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Supplemental Information 

For the paper “A generative neural network for maximizing fitness and diversity of 

synthetic DNA and protein sequences”. 

 

Supplemental Figures 

 

 
 

Figure S1. Diversity Cost Functions. Related to Figure 1. (A) Sequence similarity cost 

function: The cosine similarity penalty is applied directly on the one-hot representation of the 

generated sequence pair (  and ). The sequence pair was produced by the generator given 

two input vectors (  and ) as seeds. (B) Multiple offsets are considered when calculating 

the cosine similarity between one-hot sequences  and . For a given offset,  and  are 

multiplied elementwise, aggregated and normalized by the sequence length. Green squares 

indicate matching nucleotides between  and  (which contributes to the similarity). The 

worst-case (highest) value across all considered offsets is chosen as the cosine similarity. (C) 

Latent similarity cost function: The cosine similarity penalty is applied on the latent feature 

vectors (  and ) produced by the activations of one of the fully connected layers within the 

predictor, when running the model on the generated sequence patterns  and . (D) Vectors 

 and  are multiplied elementwise and summed. The sum is normalized by the L2-norm of 

 multiplied by the L2-norm of , resulting in a cosine similarity metric. 
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Figure S2. Generator and Predictor Architectures, Generation Examples, Training 

Curves and Latent Diversity Costs. Related to Figure 2. (A) Left: The APA predictor. 

Convolutional, pooling, dropout and dense layers transform the one-hot coded input sequence 

into an APA isoform proportion prediction. Right: Predicted vs. observed isoform log odds on 

the test set of (Bogard et al., 2019), R2 = 0.85, n = 80,212. (B) The generator follows a typical 

DC-GAN architecture. Dense and (de-)convolutional layers transform the input seed vector 

into a sequence PWM of nucleotide log probabilities. (C) The one-hot sequence outputted by 

the generator is passed as input to the APA fitness predictor, which in turn outputs an isoform 

proportion prediction. This prediction is used in a symmetric KL-divergence loss to fit the 

generator to a fixed target isoform proportion. (D) Example sequences generated by four of 

the five deep exploration network instances evaluated in Figure 2B: The 25%, 50%, 75% and 

100% (‘Max’) generators. (E) Example sequences generated by the 100%-target (‘Max’) APA 

isoform DEN, using four different random seeds as input to the generator. (F) DENs were 

validated against real RNA-Seq measurements using a nearest neighbor approximation. Five 

new generators were trained to produce polyA signals for the APA isoform targets 5%, 25%, 

50%, 75%, 100% (‘Max’), but this time with a shorter (60 nt) freely tunable sequence so as to 

reduce “curse of dimensionality”-effects in the nearest neighbor search. The first four DENs 

were trained with 30% allowable sequence similarity margin. The Max-target DEN was trained 

with 50% similarity margin. The subset of measured APA sequences from (Bogard et al., 2019) 

with a TOMM5 3’ UTR template (which only has 60 nt of randomized sequence) was collected 

(n = 125,949) and the first dense layer activations predicted by APARENT were used as 

features when storing the sequences in a nearest neighbor database. Next, 1,000 sequences 

were generated from each of the five DENs. The 50 nearest neighbors from the measured 

dataset were looked up for each of the 1,000 generated sequences, and the mean measured 

isoform proportion of those 50 neighbors were used as the estimate for each generated 

sequence. (Top) Measured mean isoform proportions (from RNA-Seq data) for the 50 nearest 

neighbors of each of the generated sequences (n = 1,000). Mean and Std dev of isoform 

proportions: (Target 5%) 6.00% +- 3.03%, (Target 25%) 25.1% +- 6.95%, (Target 50%) 53.2% 

+- 7.05%, (Target 75%) 73.7% +- 7.18%, (Target Max) 88.05% +- 0.05%. (Bottom) Sequence 

diversity for each of the five generators, illustrated by sampling 20 sequences per 

target/generator and plotting the nucleotides on a 2-dimensional pixel grid. The first four target-

isoform generators have 0% duplication rate at 100,000 sampled sequences, and the 100%-

target (‘Max’) generator has a 0.1% duplication rate at 100,000 samples. Hexamer entropy 

ranged between 7.89 and 9.00 bits depending on the generator (of 12 bits max). (G) Example 

sequences generated by the five DENs trained in Figure S2F. (H) Evaluation of three different 

sequence pattern representations: (1) Sampling a number of discrete one-hot-coded patterns 

from the generated PWM (1 or 10 samples) and using them as input to the predictor (gradients 

are propagated by a softmax straight-through gradient estimator), (2) Passing the softmax-

relaxed PWM directly as input or (3) passing both representations as input to the predictor and 

walking down the average gradient. The methods were evaluated by training a DEN to 

generate maximally used (100%-target) polyA signals with a 50% sequence similarity margin, 

and tracking the predicted median fitness score (isoform log odds) and median normalized 

sequence edit distance across the first 5,000 weight updates. The metrics were computed on 

a random sample of 160 generator seeds per weight update (step). Note that, regardless of 

input representation, the metrics were always computed using the consensus one-hot-coded 

pattern extracted from the generated PWMs (guaranteeing well-formed input to the predictor). 

Reported are the median curves of five independent runs. (Left curves) The results of training 

the DEN without any entropy penalty. (Right curves) The results of training when enforcing an 
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entropy penalty on the generated PWM, with a target mean nucleotide conservation of 1.95 

bits. (I) A comparison of the Max-target APA isoform DEN when trained with two different 

diversity costs: In one setting (black violin), the DEN was trained with the sequence cosine 

similarity penalty (see Figure S1A-B) with an allowable margin of 0.6 (allowing 60% of 

nucleotides to be identical without incurring cost). In the second setting (white violin), the DEN 

was trained with the latent cosine similarity penalty (see Figure S1C-D) with an allowable 

margin of 0.7 (allowing a 70% cosine similarity without incurring cost). The two DENs were 

used to generate 4,096 sequences each. Shown are the predicted fitness scores (isoform log 

odds), pairwise L1-distances of latent feature vectors from the penalized latent space, 

normalized sequence edit distances, and pairwise L1-distances in an independently trained 

APA variational autoencoder (see STAR methods for details on how the autoencoder is 

trained). 
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Figure S3. Detailed Comparison of Generative Models. Related to Figure 3. (A) Replicate 

analysis of Figure 2C, using the earth mover fitness cost instead of the KL-divergence cost to 

maximize APA isoform abundance. The Max-target APA isoform DEN was retrained three 

times, (1) with a low sequence diversity cost (left; cost coefficient = 0.05, allowable margin = 

0.95), (2) with a medium-high diversity cost (middle; cost coefficient = 5.0, allowable margin = 

0.5) and (3) with a high diversity cost (right; cost coefficient = 5.0, allowable margin = 0.3). 

(Top) Predicted isoform proportions for 4,096 generated sequences per generator instance. 

(Bottom) Sequence diversity illustrated by sampling 100 sequences and plotting them on a 2D 

pixel grid where rows denote sequences and columns denote nucleotide position. Low 

diversity penalty (left): Mean predicted isoform log odds = 6.67, 99.9% duplication rate at 

100,000 sampled sequences. Medium penalty (middle): Mean predicted isoform log odds = 

12.0, 0.4% duplication rate at 100,000 samples. High penalty (right): Mean predicted isoform 

log odds = 8.95, 0% duplication rate at 100,000 samples. (B) Replicate analysis of Figure 2D, 

using the earth mover fitness cost to maximize APA isoform abundance. The diversity cost 

coefficient was fixed at a high value (5.0) and the Max-target isoform DEN was retrained for 

different values of the allowable similarity margin (the fraction of nucleotides allowed to be 

identical without incurring cost; X-axis depicts 1 - fraction). Plotted are the 50th and 99th 

percentile of predicted fitness scores (isoform log odds) and pairwise normalized edit distance 

for 4,096 generated sequences. (C) Benchmark comparison of 6 design methods for designing 

sequences with maximal APA isoform abundance: Generative Adversarial Networks (GAN), 

Feedback-GAN (FB-GAN; Gupta et al., 2019), Activation-maximization of GAN (AM-GAN; 

Killoran et al., 2017), PWM Gradient Ascent, Simulated Annealing and Deep Exploration 

Networks (DEN). Left: (Top) Predicted fitness score distribution (proximal isoform log odds) 

for a sample of 4,096 sequences per design method (higher is better). (Bottom) Normalized 

pairwise sequence edit distances (higher is better). Right: (Top) Trajectories of the 80th 

percentile of generated fitness scores for a sample of 960 sequences per algorithm and step. 

The X-axis shows the total number of sequences sampled during optimization (the sequence 

budget) in order to design 4,096 sequences. (Bottom) Trajectories of the 50th percentile of 

normalized sequence edit distances for a sample of 960 sequences per algorithm and step. 

Multiple configurations were tested for many of the methods. GAN: The GAN (Wasserstein-

GAN with Gradient Penalty) was trained either on a random subsample of the APA MPRA 

data (“Unif data”), or on a subset of high-fitness sequences with measured proximal isoform 

proportions above 0.95 (“> .95 prox”). After training, we either directly sampled 4,096 

sequences from the GAN for the benchmark (“1x”), or we sampled 40,960 sequences and 

selected the top 10% sequences with highest fitness (“10x”). FB-GAN: The FB-GAN was 

trained for either 50, 100 or 150 epochs, using a random subsample of 2,000 sequences from 

the APA MPRA as initial training data. The feedback threshold was either set to a fixed 

proportion of 0.8 throughout training (“thr .8”), or we adaptively raised the threshold to the 50th 

percentile of predicted isoform proportions in the newly generated dataset at the end of every 

epoch (“thr qt .5”). AM-GAN: The GAN trained on the uniform subsample of APA sequences 

were used for activation maximization. The latent generator seed was initialized and optimized 

by gradient ascent for 1,000 iterations. This procedure was repeated 4,096 times, resulting in 

4,096 optimized sequences. PWM Gradient Ascent: A randomly initialized softmax sequence 

relaxation (PWM) was optimized for 50,000 iterations by gradient ascent. We either optimized 

just one PWM and sampled 4,096 sequences from it (“Single”), or we optimized 4,096 PWMs 

independently and selected the consensus sequences (“Multi”). Simulated Annealing: Single 

nucleotide substitutions were used to traverse sequence space, with the Metropolis 

acceptance criterion. The method started with a randomly initialized sequence and optimized 
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for 1,000 iterations. This procedure was repeated to optimize 4,096 sequences. DEN: The 

DEN was trained and evaluated for a range of different diversity cost configurations, using 

either the sequence similarity penalty with an allowable margin of 50%, 40% or 30%, or using 

a combination of the sequence and latent similarity penalties with allowable margins of 50% 

or 30% for the sequence penalty and 70% for the latent penalty. See STAR methods for all 

implementation details. (D) Selection of 100 optimization trajectories for each of the per-

sequence optimization methods. Each trajectory represents a single sequence being 

optimized by the respective algorithm. The Y-axis displays predicted fitness scores (proximal 

isoform log odds) and the X-axis displays the iteration count. (E) Benchmark comparison of 6 

design methods for designing sequences with maximal transcriptional activity as predicted by 

MPRA-DragoNN (Movva et al., 2019): Generative Adversarial Networks (GAN), Feedback-

GAN (FB-GAN; Gupta et al., 2019), Activation-maximization of GAN (AM-GAN; Killoran et al., 

2017), PWM Gradient Ascent, Simulated Annealing and Deep Exploration Networks (DEN). 

Left: (Top) Predicted fitness score distribution (log fold change of RNA to DNA count) for a 

sample of 4,096 sequences per design method (higher is better). (Bottom) Normalized 

pairwise sequence edit distances (higher is better). Right: (Top) Trajectories of the 80th 

percentile of generated fitness scores for a sample of 960 sequences per algorithm and step. 

The X-axis shows the total number of sequences sampled during optimization (the sequence 

budget) in order to design 4,096 sequences. (Bottom) Trajectories of the 50th percentile of 

normalized edit distances for a sample of 960 sequences per algorithm and step. Multiple 

configurations were tested for several of the methods. See Figure S3C for descriptions of 

these configurations. For this design task, we trained FB-GAN with adaptive feedback 

thresholds of either the 60th percentile (“thr qt .6”) or 80th percentile (“thr qt .8”) of the predicted 

fitness scores in the newly generated dataset at the end of every epoch. The GAN biased for 

high-fitness was trained on 10,000 sequences randomly sampled from the 50,000 sequences 

of the gene enhancer MPRA (Ernst et al., 2016) with highest measured fitnes score (“Top 

50K”). (F) Selection of 100 optimization trajectories for each of the per-sequence optimization 

methods. Each trajectory represents a single sequence being optimized by the respective 

algorithm. The Y-axis displays predicted fitness scores (log fold change of RNA to DNA count) 

and the X-axis displays the iteration count. (G) Trajectories of the cumulative number of 

iterations (total sequence budget) required by DEN and Simulated Annealing to design 1,000, 

100,000 and 10,000,000 sequences. Each trajectory displays the median predicted fitness 

score (Y-axis) for a sample of 960 sequences when the method is allowed a total sequence 

budget as specified by the X-axis. Two versions of the DEN were evaluated: One version 

where 10 one-hot patterns were sampled from each generated PWM during training to 

estimate the straight-through gradient (solid lines), and another version where only a single 

sample was used for the straight-through approximation (dashed lines). This results in a 10x 

lower sequence budget. 
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Figure   .  ’  leavage  redictor  odel and Example Sequences. Related to Figure 4. 

(A) The 3’ cleavage predictor architecture. A set of convolutional layers, pooling layers, 

dropout layers and dense layers transform the one-hot-coded input sequence into a 3’ 

cleavage distribution, predicting % Cleavage at nucleotide resolution. (B) Mean cut position 

prediction accuracy of APARENT. Shown are the predicted and measured mean cut positions 

of 5,854 test set sequences from (Bogard et al., 2019). Predicted vs. measured mean cut 

position R2 = 0.76. (C) A target cut position (class index) is passed as input to the generator. 

The class index is transformed by a trainable embedding layer and concatenated onto every 

input tensor of every layer, enabling conditional generation. (D) Example sequences 

generated by the 3’ cleavage DEN, using four different random seeds and the (+15 cut 

position)-class index as input to the generator. (E) Generator sequence diversity evaluated 

across all 9 target position classes, illustrated by randomly sampling 20 sequences per target 

position, and plotting them in a grid where rows denote sequences and columns denote 

nucleotide position. 0% duplication rate at 100,000 sampled sequences. Hexamer entropy = 

9.07 of 12 bits. (F) Predicted cleavage log odds of 1,000 sampled sequences per target 

cleavage position. Mean and Standard deviation of cleavage log odds at each target cut 

position, in order: 2.10 (+- 0.34), 3.17 (+- 0.50), 3.54 (+- 0.47), 3.03 (+- 0.46), 2.93 (+- 0.38), 

2.64 (+- 0.39), 1.73 (+- 0.32), 1.61 (+- 0.29), 1.31 (+- 0.24). 
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Figure S5. Likelihood-bounded DENs, APA Analysis and Protein Engineering Details. 

Related to Figure 5. (A) The variational inference pipeline: The sequence is encoded into 

mean and- log-variance vectors. K latent vectors are sampled and decoded to estimate the 

VAE likelihood. Gradients are backpropagated through the sequence sample using a straight-

through estimator. (B) The Likelihood-bounded DEN (KL-DEN) is tasked with designing 

polyadenylation signals which maximize the isoform proportion predicted by APARENT (See 

Figure 2). To show that regularization based on variational inference is tunable, we trained a 

VAE on 11,278 sequences from the APA MPRA (Bogard et al., 2019), selecting only weak 

examples with a measured proportion < 0.15. We hypothesized that the more we enforce the 

marginal likelihood of the VAE, the less fit the generated sequences can be, as they get 

pushed toward the low-fitness region of design space encoded by the VAE. We tested this by 

training three different KL-DENs: Each respective DEN was trained to generate maximally fit 

sequences that were 100-fold (log10 = -2; white histogram), 1-fold (log10 = 0; light gray 

histogram) and 1/100-fold (log10 = 2; dark gray histogram) more / less likely than the mean 

test set VAE likelihood (orange dashed line). 1,000 sequences were generated per likelihood 

ratio. Indeed, as the allowable likelihood ratio was lowered from 100 to 1 to 1/100 (white to 

light gray to gray), each DEN re-centered its generated sequence distribution to its least 

allowable likelihood due to the fitness objective (top histogram). At the same time, the 

predicted fitness distribution monotonically increased as the likelihood margin was lowered 

(bottom histogram). At the extreme, when optimizing only for fitness (no likelihood penalty), 

the generated sequences were nearly 1000-fold less likely than the low-fitness VAE test set 

sequences (orange histogram; < 0.15 isoform proportion). For reference, we also show the 

distribution of high-fitness VAE test sequences (green histogram; > 0.8 isoform proportion). 

(C) Example sequences for different likelihood ratio margins generated by the DENs from 

S6B. Shown are the sequences and their predicted fitness scores (isoform log odds). (D) We 

hypothesized that the gradual decrease in fitness observed in Figure S5B was only due to the 

low-fitness data distribution used for training the VAE; enforcing a large likelihood should not 

hurt the generated fitness distribution had the VAE been trained on high-fitness data. To test 

this, we re-trained the VAE on 11,055 sequences with proportions > 0.8 (green histogram). 

When optimizing only for fitness with no likelihood penalty (black histogram), the generated 

sequences (n = 1,000) became nearly 100-fold more likely than the test data evaluated on the 

high-fitness VAE. Compare to Figure S5B, where the sequences optimized only for fitness 

were 1000-fold less likely than the test data using the low-fitness VAE. (E) The oracle predictor 

architecture for the GFP design task, which is identical to the one used in (Brookes et al., 

2019). Two fully connected layers with ELU activations in the hidden layer transform the 20-

residue protein sequence one-hot pattern into two values: A mean normalized brightness 

prediction and a log-variance prediction. (F) The generator architecture used to train the GFP 

DENs. The network consists of a dense layer and three deconvolutional layers (same as 

previous generator architecture), followed by a recurrent LSTM layer (new for the GFP design 

task). (G) Predicted oracle fitness score distribution per generative algorithm for the GFP 

design task (see also Figure 5D, Left). n = 4,000 / algorithm. (H) Predicted “ground truth” score 

distributions (using the GP regression model) per generative algorithm (see also Figure 5D, 

Middle). n = 4,000 / algorithm. (I) Sequence edit distance distributions (see also Figure 5D, 

Right). n = 4,000 / algorithm. (J) The regular DEN (without VAE-likelihood penalty, similarity 

margin = 0.5; orange) was compared against the likelihood-bounded DEN (similarity margin = 

0.95; blue), CbAS (green), FB-VAE (red) and CEM-PI (purple) on the GFP design task. Shown 

are the 80th percentile of oracle (dashed line) and ground truth (solid line) predicted fitness 

scores as a function of training epochs. The values (X-axis) are sorted on oracle scores. 
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Figure S6. Organism-Specific Splicing Predictor Models and Sequence Generation 

Validation. Related to Figure 6. (A) The neural net predictor architecture. Convolutional, 

pooling, dropout and dense layers transform an input sequence into cell line-specific splice 

donor usage (PSI) predictions. (B) Predicted vs. measured PSI on a held-out test set of the 

splicing MPRA (n = 13,232). Predictions were made using a convolutional neural net with cell 

line-specific PSI outputs. (C) Top: Comparison of measured PSIs between pairs of cell 

lines/organisms in the splicing MPRA test set (n = 13,232). Measured PSIs are displayed on 

the X/Y axes, and color intensity indicates the neural network-predicted dPSIs (blue/red = 

more/less PSI in cell line X than Y). Bottom: Measured vs. predicted dPSIs for each cell line 

pair. (D) The max-differential splicing DEN was validated against real RNA-Seq 

measurements of the measured splicing MPRA using a nearest neighbor approximation. 

Sequences of the splicing MPRA with a minimum read count of 50 (n = 45,834) were 

transformed into 256-dimensional feature vectors, using the fitness predictor up until the first 

dense layer as a feature transform, and then stored in a nearest neighbor database. The 

feature transform reduces “curse of dimensionality”-effects in the nearest neighbor search and 

provides a degree of local motif invariance. Next, 1,000 sequences sampled from the DEN 

were transformed into 256-dimensional feature vectors according to the predictor and looked 

up in the nearest neighbor database. The measured PSIs of the 10 nearest neighbors per 

generated sequence were used to estimate average PSIs. Shown are the measured and NN-

inferred MCF7-CHO dPSIs of the MPRA and generated sequences respectively. Mean MPRA 

dPSI = 0.07 (+- 0.10). Mean dPSI of generated sequences = 0.38 (+- 0.06). (E) Left: A 

differentiable relaxation of a 6-mer logistic regression model. A convolutional layer with 4096 

filters, each encoding a distinct 6-mer (filter weight = 6, bias = -5), result in 4096 activation 

maps which after a summation over positions become hexamer counts. The counts are 

combined with cell line-specific weights and squashed through a sigmoid. Right: Predicted vs. 

measured PSI on a held-out test set of the splicing MPRA (n = 13,232). (F) Evaluation of a 

deep exploration network, using a hexamer regression predictor, when tasked with generating 

500 maximally differentially spliced sequences between cell lines MCF7 and CHO. (Left) PSI 

as predicted by the regression model on all MPRA test set sequences in MCF7 and CHO. 

Color intensity indicates measured dPSI. Purple dots indicate the 500 generated sequences. 

(Inline) Measured vs. Predicted dPSI R2 on test set = 0.27. (Right) Selection of maximally 

differentially spliced generated sequences. The generator has learned to exploit the additive 

independence of hexamer scores, by populating the sequences with a very differential motif, 

GCATGC (RBFOX1 binding site). (G) Both the neural network and hexamer regression 

splicing models were used as fitness predictors, and the DEN was retrained to maximize 

differential splicing between MCF7 and CHO according to the average response of both 

predictors. The generator was used to sample 1,000 sequences, and their average predicted 

PSIs (purple) were plotted alongside the predicted PSIs of the splicing MPRA test set (color 

intensity indicates measured dPSI). Mean predicted dPSI of test sequences = 0.08 (+- 0.07). 

Mean predicted dPSI of generated sequences = 0.54 (+- 0.04). (Right) The top four 

differentially spliced sequences generated by the DEN are shown with the neural net (CNN) 

and hexamer regression (LR) dPSI predictions. Shown above each sequence are the hexamer 

weights. 
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Figure S7. An Inverse Regression Model of APA. Related to STAR Methods. (A) The 

Inverse Regression DEN architecture: Target isoform proportions are randomly sampled and 

passed to both the generator and objective function. The generator is optimized to output 

sequences which are predicted to conform to the sampled target proportions. (B) A target 

isoform logit is passed as input to the generator in addition to the random seed. The logit is 

transformed into a high-dimensional, trainable embedding. The embedding is concatenated to 

the input tensor of every layer, enabling conditional learning and generation. See STAR 

methods for details on the implementation. (C) The APA fitness predictor architecture. A set 

of convolutional layers, pooling layers, dropout layers and dense layers transform the one-hot-

coded input sequence into an APA isoform proportion. The predicted logit is computed and 

passed to the fitness cost. (D) The DEN was trained to generate polyadenylation signals 

according to randomly sampled target isoform logits in the uniform range -4 to 6, with 35% 

sequence similarity margin. Left: 10,000 sequences were sampled from the trained generator 

and their predicted isoform log odds (Y-axis) were plotted against the corresponding supplied 

targets (X-axis). The predicted isoform log odds were highly correlated with their targets 

(pearson r = 0.97), and the generator had a sequence duplication rate of 0% at 100,000 

samples, indicating high diversity. Right: The sequences were projected in two-dimensional 

space using tSNE and colored based on their predicted isoform log odds. We find only a single 

tSNE cluster, where the sequences smoothly transition from one edge to the other based on 

the isoform log odds. 
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Supplemental Tables 

 

Table S1. APA qPCR Primer Sequences. Related to STAR Methods. Table containing the 

forward (qPCR_FWD) and reverse (qPCR_REV_upstream, qPCR_REV_dnstream_A - 

qPCR_REV_dnstream_D) primer sequences used to amplify each APA reporter. 

 

Primer ID Reporter Sequence 

qPCR_FWD For all reporters. ACAACGAGGA 
CTACACCATC 
GTGGAACAGT 
AC 

qPCR_REV_upstream For all reporters. 
Amplifies proximal and distal isoforms. 

GGATGCGAGT 
AATGAATGCC 
ATAGAAAGAG 
CG 

qPCR_REV_dnstream_A Amplifies the distal isoform of DEN-PAS 1 
vs. Gradient Ascent-PAS 1 and DEN-PAS 
2 vs. Gradient Ascent-PAS 1. 

AGGCTTAATT 
GGCTGAAAAT 
AAATGACAC 

qPCR_REV_dnstream_B Amplifies the distal isoform of Gradient-
Ascent PAS 1 vs. DEN-PAS 1 and 
Gradient Ascent-PAS 2 vs. DEN-PAS 1. 

CAGGCTTAAT 
TGGCTGAATA 
AAAAAACACA 
CAC 

qPCR_REV_dnstream_C Amplifies the distal isoform of DEN-PAS 1 
vs. Gradient Ascent-PAS 2 and DEN-PAS 
2 vs. Gradient Ascent-PAS 2. 

GGCTTAATTG 
GCTGAAAAAA 
TGAAGAC 

qPCR_REV_dnstream_D Amplifies the distal isoform of Gradient-
Ascent PAS 1 vs. DEN-PAS 2 and 
Gradient-Ascent PAS 2 vs. DEN-PAS 2. 

TACAGGCTTA 
ATTGGCTGAA 
AAAAAAGACG 
AC 
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Table S2. APARENT Predictor Architecture. Related to STAR Methods. Note: Conv(F, W, 

S) denotes a convolutional layer with F filters of width W, with stride S. MaxPool(P) denotes a 

max pooling layer with a pool size of P. Dense(N) denotes a fully connected layer with N 

neurons. Dropout(R) denotes a dropout layer with a drop rate of R. 

 

Predictor 

Inputs: 

Sequence Input (One-hot Encoding, ) 

Conv(96, 8, 1) 
ReLU() 

MaxPool(2) 

Conv(128, 6, 1) 
ReLU() 

Dense(256) 
ReLU() 
Dropout(0.2) 

Dense(1) 
Sigmoid() 

Dense(206) 
Softmax() 
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Table S3. VAE Decoder Architecture. Related to STAR Methods. Conv(F, W, S) denotes 

a convolutional layer with F filters of width W, with stride S. Dense(N) denotes a fully connected 

layer with N neurons. ResBlock(F, W, S) denotes a residual block with F filters of width W, 

with stride S. 

 

Decoder 

Inputs: 
Latent Seed ( ) 

Dense(3072) 

Reshape(8, 384) 

ResBlock(384, 3, 2) 

ResBlock(256, 3, 2) 

ResBlock(128, 3, 2) 

ResBlock(64, 3, 2) 

ResBlock(32, 3, 1) 

Conv(4, 1, 1) 

 
Table S4. VAE Decoder ResBlock. Related to STAR Methods. Deconv(F, W, S) and 

Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of width W, 

with stride S. 

 

ResBlock(F, W, S) 

Inputs: 
Sequence Tensor ( ) 

BatchNorm() 
ReLU() 
Deconv(F, W, S) 

Deconv(F, W, S) 

BatchNorm() 
ReLU() 
Conv(F, W, 1) 

Add() 
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Table S5. VAE Encoder Architecture. Related to STAR Methods. Conv(F, W, S) denotes 

a convolutional layer with F filters of width W, with stride S. Dense(N) denotes a fully connected 

layer with N neurons. ResBlock(F, W) denotes a residual block with F filters of width W. 

 

Encoder 

Inputs: 

Sequence Input (One-hot Encoding, ) 

Conv(32, 1, 1) Conv(32, 1, 1) 

ResBlock(32, 8) 

ResBlock(32, 8) 

ResBlock(32, 8) 

ResBlock(32, 8) 

Conv(32, 1, 1) 

Add() 

Dense(100) (Z Mean) Dense(100) (Z Log-var) 

 

Table S6. VAE Encoder ResBlock. Related to STAR Methods. Conv(F, W, S) denotes a 

convolutional layer with F filters of width W, with stride S. The input tensor is sent directly to 

the addition (merge) layer along the right path of the graph. 

 

ResBlock(F, W) 

Inputs: 
Sequence Tensor ( ) 

BatchNorm() 
ReLU() 
Conv(F, W, 1) 

No Operation (Pass through) 

BatchNorm() 
ReLU() 
Conv(F, W, 1) 

Add() 
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Table S7. DEN Generator Architecture. Related to STAR Methods. Deconv(F, W, S) and 

Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of width W, 

with stride S. Dense(N) denotes a fully connected layer with N neurons. Reshape(L, C) 

reshapes the tensor into a 1-dimensional signal of length L with C channels. 

 

Generator 

Inputs: 
Latent Seed ( ) 

Dense(8064) 

Reshape(21, 384) 

Deconv(256, 7, 2) 
BatchNorm() 
ReLU() 

Deconv(192, 8, 2) 
BatchNorm() 
ReLU() 

Deconv(128, 7, 2) 
BatchNorm() 
ReLU() 

Conv(128, 8, 1) 
BatchNorm() 
ReLU() 

Conv(64, 8, 1) 
BatchNorm() 
ReLU() 

Conv(4, 8, 1) 
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Table S8. Inverse Regression DEN Architecture. Related to STAR Methods. Deconv(F, 

W, S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters 

of width W, with stride S. Dense(N) denotes a fully connected layer with N neurons. 

Reshape(L, C) reshapes the tensor into a 1-dimensional signal of length L with C channels. 

We store the logit embedding as variable T and reuse it as input to every layer (T is 

concatenated to the channel dimension and replicated across spatial positions). 

 

Generator 

Inputs: 

Latent Seed ( ) Target Logit ( ) 

No Operation (Pass through) Dense(256) 
ReLU() 

Dense(100) 
Tanh() 
(Store as Tensor Variable T) 

Concatenate() 

Dense(8064) 

Reshape(21, 384) Reuse Tensor Variable T 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(256, 7, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable T 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(192, 8, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable T 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(128, 7, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable T 
Broadcast to Compatible Shape 

Concatenate() 

Conv(128, 8, 1) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable T 
Broadcast to Compatible Shape 

Concatenate() 

Conv(64, 8, 1) Reuse Tensor Variable T 
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BatchNorm() 
ReLU() 

Broadcast to Compatible Shape 

Concatenate() 

Conv(4, 8, 1)  
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Table S9. Class-conditional DEN Architecture. Related to STAR Methods. Deconv(F, W, 

S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of 

width W, with stride S. Dense(N) denotes a fully connected layer with N neurons. Reshape(L, 

C) reshapes the tensor into a 1-dimensional signal of length L with C channels. We store the 

class embedding as variable C and reuse it as input to every layer (C is concatenated to the 

channel dimension and replicated across spatial positions). 

 

Generator 

Inputs: 

Latent Seed ( ) Target Cut Position 

(1-Hot Encoding of  classes, , 
Store as Tensor Variable C) 

Concatenate() 

Dense(8064) 

Reshape(21, 384) Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(256, 7, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(192, 8, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Deconv(128, 7, 2) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Conv(128, 8, 1) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Conv(64, 8, 1) 
BatchNorm() 
ReLU() 

Reuse Tensor Variable C 
Broadcast to Compatible Shape 

Concatenate() 

Conv(4, 8, 1)  
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Table S10. Protein Design DEN Architecture. Related to STAR Methods. Deconv(F, W, 

S) and Conv(F, W, S) denote either a deconvolutional or convolutional layer with F filters of 

width W, with stride S. Dense(N) denotes a fully connected layer with N neurons. LSTM(N) 

denotes an LSTM layer with N Units. Reshape(L, C) reshapes the tensor into a 1-dimensional 

signal of length L with C channels. 

 

Generator 

Inputs: 
Latent Seed ( ) 

Dense(12288) 

Reshape(32, 384) 

Deconv(256, 8, 2) 
BatchNorm() 
ReLU() 

Deconv(192, 8, 2) 
BatchNorm() 
ReLU() 

Deconv(128, 8, 2) 
BatchNorm() 
ReLU() 

LSTM(20) 

BatchNorm() 
Conv(20, 1, 1) 
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Table S11. Splicing CNN Predictor Architecture. Related to STAR Methods. Conv(F, W, 

S) denotes a convolutional layer with F filters of width W, with stride S. MaxPool(P) denotes a 

max pooling layer with a pool size of P. Dense(N) denotes a fully connected layer with N 

neurons. Dropout(R) denotes a dropout layer with a drop rate of R. 

 

Predictor 

Inputs: 

Sequence Input A 

(1-Hot Encoding, ) 

Sequence Input B 

(1-Hot Encoding, ) 

Conv(96, 8, 1) 
ReLU() 

Conv(96, 8, 1) 
ReLU() 

MaxPool(2) MaxPool(2) 

Conv(128, 6, 1) 
ReLU() 

Conv(128, 6, 1) 
ReLU() 

Concatenate() 

Dense(256) 
ReLU() 
Dropout(0.2) 

 

Dense(4) 
Sigmoid() 

 

 

Table S12. Splicing Hexamer Regression Predictor Architecture. Related to STAR 

Methods. Conv(F, W, S) denotes a convolutional layer with F filters of width W, with stride S. 

Dense(N) denotes a fully connected layer with N neurons. 

 

Predictor 

Inputs: 

Sequence Input A 

(1-Hot Encoding, ) 

Sequence Input B 

(1-Hot Encoding, ) 

Conv(4096, 6, 1) 
ReLU() 
Sum() (Across positions) 

Conv(4096, 6, 1) 
ReLU() 
Sum() (Across positions) 

Concatenate() 

Dense(4) 
Sigmoid() 

 

 


