Supporting Information

An Efficient Synthetic Route to L- γ -Methyleneglutamine and Its Amide Derivatives, and Their Selective Anticancer Activity

Md Imran Hossain,¹ Ajit G. Thomas,² Fakhri Mahdi,¹ Amna T. Adam,¹ Nicholas S. Akins,¹ Morgan M. Woodard,¹ Jason J. Paris,¹ Barbara S. Slusher,² Hoang V. Le^{*,1}

¹ Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA

² Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Table of Contents

Content	Page
1. Synthesis of compound 16	3
2. Synthesis of compound 17	3
3. Figure S1. ¹ H and ¹³ C NMR spectra of compound 16	4
4. Figure S2. ¹ H and ¹³ C NMR spectra of compound 17	5
5. Figure S3. ¹ H and ¹³ C NMR spectra of compound 18	6
6. Figure S4. ¹ H and ¹³ C NMR spectra of compound 19	7
7. Figure S5. ¹ H and ¹³ C NMR spectra of compound 20	8
8. Figure S6. ¹ H and ¹³ C NMR spectra of compound 1	9
9. Figure S7. ¹ H- ¹ H COSY and 1D NOE NMR spectra of compound 1	10
10. Figure S8. ¹ H and ¹³ C NMR spectra of compound 22	11
11. Figure S9. ¹ H and ¹³ C NMR spectra of compound 3	12
12. Figure S10. ¹ H and ¹³ C NMR spectra of compound 23	13
13. Figure S11. ¹ H and ¹³ C NMR spectra of compound 4	14
14. Figure S12. ¹ H and ¹³ C NMR spectra of compound 24	15
15. Figure S13. ¹ H and ¹³ C NMR spectra of compound 5	16
16. Figure S14. ¹ F NMR spectra of compound 5	17
17. Figure S15. ¹ H and ¹³ C NMR spectra of compound 6	18
18. Figure S16. ¹ H and ¹³ C NMR spectra of compound 26	19
19. Figure S17. ¹ H and ¹³ C NMR spectra of compound 7	20
20. Figure S18. ¹ H and ¹³ C NMR spectra of compound 27	21
21. Figure S19. ¹ H and ¹³ C NMR spectra of compound 8	22
22. Figure S20. ¹ H and ¹³ C NMR spectra of compound 9	23
23. Figure S21. ¹ F NMR spectra of compound 9	24
24. Figure S22. ¹ H and ¹³ C NMR spectra of compound 10	25
25. Figure S23. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the inhibition of growth of MCF-7 breast cancer cells	26
26. Figure S24. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the inhibition of growth of SK-BR-3 breast cancer cells	27

27. Figure S25. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the inhibition of growth of MDA-MB-231 breast cancer cells	28
28. Figure S26. Dose-response of tamoxifen, olaparib, and compounds 1 and	
3-10 on the inhibition of growth of noncancerous MCF-10A breast cells	29
29. Figure S27. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the cell death of MCF-7 breast cancer cells	30
30. Figure S28. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the cell death of SK-BR-3 breast cancer cells	31
31. Figure S29. Dose-response of tamoxifen, olaparib, and compounds	
1 and 3–10 on the cell death of MDA-MB-231 breast cancer cells	32
32. Figure S30. Dose-response of tamoxifen, olaparib, and compounds 1 and	
3–10 on the cell death of noncancerous MCF-10A breast cells	33

tert-Butyl (S)-5-oxopyrrolidine-2-carboxylate (16¹):

To the suspension of L-pyroglutamic acid (10 g, 77.5 mmol) (12) and tert-butyl acetate (100 mL) were added 70% HClO₄ (2.3 mL). The suspension was stirred overnight at rt. Diethyl ether was added to the clear reaction mixture, followed by slow addition of saturated solution of sodium bicarbonate to neutralize the acid. The reaction mixture was extracted twice with diethyl ether, dried over sodium sulfate, and evaporated *in vacuo* to afford compound 16 (9.54 g, 67 % yield) as a viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 4.05 (td, *J* = 8.9, 8.4, 4.6 Hz, 1H), 2.29 (qt, *J* = 17.4, 6.6 Hz, 3H), 2.17 – 1.94 (m, 1H), 1.53 – 1.23 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 171.1, 82.2, 56.1, 29.4, 27.9, 27.9, 24.8.

Di-tert-butyl (S)-5-oxopyrrolidine-1,2-dicarboxylate (17²):

Compound **16** (9.54 g, 51.4 mmol) was dissolved in 150 mL of anhydrous dichloromethane under argon atmosphere. 4-(Dimethylamino)pyridine (6.9 g, 56.5 mmol), (Boc)₂O (12.3 g, 56.5 mmol), and Et₃N (5.7 g, 56.5 mmol) were added to the reaction mixture and stirred for overnight at rt. Water (200 mL) was added to the reaction flask, and the mixture was extracted twice with ethyl acetate. The solvents were evaporated *in vacuo*. The crude compound was purified by silica column chromatography (33% ethyl acetate in hexane) to afford **17** (14.6 g, 91% yield) as a light yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.40 (dd, *J* = 9.4, 2.6 Hz, 1H), 2.52 (ddd, *J* = 17.6, 10.6, 9.5 Hz, 1H), 2.38 (ddd, *J* = 17.5, 9.4, 3.2 Hz, 1H), 2.22 (ddt, *J* = 13.5, 10.8, 9.4 Hz, 1H), 1.92 (dtt, *J* = 15.8, 6.0, 3.3 Hz, 1H), 1.41 (d, *J* = 7.1 Hz, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 170.1, 149.0, 83.0, 82.0, 59.3, 30.9, 27.7, 27.7, 21.4.

References

- Ioka, S.; Saitoh, T.; Iwano, S.; Suzuki, K.; Maki, S. A.; Miyawaki, A.; Imoto, M.; Nishiyama, S. Synthesis of Firefly Luciferin Analogues and Evaluation of the Luminescent Properties. *Chem. - A Eur. J.* 2016, *22* (27), 9330–9337.
- (2) Chiha, S.; Soicke, A.; Barone, M.; Müller, M.; Bruns, J.; Opitz, R.; Neudörfl, J.-M.; Kühne, R.; Schmalz, H.-G. Design and Synthesis of Building Blocks for PPII-Helix Secondary-Structure Mimetics: A Stereoselective Entry to 4-Substituted 5-Vinylprolines. *European J. Org. Chem.* 2018, 2018 (4), 455–460.

Figure S1. ¹H and ¹³C NMR spectra of compound 16

Figure S2. ¹H and ¹³C NMR spectra of compound **17**

Figure S3. ¹H and ¹³C NMR spectra of compound 18

Figure S4. ¹H and ¹³C NMR spectra of compound 19

Figure S5. ¹H and ¹³C NMR spectra of compound 20

Figure S6. ¹H and ¹³C NMR spectra of compound 1

Figure S7. ¹H-¹H COSY (**A**) and 1D NOE (**B–D**) NMR spectra of compound **1**. Chemical shifts of H_a , H_b , and H_c are 2.59–2.48 ppm (m), 2.75 (dd), and 3.67–3.57 ppm (m), respectively. J values of H_c - H_a , H_c - H_b , and H_b - H_a are 8.6 Hz, 4.5 Hz, and 14.7 Hz, respectively. ¹H-¹H COSY NMR spectrum (**A**) showed a stronger correlation between H_a and H_c than that of H_b and H_c . 1D NOE spectra with irradiation of H_a (**B**), H_b (**C**), and H_c (**D**) also showed a stronger correlation between H_a and H_c than that of H_b and H_c .

Figure S8. ¹H and ¹³C NMR spectra of compound 22

Figure S9. ¹H and ¹³C NMR spectra of compound 3

Figure S10. ¹H and ¹³C NMR spectra of compound 23

Figure S11. ¹H and ¹³C NMR spectra of compound 4

Figure S12. ¹H and ¹³C NMR spectra of compound 24

Figure S13. ¹H and ¹³C NMR spectra of compound 5

Figure S14. ¹⁹F NMR spectra of compound 5

Figure S15. ¹H and ¹³C NMR spectra of compound 6

Figure S16. ¹H and ¹³C NMR spectra of compound 26

Figure S17. ¹H and ¹³C NMR spectra of compound 7

Figure S18. ¹H and ¹³C NMR spectra of compound 27

Figure S19. ¹H and ¹³C NMR spectra of compound 8

Figure S20. ¹H and ¹³C NMR spectra of compound 9

Figure S21. ¹⁹F NMR spectra of compound 9

Figure S22. ¹H and ¹³C NMR spectra of compound 10

Figure S23. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the inhibition of growth of MCF-7 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S24. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the inhibition of growth of SK-BR-3 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S25. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the inhibition of growth of triple-negative MDA-MB-231 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S26. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds 1 and **3–10** on the inhibition of growth of noncancerous MCF-10A breast cells at 24 h (top) and 72 h (bottom) from treatment

Figure S27. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the cell death of MCF-7 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S28. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the cell death of SK-BR-3 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S29. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the cell death of triple-negative MDA-MB-231 breast cancer cells at 24 h (top) and 72 h (bottom) from treatment

Figure S30. Dose-response (0.32 - 320 μ M) of tamoxifen, olaparib, and compounds **1** and **3–10** on the cell death of noncancerous MCF-10A breast cells at 24 h (top) and 72 h (bottom) from treatment