

 ample
D Ns

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 AN nif data x

 AN nif data x

 AN . prox x

 AN . prox x

F AN thr . ep

F AN thr . ep

F AN thr qt . ep

F AN thr qt . ep

A AN iters

 radient Ascent ingle

 radient Ascent ulti

 imulated Annealing

D N eq. margin .

D N eq. margin .

 enerative Algorithm

 .

 .

 .

 .

 .

 .

 equence amples

 il il il il il ANs F ANs ingle

 ample
D Ns

A

A

N

F AN thr . ep

F AN thr qt . ep

 .

D N eq. margin .

D N eq. at. margin . .

D N eq. at. margin . .

D

F

s
o
fo
rm

o
g

d
d
s

 l
o
g

N
A

 D
N
A

d
it
 D
is
ta
n
c
e

 n
t

 l
o
g

N
A

 D
N
A

d
it
 D
is
ta
n
c
e

 n
t

s
o
fo
rm

o
g

d
d
s

d
it
 D
is
ta
n
c
e

 n
t

s
o
fo
rm

o
g

d
d
s

d
it
 D
is
ta
n
c
e

 n
t

 th ercentile

 th ercentile

 th ercentile

 th ercentile

n Algorithm

n Algorithm

n Algorithm

n Algorithm

re
d
ic
te
d

 s
o
fo
rm

s
e

lo
g

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

re
d
ic
te
d
 F
it
n
e
s
s

c
o
re

Fitness core redicted soform og dds

Fitness core redicted log NA DNA

re
d
ic
te
d

F
it
n
e
s
s

c
o
re

re
d
ic
te
d

F
it
n
e
s
s

c
o
re

re
d
ic
te
d

F
it
n
e
s
s

c
o
re

A A N

 umulative equence amples

 imulated

Annealing
D N

 umulative equence amples

 umulative equence amples

 A DragoNN DragoNN

 eqs

 equence Dissimilarity imilarity argin

n

n

n
n per step

 ost oefficient . ost oefficient . ost oefficient .

 imilarity argin . imilarity argin . imilarity argin .

Dashed ines

 olid ines

 x

 x

 amples

6

Figure S3. Detailed Comparison of Generative Models. Related to Figure 3. (A) Replicate

analysis of Figure 2C, using the earth mover fitness cost instead of the KL-divergence cost to

maximize APA isoform abundance. The Max-target APA isoform DEN was retrained three

times, (1) with a low sequence diversity cost (left; cost coefficient = 0.05, allowable margin =

0.95), (2) with a medium-high diversity cost (middle; cost coefficient = 5.0, allowable margin =

0.5) and (3) with a high diversity cost (right; cost coefficient = 5.0, allowable margin = 0.3).

(Top) Predicted isoform proportions for 4,096 generated sequences per generator instance.

(Bottom) Sequence diversity illustrated by sampling 100 sequences and plotting them on a 2D

pixel grid where rows denote sequences and columns denote nucleotide position. Low

diversity penalty (left): Mean predicted isoform log odds = 6.67, 99.9% duplication rate at

100,000 sampled sequences. Medium penalty (middle): Mean predicted isoform log odds =

12.0, 0.4% duplication rate at 100,000 samples. High penalty (right): Mean predicted isoform

log odds = 8.95, 0% duplication rate at 100,000 samples. (B) Replicate analysis of Figure 2D,

using the earth mover fitness cost to maximize APA isoform abundance. The diversity cost

coefficient was fixed at a high value (5.0) and the Max-target isoform DEN was retrained for

different values of the allowable similarity margin (the fraction of nucleotides allowed to be

identical without incurring cost; X-axis depicts 1 - fraction). Plotted are the 50th and 99th

percentile of predicted fitness scores (isoform log odds) and pairwise normalized edit distance

for 4,096 generated sequences. (C) Benchmark comparison of 6 design methods for designing

sequences with maximal APA isoform abundance: Generative Adversarial Networks (GAN),

Feedback-GAN (FB-GAN; Gupta et al., 2019), Activation-maximization of GAN (AM-GAN;

Killoran et al., 2017), PWM Gradient Ascent, Simulated Annealing and Deep Exploration

Networks (DEN). Left: (Top) Predicted fitness score distribution (proximal isoform log odds)

for a sample of 4,096 sequences per design method (higher is better). (Bottom) Normalized

pairwise sequence edit distances (higher is better). Right: (Top) Trajectories of the 80th

percentile of generated fitness scores for a sample of 960 sequences per algorithm and step.

The X-axis shows the total number of sequences sampled during optimization (the sequence

budget) in order to design 4,096 sequences. (Bottom) Trajectories of the 50th percentile of

normalized sequence edit distances for a sample of 960 sequences per algorithm and step.

Multiple configurations were tested for many of the methods. GAN: The GAN (Wasserstein-

GAN with Gradient Penalty) was trained either on a random subsample of the APA MPRA

data (“Unif data”), or on a subset of high-fitness sequences with measured proximal isoform

proportions above 0.95 (“> .95 prox”). After training, we either directly sampled 4,096

sequences from the GAN for the benchmark (“1x”), or we sampled 40,960 sequences and

selected the top 10% sequences with highest fitness (“10x”). FB-GAN: The FB-GAN was

trained for either 50, 100 or 150 epochs, using a random subsample of 2,000 sequences from

the APA MPRA as initial training data. The feedback threshold was either set to a fixed

proportion of 0.8 throughout training (“thr .8”), or we adaptively raised the threshold to the 50th

percentile of predicted isoform proportions in the newly generated dataset at the end of every

epoch (“thr qt .5”). AM-GAN: The GAN trained on the uniform subsample of APA sequences

were used for activation maximization. The latent generator seed was initialized and optimized

by gradient ascent for 1,000 iterations. This procedure was repeated 4,096 times, resulting in

4,096 optimized sequences. PWM Gradient Ascent: A randomly initialized softmax sequence

relaxation (PWM) was optimized for 50,000 iterations by gradient ascent. We either optimized

just one PWM and sampled 4,096 sequences from it (“Single”), or we optimized 4,096 PWMs

independently and selected the consensus sequences (“Multi”). Simulated Annealing: Single

nucleotide substitutions were used to traverse sequence space, with the Metropolis

acceptance criterion. The method started with a randomly initialized sequence and optimized

7

for 1,000 iterations. This procedure was repeated to optimize 4,096 sequences. DEN: The

DEN was trained and evaluated for a range of different diversity cost configurations, using

either the sequence similarity penalty with an allowable margin of 50%, 40% or 30%, or using

a combination of the sequence and latent similarity penalties with allowable margins of 50%

or 30% for the sequence penalty and 70% for the latent penalty. See STAR methods for all

implementation details. (D) Selection of 100 optimization trajectories for each of the per-

sequence optimization methods. Each trajectory represents a single sequence being

optimized by the respective algorithm. The Y-axis displays predicted fitness scores (proximal

isoform log odds) and the X-axis displays the iteration count. (E) Benchmark comparison of 6

design methods for designing sequences with maximal transcriptional activity as predicted by

MPRA-DragoNN (Movva et al., 2019): Generative Adversarial Networks (GAN), Feedback-

GAN (FB-GAN; Gupta et al., 2019), Activation-maximization of GAN (AM-GAN; Killoran et al.,

2017), PWM Gradient Ascent, Simulated Annealing and Deep Exploration Networks (DEN).

Left: (Top) Predicted fitness score distribution (log fold change of RNA to DNA count) for a

sample of 4,096 sequences per design method (higher is better). (Bottom) Normalized

pairwise sequence edit distances (higher is better). Right: (Top) Trajectories of the 80th

percentile of generated fitness scores for a sample of 960 sequences per algorithm and step.

The X-axis shows the total number of sequences sampled during optimization (the sequence

budget) in order to design 4,096 sequences. (Bottom) Trajectories of the 50th percentile of

normalized edit distances for a sample of 960 sequences per algorithm and step. Multiple

configurations were tested for several of the methods. See Figure S3C for descriptions of

these configurations. For this design task, we trained FB-GAN with adaptive feedback

thresholds of either the 60th percentile (“thr qt .6”) or 80th percentile (“thr qt .8”) of the predicted

fitness scores in the newly generated dataset at the end of every epoch. The GAN biased for

high-fitness was trained on 10,000 sequences randomly sampled from the 50,000 sequences

of the gene enhancer MPRA (Ernst et al., 2016) with highest measured fitnes score (“Top

50K”). (F) Selection of 100 optimization trajectories for each of the per-sequence optimization

methods. Each trajectory represents a single sequence being optimized by the respective

algorithm. The Y-axis displays predicted fitness scores (log fold change of RNA to DNA count)

and the X-axis displays the iteration count. (G) Trajectories of the cumulative number of

iterations (total sequence budget) required by DEN and Simulated Annealing to design 1,000,

100,000 and 10,000,000 sequences. Each trajectory displays the median predicted fitness

score (Y-axis) for a sample of 960 sequences when the method is allowed a total sequence

budget as specified by the X-axis. Two versions of the DEN were evaluated: One version

where 10 one-hot patterns were sampled from each generated PWM during training to

estimate the straight-through gradient (solid lines), and another version where only a single

sample was used for the straight-through approximation (dashed lines). This results in a 10x

lower sequence budget.

8

D

s
e
rv
e
d

le
a
v
a
g
e

o
s
it
io
n

n

 .

 redicted leavage osition

 arget leavage at andom

A

 redictor

 onv

 ax ool

 onv

Dense

Drop

Dense

 oftmax

 leavage

e
n
e
ra
te
d

e
q
u
e
n
c
e
s

Nucleotide position

 nt

 nt

 nt

 nt

 nt

 nt

 nt

 nt

 nt

A

a
rg
e
t

le
a
v
a
g
e

o
s
itio

n

F

re
d
ic
te
d

le
a
v
a
g
e

o
g

d
d
s

 arget leavage osition

 enerator

 atent

Dense

Deconv

Deconv

Deconv

 onv

 onv

 onv

 arget

 ut

o
n
c
a
te
n
a
te

 m ed

A A A est et

 redicted leavage

n per target

9

Figure . ’ leavage redictor odel and Example Sequences. Related to Figure 4.

(A) The 3’ cleavage predictor architecture. A set of convolutional layers, pooling layers,

dropout layers and dense layers transform the one-hot-coded input sequence into a 3’

cleavage distribution, predicting % Cleavage at nucleotide resolution. (B) Mean cut position

prediction accuracy of APARENT. Shown are the predicted and measured mean cut positions

of 5,854 test set sequences from (Bogard et al., 2019). Predicted vs. measured mean cut

position R2 = 0.76. (C) A target cut position (class index) is passed as input to the generator.

The class index is transformed by a trainable embedding layer and concatenated onto every

input tensor of every layer, enabling conditional generation. (D) Example sequences

generated by the 3’ cleavage DEN, using four different random seeds and the (+15 cut

position)-class index as input to the generator. (E) Generator sequence diversity evaluated

across all 9 target position classes, illustrated by randomly sampling 20 sequences per target

position, and plotting them in a grid where rows denote sequences and columns denote

nucleotide position. 0% duplication rate at 100,000 sampled sequences. Hexamer entropy =

9.07 of 12 bits. (F) Predicted cleavage log odds of 1,000 sampled sequences per target

cleavage position. Mean and Standard deviation of cleavage log odds at each target cut

position, in order: 2.10 (+- 0.34), 3.17 (+- 0.50), 3.54 (+- 0.47), 3.03 (+- 0.46), 2.93 (+- 0.38),

2.64 (+- 0.39), 1.73 (+- 0.32), 1.61 (+- 0.29), 1.31 (+- 0.24).

10

D N eq. margin . D N eq. margin . A F A

 teration sorted y oracle fitness score

 .

 .

 .

 .

 .

 .

 .

 .

F
it
n
e
s
s

c
o
re

th
 p
e
rc
e
n
ti
le

 .

F
it
n
e
s
s

c
o
re

ra
c
le

 enerative Algorithm

 .

 .

 .

 .

 .

 .

 .

F
it
n
e
s
s

c
o
re

ro
u
n
d

ru
th

 .

 .

 .

 .

 .

 .

d
it
 D
is
ta
n
c
e

 enerative Algorithm enerative Algorithm

 A Decoder

 A ncoder

i

 equence

 ample
e
p
e
a
t

 t
im
e
s

p equence

 ropagate

 radient

 ample

 ogits

 p equence

 ogits

Decoded
i

 enerator

 atent

Dense

Deconv

Deconv

Deconv

 racle

 onvDense

Dense

 edian
Normalized
 rightness

 og
 ariance

 ingle racle
 redictor

...

...

n equences per Algorithm

n equences per Algorithm and teration

 D N eq margin . A

F A

 D N eq margin .

 D N eq margin .

 .

 .

 .

re
d
ic
te
d
 F
it
n
e
s
s

s
o
fo
rm

o
g

d
d
s

 enerated equence

 ikelihood atio

 argin log

 rox .

 nly Fitness

 A ikelihood atio argin log

 redicted Fitness soform og dds

 A ikelihood log

D
a
ta
 D
e
n
s
it
y

D
a
ta
 D
e
n
s
it
y

 .

 .

 .

 .

 rox .

 A est et

 .

 .

 redicted Fitness

 soform og dds

 A ikelihood log

D
a
ta

D
e
n
s
it
y

D
a
ta

D
e
n
s
it
y

 nly Fitness

 rox .

 F

A

 D

n equences per Algorithm

 D N eq margin . A

F A

 D N eq margin .

 D N eq margin .

n equences per Algorithm

 D N eq margin . A

F A

 D N eq margin .

 D N eq margin .

11

Figure S5. Likelihood-bounded DENs, APA Analysis and Protein Engineering Details.

Related to Figure 5. (A) The variational inference pipeline: The sequence is encoded into

mean and- log-variance vectors. K latent vectors are sampled and decoded to estimate the

VAE likelihood. Gradients are backpropagated through the sequence sample using a straight-

through estimator. (B) The Likelihood-bounded DEN (KL-DEN) is tasked with designing

polyadenylation signals which maximize the isoform proportion predicted by APARENT (See

Figure 2). To show that regularization based on variational inference is tunable, we trained a

VAE on 11,278 sequences from the APA MPRA (Bogard et al., 2019), selecting only weak

examples with a measured proportion < 0.15. We hypothesized that the more we enforce the

marginal likelihood of the VAE, the less fit the generated sequences can be, as they get

pushed toward the low-fitness region of design space encoded by the VAE. We tested this by

training three different KL-DENs: Each respective DEN was trained to generate maximally fit

sequences that were 100-fold (log10 = -2; white histogram), 1-fold (log10 = 0; light gray

histogram) and 1/100-fold (log10 = 2; dark gray histogram) more / less likely than the mean

test set VAE likelihood (orange dashed line). 1,000 sequences were generated per likelihood

ratio. Indeed, as the allowable likelihood ratio was lowered from 100 to 1 to 1/100 (white to

light gray to gray), each DEN re-centered its generated sequence distribution to its least

allowable likelihood due to the fitness objective (top histogram). At the same time, the

predicted fitness distribution monotonically increased as the likelihood margin was lowered

(bottom histogram). At the extreme, when optimizing only for fitness (no likelihood penalty),

the generated sequences were nearly 1000-fold less likely than the low-fitness VAE test set

sequences (orange histogram; < 0.15 isoform proportion). For reference, we also show the

distribution of high-fitness VAE test sequences (green histogram; > 0.8 isoform proportion).

(C) Example sequences for different likelihood ratio margins generated by the DENs from

S6B. Shown are the sequences and their predicted fitness scores (isoform log odds). (D) We

hypothesized that the gradual decrease in fitness observed in Figure S5B was only due to the

low-fitness data distribution used for training the VAE; enforcing a large likelihood should not

hurt the generated fitness distribution had the VAE been trained on high-fitness data. To test

this, we re-trained the VAE on 11,055 sequences with proportions > 0.8 (green histogram).

When optimizing only for fitness with no likelihood penalty (black histogram), the generated

sequences (n = 1,000) became nearly 100-fold more likely than the test data evaluated on the

high-fitness VAE. Compare to Figure S5B, where the sequences optimized only for fitness

were 1000-fold less likely than the test data using the low-fitness VAE. (E) The oracle predictor

architecture for the GFP design task, which is identical to the one used in (Brookes et al.,

2019). Two fully connected layers with ELU activations in the hidden layer transform the 20-

residue protein sequence one-hot pattern into two values: A mean normalized brightness

prediction and a log-variance prediction. (F) The generator architecture used to train the GFP

DENs. The network consists of a dense layer and three deconvolutional layers (same as

previous generator architecture), followed by a recurrent LSTM layer (new for the GFP design

task). (G) Predicted oracle fitness score distribution per generative algorithm for the GFP

design task (see also Figure 5D, Left). n = 4,000 / algorithm. (H) Predicted “ground truth” score

distributions (using the GP regression model) per generative algorithm (see also Figure 5D,

Middle). n = 4,000 / algorithm. (I) Sequence edit distance distributions (see also Figure 5D,

Right). n = 4,000 / algorithm. (J) The regular DEN (without VAE-likelihood penalty, similarity

margin = 0.5; orange) was compared against the likelihood-bounded DEN (similarity margin =

0.95; blue), CbAS (green), FB-VAE (red) and CEM-PI (purple) on the GFP design task. Shown

are the 80th percentile of oracle (dashed line) and ground truth (solid line) predicted fitness

scores as a function of training epochs. The values (X-axis) are sorted on oracle scores.

12

13

Figure S6. Organism-Specific Splicing Predictor Models and Sequence Generation

Validation. Related to Figure 6. (A) The neural net predictor architecture. Convolutional,

pooling, dropout and dense layers transform an input sequence into cell line-specific splice

donor usage (PSI) predictions. (B) Predicted vs. measured PSI on a held-out test set of the

splicing MPRA (n = 13,232). Predictions were made using a convolutional neural net with cell

line-specific PSI outputs. (C) Top: Comparison of measured PSIs between pairs of cell

lines/organisms in the splicing MPRA test set (n = 13,232). Measured PSIs are displayed on

the X/Y axes, and color intensity indicates the neural network-predicted dPSIs (blue/red =

more/less PSI in cell line X than Y). Bottom: Measured vs. predicted dPSIs for each cell line

pair. (D) The max-differential splicing DEN was validated against real RNA-Seq

measurements of the measured splicing MPRA using a nearest neighbor approximation.

Sequences of the splicing MPRA with a minimum read count of 50 (n = 45,834) were

transformed into 256-dimensional feature vectors, using the fitness predictor up until the first

dense layer as a feature transform, and then stored in a nearest neighbor database. The

feature transform reduces “curse of dimensionality”-effects in the nearest neighbor search and

provides a degree of local motif invariance. Next, 1,000 sequences sampled from the DEN

were transformed into 256-dimensional feature vectors according to the predictor and looked

up in the nearest neighbor database. The measured PSIs of the 10 nearest neighbors per

generated sequence were used to estimate average PSIs. Shown are the measured and NN-

inferred MCF7-CHO dPSIs of the MPRA and generated sequences respectively. Mean MPRA

dPSI = 0.07 (+- 0.10). Mean dPSI of generated sequences = 0.38 (+- 0.06). (E) Left: A

differentiable relaxation of a 6-mer logistic regression model. A convolutional layer with 4096

filters, each encoding a distinct 6-mer (filter weight = 6, bias = -5), result in 4096 activation

maps which after a summation over positions become hexamer counts. The counts are

combined with cell line-specific weights and squashed through a sigmoid. Right: Predicted vs.

measured PSI on a held-out test set of the splicing MPRA (n = 13,232). (F) Evaluation of a

deep exploration network, using a hexamer regression predictor, when tasked with generating

500 maximally differentially spliced sequences between cell lines MCF7 and CHO. (Left) PSI

as predicted by the regression model on all MPRA test set sequences in MCF7 and CHO.

Color intensity indicates measured dPSI. Purple dots indicate the 500 generated sequences.

(Inline) Measured vs. Predicted dPSI R2 on test set = 0.27. (Right) Selection of maximally

differentially spliced generated sequences. The generator has learned to exploit the additive

independence of hexamer scores, by populating the sequences with a very differential motif,

GCATGC (RBFOX1 binding site). (G) Both the neural network and hexamer regression

splicing models were used as fitness predictors, and the DEN was retrained to maximize

differential splicing between MCF7 and CHO according to the average response of both

predictors. The generator was used to sample 1,000 sequences, and their average predicted

PSIs (purple) were plotted alongside the predicted PSIs of the splicing MPRA test set (color

intensity indicates measured dPSI). Mean predicted dPSI of test sequences = 0.08 (+- 0.07).

Mean predicted dPSI of generated sequences = 0.54 (+- 0.04). (Right) The top four

differentially spliced sequences generated by the DEN are shown with the neural net (CNN)

and hexamer regression (LR) dPSI predictions. Shown above each sequence are the hexamer

weights.

14

Figure S7. An Inverse Regression Model of APA. Related to STAR Methods. (A) The

Inverse Regression DEN architecture: Target isoform proportions are randomly sampled and

passed to both the generator and objective function. The generator is optimized to output

sequences which are predicted to conform to the sampled target proportions. (B) A target

isoform logit is passed as input to the generator in addition to the random seed. The logit is

transformed into a high-dimensional, trainable embedding. The embedding is concatenated to

the input tensor of every layer, enabling conditional learning and generation. See STAR

methods for details on the implementation. (C) The APA fitness predictor architecture. A set

of convolutional layers, pooling layers, dropout layers and dense layers transform the one-hot-

coded input sequence into an APA isoform proportion. The predicted logit is computed and

passed to the fitness cost. (D) The DEN was trained to generate polyadenylation signals

according to randomly sampled target isoform logits in the uniform range -4 to 6, with 35%

sequence similarity margin. Left: 10,000 sequences were sampled from the trained generator

and their predicted isoform log odds (Y-axis) were plotted against the corresponding supplied

targets (X-axis). The predicted isoform log odds were highly correlated with their targets

(pearson r = 0.97), and the generator had a sequence duplication rate of 0% at 100,000

samples, indicating high diversity. Right: The sequences were projected in two-dimensional

space using tSNE and colored based on their predicted isoform log odds. We find only a single

tSNE cluster, where the sequences smoothly transition from one edge to the other based on

the isoform log odds.

D

re
d
ic
te
d

s
o
fo
rm

s
e

lo
g

 arget soform se log

t
N

 t N

 redicted

 soform

 se log

A

 enerator enerator

 unish imilarity

 redictor

 andom

 arget

 soform

 ective soform

i

i red

 soform
 inimize

 red

 arget

 arget

 red

pearson r .

n

 enerator

 atent

Dense

Deconv

Deconv

Deconv

 onv

 onv

 onv

 arget

 ogit

o
n
c
a
te
n
a
te

Dense

Dense

 redictor

 onv

 ax ool

 onv

Dense

Drop

Dense

 oftmax

 soform
i

i

 redicted

 ogit

15

Supplemental Tables

Table S1. APA qPCR Primer Sequences. Related to STAR Methods. Table containing the

forward (qPCR_FWD) and reverse (qPCR_REV_upstream, qPCR_REV_dnstream_A -

qPCR_REV_dnstream_D) primer sequences used to amplify each APA reporter.

Primer ID Reporter Sequence

qPCR_FWD For all reporters. ACAACGAGGA
CTACACCATC
GTGGAACAGT
AC

qPCR_REV_upstream For all reporters.
Amplifies proximal and distal isoforms.

GGATGCGAGT
AATGAATGCC
ATAGAAAGAG
CG

qPCR_REV_dnstream_A Amplifies the distal isoform of DEN-PAS 1
vs. Gradient Ascent-PAS 1 and DEN-PAS
2 vs. Gradient Ascent-PAS 1.

AGGCTTAATT
GGCTGAAAAT
AAATGACAC

qPCR_REV_dnstream_B Amplifies the distal isoform of Gradient-
Ascent PAS 1 vs. DEN-PAS 1 and
Gradient Ascent-PAS 2 vs. DEN-PAS 1.

CAGGCTTAAT
TGGCTGAATA
AAAAAACACA
CAC

qPCR_REV_dnstream_C Amplifies the distal isoform of DEN-PAS 1
vs. Gradient Ascent-PAS 2 and DEN-PAS
2 vs. Gradient Ascent-PAS 2.

GGCTTAATTG
GCTGAAAAAA
TGAAGAC

qPCR_REV_dnstream_D Amplifies the distal isoform of Gradient-
Ascent PAS 1 vs. DEN-PAS 2 and
Gradient-Ascent PAS 2 vs. DEN-PAS 2.

TACAGGCTTA
ATTGGCTGAA
AAAAAAGACG
AC

16

Table S2. APARENT Predictor Architecture. Related to STAR Methods. Note: Conv(F, W,

S) denotes a convolutional layer with F filters of width W, with stride S. MaxPool(P) denotes a

max pooling layer with a pool size of P. Dense(N) denotes a fully connected layer with N

neurons. Dropout(R) denotes a dropout layer with a drop rate of R.

Predictor

Inputs:

Sequence Input (One-hot Encoding,)

Conv(96, 8, 1)
ReLU()

MaxPool(2)

Conv(128, 6, 1)
ReLU()

Dense(256)
ReLU()
Dropout(0.2)

Dense(1)
Sigmoid()

Dense(206)
Softmax()

17

Table S3. VAE Decoder Architecture. Related to STAR Methods. Conv(F, W, S) denotes

a convolutional layer with F filters of width W, with stride S. Dense(N) denotes a fully connected

layer with N neurons. ResBlock(F, W, S) denotes a residual block with F filters of width W,

with stride S.

Decoder

Inputs:
Latent Seed ()

Dense(3072)

Reshape(8, 384)

ResBlock(384, 3, 2)

ResBlock(256, 3, 2)

ResBlock(128, 3, 2)

ResBlock(64, 3, 2)

ResBlock(32, 3, 1)

Conv(4, 1, 1)

Table S4. VAE Decoder ResBlock. Related to STAR Methods. Deconv(F, W, S) and

Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of width W,

with stride S.

ResBlock(F, W, S)

Inputs:
Sequence Tensor ()

BatchNorm()
ReLU()
Deconv(F, W, S)

Deconv(F, W, S)

BatchNorm()
ReLU()
Conv(F, W, 1)

Add()

18

Table S5. VAE Encoder Architecture. Related to STAR Methods. Conv(F, W, S) denotes

a convolutional layer with F filters of width W, with stride S. Dense(N) denotes a fully connected

layer with N neurons. ResBlock(F, W) denotes a residual block with F filters of width W.

Encoder

Inputs:

Sequence Input (One-hot Encoding,)

Conv(32, 1, 1) Conv(32, 1, 1)

ResBlock(32, 8)

ResBlock(32, 8)

ResBlock(32, 8)

ResBlock(32, 8)

Conv(32, 1, 1)

Add()

Dense(100) (Z Mean) Dense(100) (Z Log-var)

Table S6. VAE Encoder ResBlock. Related to STAR Methods. Conv(F, W, S) denotes a

convolutional layer with F filters of width W, with stride S. The input tensor is sent directly to

the addition (merge) layer along the right path of the graph.

ResBlock(F, W)

Inputs:
Sequence Tensor ()

BatchNorm()
ReLU()
Conv(F, W, 1)

No Operation (Pass through)

BatchNorm()
ReLU()
Conv(F, W, 1)

Add()

19

Table S7. DEN Generator Architecture. Related to STAR Methods. Deconv(F, W, S) and

Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of width W,

with stride S. Dense(N) denotes a fully connected layer with N neurons. Reshape(L, C)

reshapes the tensor into a 1-dimensional signal of length L with C channels.

Generator

Inputs:
Latent Seed ()

Dense(8064)

Reshape(21, 384)

Deconv(256, 7, 2)
BatchNorm()
ReLU()

Deconv(192, 8, 2)
BatchNorm()
ReLU()

Deconv(128, 7, 2)
BatchNorm()
ReLU()

Conv(128, 8, 1)
BatchNorm()
ReLU()

Conv(64, 8, 1)
BatchNorm()
ReLU()

Conv(4, 8, 1)

20

Table S8. Inverse Regression DEN Architecture. Related to STAR Methods. Deconv(F,

W, S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters

of width W, with stride S. Dense(N) denotes a fully connected layer with N neurons.

Reshape(L, C) reshapes the tensor into a 1-dimensional signal of length L with C channels.

We store the logit embedding as variable T and reuse it as input to every layer (T is

concatenated to the channel dimension and replicated across spatial positions).

Generator

Inputs:

Latent Seed () Target Logit ()

No Operation (Pass through) Dense(256)
ReLU()

Dense(100)
Tanh()
(Store as Tensor Variable T)

Concatenate()

Dense(8064)

Reshape(21, 384) Reuse Tensor Variable T
Broadcast to Compatible Shape

Concatenate()

Deconv(256, 7, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable T
Broadcast to Compatible Shape

Concatenate()

Deconv(192, 8, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable T
Broadcast to Compatible Shape

Concatenate()

Deconv(128, 7, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable T
Broadcast to Compatible Shape

Concatenate()

Conv(128, 8, 1)
BatchNorm()
ReLU()

Reuse Tensor Variable T
Broadcast to Compatible Shape

Concatenate()

Conv(64, 8, 1) Reuse Tensor Variable T

21

BatchNorm()
ReLU()

Broadcast to Compatible Shape

Concatenate()

Conv(4, 8, 1)

22

Table S9. Class-conditional DEN Architecture. Related to STAR Methods. Deconv(F, W,

S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of

width W, with stride S. Dense(N) denotes a fully connected layer with N neurons. Reshape(L,

C) reshapes the tensor into a 1-dimensional signal of length L with C channels. We store the

class embedding as variable C and reuse it as input to every layer (C is concatenated to the

channel dimension and replicated across spatial positions).

Generator

Inputs:

Latent Seed () Target Cut Position

(1-Hot Encoding of classes, ,
Store as Tensor Variable C)

Concatenate()

Dense(8064)

Reshape(21, 384) Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Deconv(256, 7, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Deconv(192, 8, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Deconv(128, 7, 2)
BatchNorm()
ReLU()

Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Conv(128, 8, 1)
BatchNorm()
ReLU()

Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Conv(64, 8, 1)
BatchNorm()
ReLU()

Reuse Tensor Variable C
Broadcast to Compatible Shape

Concatenate()

Conv(4, 8, 1)

23

Table S10. Protein Design DEN Architecture. Related to STAR Methods. Deconv(F, W,

S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of

width W, with stride S. Dense(N) denotes a fully connected layer with N neurons. LSTM(N)

denotes an LSTM layer with N Units. Reshape(L, C) reshapes the tensor into a 1-dimensional

signal of length L with C channels.

Generator

Inputs:
Latent Seed ()

Dense(12288)

Reshape(32, 384)

Deconv(256, 8, 2)
BatchNorm()
ReLU()

Deconv(192, 8, 2)
BatchNorm()
ReLU()

Deconv(128, 8, 2)
BatchNorm()
ReLU()

LSTM(20)

BatchNorm()
Conv(20, 1, 1)

24

Table S11. Splicing CNN Predictor Architecture. Related to STAR Methods. Conv(F, W,

S) denotes a convolutional layer with F filters of width W, with stride S. MaxPool(P) denotes a

max pooling layer with a pool size of P. Dense(N) denotes a fully connected layer with N

neurons. Dropout(R) denotes a dropout layer with a drop rate of R.

Predictor

Inputs:

Sequence Input A

(1-Hot Encoding,)

Sequence Input B

(1-Hot Encoding,)

Conv(96, 8, 1)
ReLU()

Conv(96, 8, 1)
ReLU()

MaxPool(2) MaxPool(2)

Conv(128, 6, 1)
ReLU()

Conv(128, 6, 1)
ReLU()

Concatenate()

Dense(256)
ReLU()
Dropout(0.2)

Dense(4)
Sigmoid()

Table S12. Splicing Hexamer Regression Predictor Architecture. Related to STAR

Methods. Conv(F, W, S) denotes a convolutional layer with F filters of width W, with stride S.

Dense(N) denotes a fully connected layer with N neurons.

Predictor

Inputs:

Sequence Input A

(1-Hot Encoding,)

Sequence Input B

(1-Hot Encoding,)

Conv(4096, 6, 1)
ReLU()
Sum() (Across positions)

Conv(4096, 6, 1)
ReLU()
Sum() (Across positions)

Concatenate()

Dense(4)
Sigmoid()

