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Element and orbital projected band calculations 

 
Fig. S1: Orbitally projected band structure from DFT. (A) The calculation results for NbN. (B) The 
calculation results for GaN. The width of the bands represents the amount of orbital character shown in 
the color-coded legend. 
  



Orbital character of the conduction band of NbN vs polarization dependence 

In our experimental geometry with NbN grown along the (111) direction, the measurement 
plane (including the incoming X-rays and detected photoelectrons) coincides with the -K-L 
mirror plane (Fig. S2A). Then the dzx orbitals of NbN, whose orbital plane is parallel to the 
mirror plane, form even states that are selected with p-polarized incident photons, while the dxy 
and dyz orbitals, inclined to the mirror plane, form degenerate even and odd linear combinations, 
which are selected with p- and s-polarized incident photons, respectively (Fig. S2B). The 
experimental polarization dependence (Fig. S2C) appears consistent with this expected 
behaviour of the orbital projections of the DFT bands (Fig. S2D) where the more dispersive 
band is formed by the dzx orbitals and the less dispersive by the degenerate dxy and dyz ones. 
However, the unambiguous identification of the orbital character of the experimental bands is 
complicated by (1) the limited experimental resolution and relaxed crystallinity of the NbN film 
which hinder separation of the dzx vs dxy/dyz bands; (2) the strain and again the relaxed NbN 
crystallinity smear the strict selection rules, calling for further thin-film growth and 
spectroscopic experiments. The band manifold above EF, invisible in the experiment, is formed 
by the eg x2-y2 and 3z2-r2 orbitals (bottom panels in Fig. S2D). While there is qualitative 
agreement between the orbitally projected bands and the SX-ARPES data, quantitative details 
via simulation of APRES matrix elements can be explored in future studies (58). 
 

 
Fig. S2: Orbital character of the conduction band of NbN. (A) The BZ and the experimental scattering 
geometry. (B) The symmetry of the d orbitals with respect to the mirror plane (the green line) formed by 
the surface normal and analyzer slit. (C) The SX-ARPES intensity data probed with p- and s-polarized 
photons. (D) Individual projections onto the Nb-4d t2g (xy,yz,zx) (top) and eg (x2-y2,3z2-r2) (bottom) 
orbitals of NbN from DFT. 
  



Details of the GaN experimental band structure 

For GaN, fine details of the experimental spectral intensity along different directions (Fig. S3G-
R) can be enhanced using the curvature and second-derivative representations (59) (Fig. S3G-
R). For these representations, the spectral intensity was denoised by Gaussian smoothing along 
the energy axis with the full width of 700 meV. 

 
Fig. S3: Experimental SX-ARPES results on GaN. (A-F) The intensity images along K-Γ-K, Γ-M-Γ, 
H-A-H and A-L-A at different energies. (G-L) The corresponding curvature images. (M-R) The second-
derivative images (positive values set to zero). 
  



GaN band bending 

The Ga 3d core level shows a clear energy shift as a function of hv between 350 eV to 1250 eV 
as shown in Fig. S4A, while the Nb 4s core level not only exhibits an approximately constant 
peak position, but also identical line shape. This indicates that the band bending occurs in the 
GaN layer, causing a shift of the Ga 3d peak of ~80 meV in our hv range (Fig. S4B). Using our 
deconvolution method as described in the Methods section, the U(z) profile was extracted based 
on the simple approximation U(z) ~ z2 near the interface, as summarized in Fig. S4C, assuming 
that the VBM position at ~ 1 nm from the interface is equal to the experimental value -2.49 eV. 
Though the confidence region appears large, the determined U(z) clearly shows an upwards 
band bending consistent with the downward energy shift of the Ga 3d peak. The variation of 
U(z) by ~300 meV over a distance of ~6 nm from the interface is only about half of that 
observed in Ga-polar n-GaN (36), or about one third of that observed in other GaN-based 
heterojunctions such as GaN/AlGaN (12), where U(z) at the interface end is pulled down by the 
polarization charge, with its variation with z being sharpened by a high density of the mobile 
electrons accumulated in the interfacial quantum well. The smoothness of this U(z) explains 
why the experimental band dispersions in NbN/GaN appear significantly sharper compared to 
those in GaN/AlGaN measured at essentially the same hv. 
 

 

Fig. S4: The band bending in the NbN/GaN heterojunction. (A) The energy-dependent core level 
of Ga 3d. (B) The core level peak position vs hv. The error bar is determined by the EF measurements 
before and after the core level measurement. (C) The depth profile of the band bending. The yellow 
shading represents the confidence region and the red line is the optimum profile, assuming that the VBM 
position at ~ 1 nm from the interface is equal to the experimental value -2.49 eV. (D) The bend profile 
of GaN/NbN heterojunction. The CBM of GaN is estimated by the calculation and the band bending 
profile extracted by experiments. 
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