Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

1 Supplementary Figures

Supplementary Figure 1. Three dimensional response surface curve of adsorption parameters on orthophosphate adsorbed by HC at an initial orthophosphate dose of a). $25 \text{ mg } \text{L}^{-1}$ b). $50 \text{ mg } \text{L}^{-1}$ c). $75 \text{ mg } \text{L}^{-1}$ and d). $100 \text{ mg } \text{L}^{-1}$

Supplementary Figure 2. Three dimensional response surface curve of adsorption parameters on orthophosphate adsorbed by PRHC at an initial orthophosphate dose of a). $25 \text{ mg } \text{L}^{-1} \text{ b}$). $50 \text{ mg } \text{L}^{-1} \text{ c}$). $75 \text{ mg } \text{L}^{-1} \text{ and } \text{ d}$). $100 \text{ mg } \text{L}^{-1}$

Supplementary Figure 3. Three dimensional response surface curve of adsorption parameters on orthophosphate adsorbed by POHC at an initial orthophosphate dose of a). $25 \text{mg } \text{L}^{-1}$ b). $50 \text{mg } \text{L}^{-1}$ c). $75 \text{mg } \text{L}^{-1}$ and d). $100 \text{mg } \text{L}^{-1}$

Supplementary Figure 4. Kinetic plots of orthophosphate removal a). Pseudo-first order, b). Pseudo-second order, c). Elovich and d). Intraparticle diffusion

Supplementary Figure 5. Isotherm plots of orthophosphate removal a). Langmuir, b). Freundlich and c). Tempkin

2 Supplementary Tables

Supplementary Table 1. Experimental design runs and their analogous results

Run	Orthophosphate dose (mg L ⁻¹)	рН	Contact time (hr)	Hydrochar type	Amount of Orthophosphate adsorbed : Qe (mg g ⁻¹)
1	75	5	1	HC	0.431
2	25	8	36	HC	2.106
3	50	5	24	РОНС	8.338
4	75	5	24	НС	7.181
5	50	5	24	PRHC	7.487
6	50	5	24	PRHC	7.781

7	75	0	26	DOLLC	()0(
/	/5	<u> </u>		POHC	0.200
<u> </u>	/3	<u> </u>	1		0.330
	100	5	36	HC	5.600
10	25	8	12	PRHC	1.994
11	50	3	36	НС	3.688
12	100	3	1	НС	0.350
13	75	5	24	HC	7.263
14	25	5	1	НС	0.256
15	50	3	6	НС	1.462
16	75	3	36	PRHC	5.944
17	25	3	36	РОНС	2.981
18	75	5	24	РОНС	10.575
19	100	5	36	HC	5.838
20	25	8	1	РОНС	0.250
21	100	8	1	РОНС	0.425
22	25	3	1	PRHC	0.269
23	25	8	12	PRHC	2.213
24	25	3	24	НС	3.619
25	100	5	12	НС	3.775
26	75	3	6	PRHC	2.269
27	25	3	24	PRHC	4.313
28	100	8	12	НС	2.800
29	25	5	36	PRHC	2.769
30	100	8	36	PRHC	6.350
31	100	3	36	РОНС	8.200
32	100	5	1	PRHC	0.450
33	100	8	36	PRHC	6.587
34	25	5	1	РОНС	0.306
35	50	8	24	НС	5.250
36	50	5	12	РОНС	4.050
37	50	5	24	РОНС	8 584
38	75	3	1	РОНС	0.469
39	25	5	1	HC	0.278
40	100	3	24	PRHC	9 500
41	50	8	1	HC	0.313
42	25	3	12	POHC	2 388
43	75	8	36	POHC	6 492
44	100	5	1	PRHC	0.482
45	100	5	6	POHC	3 350
<u>-</u> т	100	5	0	10110	5.550

Supplementary Table 2. Description of adsorption kinetics and isotherm models

Model	Formula	Constants

Adsorption Kinetics					
Pseudo-first order ¹	$\log\left(qe - qt\right) = \log qe - \frac{k_1}{2.303}t$	k ₁ - Equilibrium rate constant of pseudo first order adsorption (min ⁻¹)			
Pseudo-second order ²	$\frac{t}{q_1} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$	k_2 - Adsorption rate constant (g mg ⁻¹ min ⁻¹)			
Elovich ³	$q_t = q_0 + \frac{1}{\beta} \ln \left(\alpha\beta\right) + \frac{1}{\beta} ln_{\text{initial}}^{\text{initial}}(t)$	α - Initial rate constant (mg g ⁻¹ min ⁻¹) β - Constant related to the surface coverage and activation energy for chemisorption (g mg ⁻¹)			
Intraparticle diffusion ⁴	$q_t = k_t \cdot t^{\frac{1}{2}} + C$	 K_i - Intraparticle diffusion rate constant (mg g⁻¹ min^{-1/2}) C - Constant associated with the thickness of the boundary layer (mg g⁻¹) 			
Adsorption Isotherms					
Langmuir ⁵	$\frac{c_e}{q_e} = \frac{1}{K_L X_m} + \frac{c_e}{X_m}$	K_L - Langmuir constant (L mol ⁻¹) X_m - Maximum adsorption capacity (mg g ⁻¹)			
Freundlich ⁶	$\log q_e = \log k_f + \frac{1}{n} \log c_e$	 K_f - Constant related with the adsorption capacity of the sorbent n - Intensity of sorption 			
Temkin ⁷	$q_e = \frac{RT}{B} \ln K_T + \frac{RT}{B} \ln c_e$	B - Temkin constant (J mol ⁻¹) K _T - Temkin isotherm energy constant (L g ⁻¹)			
	q_e - Adsorption capacity adsorbed at equilibrium (mg g ⁻¹) q_t - Adsorption capacity adsorbed at time t (mg g ⁻¹) c_e - Equilibrium concentration of the adsorbate (mg L ⁻¹)				

Supplementary Table 3. Derived equations for kinetics and isotherms studies

Adsorption Kinetics					
	Models	рН 3	рН 5	pH 8	
НС	Pseudo-first order	y = -0.0002x + 0.48	y = -0.0002x + 0.52	y = -0.0002x + 0.45	
	Pseudo-second order	y = 0.261x + 240.2	y = 0.2486x + 225.7	y = 0.2808x + 263.9	
	Elovich	y = 0.8253x - 3.475	y = 0.8786x - 3.703	y = 0.7603x - 3.207	
	Intraparticle diffusion	y = 0.0738x - 0.28	y = 0.0785x - 0.31	y = 0.0681x - 0.27	
PRHC	Pseudo-first order	y = -0.0002x + 0.56	y = -0.0002x + 0.59	y = -0.0002x + 0.52	

	Pseudo-second order	y = 0.2139x + 218.7	y = 0.2098x + 199.7	y = 0.2355x + 236.5
	Elovich	y = 0.9838x - 4.18	y = 1.0363x - 4.38	y = 0.8958x - 3.79
	Intraparticle diffusion	y = 0.0882x - 0.38	y = 0.0926x - 0.38	y = 0.08x - 0.337
	Pseudo-first order	y = -0.0002x + 0.59	y = -0.0003x + 0.63	y = -0.0002x + 0.57
ронс	Pseudo-second order	y = 0.2284x + 185.8	y = 0.1817x + 173	y = 0.2143x + 224.3
TOIL	Elovich	y = 1.0303x - 4.329	y = 1.1841x - 4.999	y = 0.9867x - 4.205
	Intraparticle diffusion	y = 0.091x - 0.322	y = 0.1054x - 0.41	y = 0.0883x - 0.39
Adsorpt	tion Isotherms			
	Langmuir	y = 0.1461x + 0.960	y = 0.1215x + 1.092	y = 0.1525x + 1.319
HC	Freundlich	y = 0.2844x + 0.301	y = 0.314x + 0.311	y = 0.307x + 0.224
	Temkin	y = 1.3782x + 0.719	y = 1.7006x + 0.345	y = 1.3756x + 0.226
	Langmuir	y = 0.0857x + 1.230	y = 0.0746x + 1.087	y = 0.0897x + 1.672
PRHC	Freundlich	y = 0.3909x + 0.294	y = 0.4007x + 0.339	y = 0.4206x + 0.191
	Temkin	y = 2.5516x - 0.962	y = 2.8823x - 0.979	y = 2.5003x - 1.738
РОНС	Langmuir	y = 0.0683x + 1.030	y = 0.0662x + 0.735	y = 0.0725x + 1.281
	Freundlich	y = 0.4174x + 0.34	y = 0.3695x + 0.474	y = 0.443x + 0.260
	Temkin	y = 3.1553x - 1.192	y = 3.0347x + 0.395	y = 3.0938x - 1.975

References

- 1 Lagergren S, *Handl. Band*, 1898, **24**, 1.
- 2 Y. S. Ho, J. F. Porter and G. McKay, *Water. Air. Soil Pollut.*, 2002, 141, 1–33.
- 3 C. Namasivayam and D. Kavitha, Dye. Pigment., 2002, 54, 47–58.
- 4 H. Moon and W. Kook Lee, J. Colloid Interface Sci., 1983, 96, 162–171.
- 5 K. Y. Foo and B. H. Hameed, *Chem. Eng. J.*, 2010, 156, 2–10.
- 6 A. Deb, M. Kanmani, A. Debnath, K. L. Bhowmik and B. Saha, *Ultrason. Sonochem.*, 2019, **54**, 290–301.
- 7 S. J. Allen, G. McKay and K. Y. H. Khader, *Environ. Pollut.*, 1989, **56**, 39–50.