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Figure S1-S31 
 

 
Figure S1. The PFT induced interfacial assembly of Au NPs with different properties. The snapshots, SEM 
and TEM images of 2D Au NPs films formed with different synthesis approaches and surface properties. CTAC-
Au NPs (a, b, c, d) and SC-Au NPs (e, f, g, h). (h) Zeta potential distribution histogram of three parallel samples 
of CTAC-Au NPs (i) and SC-Au NPs (j). The scale bar in a, e is 1 cm, b, f is 100 nm, c, d, g, h is 50 nm, 
respectively. Photo credit: Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou 
Normal University. 
 
 



 
 

 

 
Figure S2. The influence of the concentration of Au NPs on interfacial assembly. (a-b) The photographs of 
Au NPs films with different NPs concentrations in a fixed container. The concentrations from I to VI are 0.49, 
4.9, 19.6, 49.0, 78.4 and 98.0 μg/mL, respectively. a: photo of solution before film formation; b: photos after 
hexane volatilization. (c) the SEM images of 2D Au NPs films with different concentration of Au NPs from I to 
VI are 0.49, 4.9, 19.6, 49.0, 78.4 and 98.0 μg/mL, respectively. Photo credit: Liping Song, College of Material, 
Chemistry and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S3. The linear curve of the UV-vis absorption intensity to the concentration of NPs. (a) UV-vis 
absorption spectra of Au NPs standard solutions with different concentrations: from I to VI, the concentrations 
are 0.49, 4.9, 9.8, 19.6, 49.0 and 96.0 μg/mL; (b) Linear correspondence diagram of absorbance and 
concentration of Au NPs with different concentrations. 
 
The NPs availability for film formation is calculated as follows: 
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in which η is the NPs availability (%), A0 is the UV-vis absorption intensity of Au NPs stock solution, A1 is the 
UV-vis absorption intensity of Au NPs aqueous solution after assembling. 



 
 

 

 
Figure S4. The influence of solvent types on assembling properties. The photographs of films formed by 
replacing ethanol with methanol and butyl alcohol (a), replacing hexane with toluene, dichloromethane as well 
as cyclohexane (b). The scale bar is 1 cm. The SEM images of Au NPs films obtained with different solvent: (c) 
methanol, (d) toluene, (e) dichloromethane, (f) cyclohexane. The scale bar is 500 nm and inset is 50 nm, 
respectively. (g) the Au NPs availability statistic of Au NPs for assembly with different solvent. (h) The wide 
UV-vis absorption of Au NPs after assembling with butyl alcohol. Photo credit: Liping Song, College of 
Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 
 
As the oil solvent, four requirements should be meet: (1) completely immiscible with water with low surface 

tension; (2) incompatible with PFT; (3) relatively small saturated vapor pressure; (4) environment friendly. As 

the “inducer” solvent, there are also three requirements should be meet to obtain unfirm and density film: (1) 

miscible with water, hexane and PFT, and the solubility relationship is water>hexane>PFT; (2) low dielectric 

constant solvent; (3) environment friendly. Although we have conducted the control solvent species experiment, 

we find there are very few solvents that meet these limitations and hexane and ethanol are more suitable for our 

interfacial assembly system. 



 
 

 

 
Figure S5. The influence of Vhexane: Vethanol on PFT induced interfacial assembly. (a) The photograph of Au 
NPs stock solution used for assembling; (b) The photographs of Au NPs films after assembling with different 
amounts of hexane and ethanol: (ⅰ) Hexane (10 mL); (ⅱ) Hexane: Ethanol=4:1; (ⅲ) Hexane: Ethanol=2:1; (ⅳ) 
Hexane: Ethanol=1:1; (ⅴ) Hexane: Ethanol=1:2; (ⅵ) Hexane: Ethanol=1:4; (ⅶ) Ethanol (10 mL). (c) The 
histogram of NPs availability for film formation of different amounts of hexane and ethanol. (d) the UV-vis 
spectra of aqueous solution after film formation: (ⅰ) Hexane (10 mL); (ⅱ) Hexane (8 mL): Ethanol (2 mL). Photo 
credit: Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 
 
 



 
 

 

 
Figure S6. The photograph of Au NPs assembled film with size up to 4.3-inch wafer. The photograph of Au 
NPs assembled film with size up to 4.3-inch wafer. The scale bar is 1 cm. Photo credit: Liping Song, College of 
Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S7. The SEM cross-sections of Au NPs monolayer films. The scale bar in a, b and inset pictures is 100 
nm and 50 nm, respectively.  

 



 
 

 

 
Figure S8. The influence of PFT concentration on interfacial assembly. The photographs of Au NPs water 
dispersion and Au NPs films with different concentration of PFT, the concentration of PFT from (a) to (f) is 100 
nM, 20 μM, 100 μM, 1 mM, 10 mM and 100 mM, respectively. The scale bar is 1 cm. Photo credit: Liping Song, 
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S9. The SEM images and NPs availability of Au NPs films obtained with different concentration 
of PFT. The SEM images of Au NPs assembled with different concentration of PFT, the concentration of PFT 
from a to f is 100 nM, 20 μM, 100 μM, 1 mM, 10 mM and 100 mM, respectively. The scale bar in a-f and inset 
pictures are 100 nm and 50 nm, respectively. The Au NPs availability for assembly with different concentration 
of PFT, from Ⅰ to Ⅶ is 0 nM, 100 nM, 20 μM, 100 μM, 1 mM, 10 mM and 100 mM, respectively. Photo credit: 
Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 



 
 

 

 
Figure S10. Schematic illustration of concentration effect of PFT on interfacial assembly structures (a-d). 
SEM image of Au NPs film obtained with huge excessive PFT. The scale bar is 100 nm. 
 
As shown in Figure S10, aggregations of NPs are likely to appear via interfacial assembly without PFT (a, f). 

Unlike traditional interfacial assembly achieved by ethanol injecting approach (>30 min) (15), the rapid mixing 

of ethanol with Au NPs without PFT results in uncontrollable decrease of NPs surface charge, thus lead to poor 

film uniformity. By increasing the amount of PFT, the aggregates significantly reduced and replaced by uniform 

NPs monolayers (b, c). This interfacial assembly is tailored by gradually increased hydrophobicity of NPs 

endowed by PFT. When the PFT amount exceed the critical value for an indefinite volume, it will benefit the 

process to obtaining uniform film with desired density (d), by strengthening the assembly speed and high 

hydrophobicity of NPs. When the amount of PFT is significant over the critical value, “metal droplet” seems to 

be likely to generate at the bottom of the container. Similar to the “metal droplet” reported by others (51), the 

phase separation of excessive PFT (“L” in Figure S10) and water account for this phenomenon. 



 
 

 

 
Figure S11. Intensity distribution of the UV-vis absorption of Au NPs monolayer films. 10 samples of Au 
NPs films were selected. Photo credit: Liping Song, College of Material, Chemistry and Chemical Engineering, 
Hangzhou Normal University. 
 



 
 

 

 
Figure S12. The outstanding NPs availability of PFT induced interfacial assembly. The real images of Au 
NPs stock solution (a), Au NPs solution after assembly without PFT (b) and Au NPs solution after assembly 
with PFT (c). Photo credit: Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou 
Normal University. 
 
 

 
Figure S13. Schematic diagram of possible assembly procedure and NPs films after assembling with other 
perfluorinated molecules without sulphydryl groups. (a) Schematic diagram of possible superfast assembly 
procedure of Au NPs induced by PFT at water-hexane interface: (Ⅰ) Au NPs stabilized in aqueous solution; (Ⅱ) 
Adding mixture solution of PFT in ethanol/hexane; (Ⅲ) the interaction between Au NPs and PFT; (Ⅳ) The 



 
 

 

moving of Au NPs to interface; (b-f) The comparation of Au NPs assemblies obtained by inducing different 
perfluorinated molecules. Photo credit: Liping Song, College of Material, Chemistry and Chemical Engineering, 
Hangzhou Normal University. 
 

Some similar perfluorinated molecules to PFT with different functional groups were induced to replace PFT 

for verifying the key role of PFT and Au-S interaction for assembly. Considering the relatively good solubility 

of hydrophobic thiol molecules in alkaline ethanol solution, the Au NPs assembly with alkaline PFT mixture 

solution presented obvious poor performance. More importantly, most of Au NPs can not be utilized for 

assembly at interface, as shown in Figure S12c. This result verified our conjecture that the poor insolubility of 

PFT in water/ethanol mixture solution play key roles for interfacial assembly. In addition, the poor interfacial 

performance of other perfluorinated molecules without -SH strongly confirmed the key role of Au-S interaction 

for assembly, as shown in Figure S12d-f. 

 

 
Figure S14. Raman spectrum of Au NPs films. Raman spectrum of different samples of pure silicon (curve a), 
Au NPs film without PFT (curve b) and 2D Au NPs film with PFT (curve c). 
 
 



 
 

 

 
Figure S15. The photographs of Fe3O4 and SiO2 nanoparticles films assembled at interface. The scale bar 
is 1 cm. Photo credit: Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou 
Normal University. 
 

 
Figure S16. The SEM images of assemblies of different materials.  The scale bar in (Ⅰ) and (Ⅱ) is 500 nm and 
50 nm, respectively. 
 
 



 
 

 

 
Figure S17. The surface charge properties of different materials for interfacial assembly. 
 

 
Figure S18. The photographs of PS and Au NPs@PANI films obtained with different perfluorinated 
molecules. (a, c) PFT; (b, d) perfluoro-1-decanol. Photo credit: Liping Song, College of Material, Chemistry 
and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S19. SEM images and contact angle photograph of Au NPs multilayer structures. SEM images (a-
b) and contact angle photograph (c) of Au NPs multilayer structures acquired by repeated transferring Au NPs 
monolayer to the same substrate. The scale bar in d, e is 100 nm, 50 nm, respectively. 
 



 
 

 

 
Figure S20. Schematic diagram of printing process and mechanism. 

 



 
 

 

 
Figure S21. Printing micropatterned Au NPs films on glass with different press pressure. The press 
pressure in a-i is 0, 0.01, 0.02, 0.05. 0.1, 0.2, 0.5, 1, 2, 5 N, respectively.   
 



 
 

 

 
Figure S22. The diagram for calculation of transferring efficiency. 
 
The transferring efficiency (η) was calculated as follows: 

𝜂 %
𝑁 𝑆 𝑆 𝑆 𝑆 ⋯ 𝑆

𝑁 𝑆
100 

In which S0 is the unit area for definite topography, S1, S2, …, Sn is the defect area that failed to be transferred, 

N is the number of statistical units.  

 



 
 

 

 
Figure S23. Microphotographs of printing micropatterned Au NPs films with different spacing: From 

PDMS (a, c) on glass (b, d). The scale bars are 10 μm.  
 

 

Figure S24. The schematic diagram of ethanol bridged the Au NPs films with substrate and the 
photographs of Au NPs films on quartz glass after removing ethanol. Photo credit: Liping Song, College of 
Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 



 
 

 

 
Figure S25. Printing micropatterned Au NPs films on silicon wafer: with (a-c)/without (b-d) plasma 
treatment. 
 

 
Figure S26. The Au NPs films obtained by transferring with different directions. Schematic diagram of 
different transferring direction for Au NPs monolayer films: (a) scooping up from water side of Au NPs film; 
(d) integrating to the air side of Au NPs film. The photographs obtained by transferring Au NPs with different 
direction: (b) scooping up from water side of Au NPs film; (c) integrating to the air side of Au NPs film. The 
contact angles of different surface of Au NPs films: (c) air side; (f) water side. Photo credit: Liping Song, College 
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S27. The characterizations for the re-organization of Au NPs films at interface after mechanical 
disturbance. (a) The images observed before, after and during violent mixing: the transferring from “Window” 
to “Mirror”; The SEM images of Au NPs assembled film before (b, c) and after (d, e) violent mixing. The scale 
bar in c, d is 5 μm, and in e, f is 50 nm; (f) the UV-vis spectra of Au NPs assembly before and after violent 
mixing. The violent mixing speed in all images is 1500 rpm. Photo credit: Liping Song, College of Material, 
Chemistry and Chemical Engineering, Hangzhou Normal University. 
 



 
 

 

 
Figure S28. The UV-vis spectra of MB aqueous solution before and after capturing by Au NPs films. The 
UV-vis spectra of MB stock solution (black curve) and residual solution after with PFT-coated Au NPs films 
(red curve), without PFT coated Au NPs films (green curve) and without Au NPs films (blue curve) for MB 
capturing. The inset picture is the snapshot of Au NPs films formed without PFT after MB capturing. The amount 
of MB in all samples is 1 mL, 10-4 M. Photo credit: Liping Song, College of Material, Chemistry and Chemical 
Engineering, Hangzhou Normal University. 



 
 

 

 
Figure S29. The fluorescence images of self-assembled Au NPs-MB complexed micropatterns with 
different spacing: Transferred from PDMS 2D on glass. λex = 644 nm. The scale bars are 10 μm.  

 



 
 

 

 
Figure S30. The fluorescence images of self-assembled Au NPs-R6G complexed micropatterns: Transferred 
from PDMS to glass. λex = 488 nm. The scale bars are 10 μm.  
 



 
 

 

 
Figure S31. Microphotographs of “panda” micropattern of Au NPs-MB complexed films:  From PDMS on 
glass. The scale bars in a, b, c is 100, 20 and 5 μm, respectively. 
 
 
Table S1-S3 
 
Table S1. Interfacial assembly of Au NPs via different molecules assistance with discrepant surface 
energy. Au NPs assembly via different molecules with sulphydryl group (including polyethyleneglycol (PEG), 
p-aminothiophenol (4-ATP), PFT as well as 1-dodecanethiol (DDT)) assistance with discrepant surface energy. 
The contact angle and surface energy of Au NPs films were tested on the contact angle meter. Photo credit: 
Liping Song, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 

Table S2. The comparison between PFT induced interfacial assembly with other similar interfacial 
approaches.  

 

 
 
 
Table S3. The table of different materials for assembly with various functional groups.  

 
 
 
 
Movie S1. The display of instant assembly of Au NPs induced by PFT. 

Movie S2. The mechanical stability display of assembled Au NPs films. 
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