In silico and *in vitro* design of cordycepin encapsulation in liposomes for colon cancer treatment

Wasinee Khuntawee^{1,2,3a}, Rawiporn Amornloetwattana^{1,2,3a}, Wanwipa Vongsangnak^{2,4}, Katawut Namdee⁵, Teerapong Yata^{6,7}, Mikko Karttunen^{8,9,10}, and Jirasak Wong-ekkabut^{1,2,3,*}

¹Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

²Computational Biomodelling Laboratory for Agricultural Science and Technology

(CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

³Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand

⁴Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

⁵National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Rd., Klong Luang, Pathumthani, 12120, Thailand.

⁶Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.

⁷Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.

⁸Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7

⁹Department of Applied Mathematics, The University of Western Ontario, London, ON, Canada N6A 5B7

¹⁰The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, Canada N6K 3K7

^a These authors contributed equally to this work.

*E-mail addresses: jirasak.w@ku.ac.th

Cordycepin

	Atom type	Charge		
1	HS14	0.402		
2	NT	-0.804		
3	HS14	0.402		
4	С	0.574		
5	С	0.018		
6	NR	-0.592		
7	С	0.471		
8	NT	-0.168		
9	С	0.224		
10	HC	0.147		
11	С	0.229		
12	HC	0.097		
13	С	0.279		
14	HC	0.091		
15	OA	-0.66		
16	HS14	0.434		
17	CH2r	-0.096		
18	С	0.029		
19	HC	0.117		
20	OE	-0.396		
21	CH2	0.287		
22	OA	-0.632		
23	Н	0.42		
24	NR	-0.751		
25	С	0.59		
26	HC	0.039		
27	NR	-0.751		
Bond s	tretching			
i	i	k _b	b_0	
-	J	(kJmol ⁻¹ nm ⁻⁴)	(nm)	
1	2	6.3719e+06	0.1010	
2	3	6.3719e+06	0.1010	
2	4	3.5143e+06	0.1360	
4	5	6.5389e+06	0.1410	
4	24	1.0300e+07	0.1350	
5	6	8.6600e+06	0.1390	
5	7	8.6600e+06	0.1390	
6	9	1.2000e+07	0.1320	
7	8	1.1000e+07	0.1380	
7	27	1.0500e+07	0.1340	
8	9	1.1000e+07	0.1380	
8	11	8.7100e+06	0.1470	
9	10	1.2300e+07	0.1090	
11	12	1.2300e+07	0.1090	

11 11 13 13 13 15 17 18	13 20 14 15 17 16 18 19	3.0819e+06 6.5389e+06 1.2300e+07 8.1800e+06 7.1500e+06 1.9581e+07 7.1500e+06 1.2300e+07	0.1560 0.1410 0.1090 0.1430 0.1530 0.0972 0.1530 0.1090 0.1090		
18 18	20 21	4.6913e+06 5.4300e+06	0.1460		
21	21	8 1800e+06	0.1320		
22	23	1.9581e+07	0.0972		
24	25	1.0500e+07	0.1340		
25	26	1.2300e+07	0.1090		
25	27	1.0500e+07	0.1340		
Angle b	ending		_		
i	i	k	k_{θ}	θ_0	
5	7	2	$(kJmol^{-1}rad^{-2})$	(deg)	
5	7	5	403.00 640.00	108.00	
8	7	4	3398 91	120.00	
7	8	5	1733.55	106.00	
7	8	24	730.00	124.00	
9	8	24	730.00	124.00	
6	9	6	1559.41	114.00	
6	9	7	505.00	120.00	
8	9	7	505.00	120.00	
8	11	9	1733.55	106.00	
8	11	8	610.00	115.00	
8	11	27	1680.51	109.00	
12	11	27	1680.51	109.00	
12	11	9	1680.51	109.00	
13	11	11	520.00	109.50	
11	13	11	1680.51	109.00	
11	13	8	530.00	111.00	
11	13	10	2076.33	101.00	
14	13	10	1/33.55	106.00	
14	13	12	545.00	115.00	
13	15	13 20	450.00	100 50	
13	13	20	2076 33	109.30	
17	18	20	532.00	111 40	
17	18	20	520.00	109 50	
17	18	14	560.00	120.00	
19	18	15	507.00	107.60	
19	18	17	1680.51	109.00	
20	18	15	520.00	109.50	
11	20	17	450.00	109.50	
18	21	17	530.00	111.00	
21	22	16	450.00	109.50	
4	24	18	560.00	120.00	
24	25	19	505.00	120.00	
24	25	20	3398.91	130.00	
26	25	21	505.00	120.00	
/	21	20	620.00	116.00	
<u>1 orsions</u>	<u>></u>			1,	*
i	j	k	1	$(kJmol^{-1}rad^{-2})$	$(\deg)^{\psi_0}$
1	2	4	24	5.86	180.00
3	2	4	5	5.86	180.00

24	4	5	7	41.80	180.00
5	4	24	25	41.80	180.00
7	5	6	9	41.80	180.00
4	5	7	27	41.80	180.00
5	6	9	8	41.80	180.00
5	7	8	9	41.80	180.00
5	7	27	25	41.80	180.00
7	8	9	6	41.80	180.00
9	8	11	20	3.77	0.00
20	11	13	17	1.00	180.00
13	11	20	18	1.00	180.00
17	13	15	16	1.26	0.00
15	13	17	18	5.92	0.00
13	17	18	21	5.92	0.00
21	18	20	11	1.00	180.00
20	18	21	22	5.92	0.00
18	21	22	23	1.26	0.00
4	24	25	27	41.80	180.00
24	25	27	7	41.80	180.00
1	2	4	24	5.86	180.00
3	2	4	5	5.86	180.00
24	4	5	7	41.80	180.00
Imprope	<u>er</u>				
i	i	k	1	$\mathbf{k}_{\mathbf{\phi}}$	ϕ_0
1	J	к	1	(kJmol ⁻¹ rad ⁻²)	(deg)
8	11	9	7	167.36	0.00
9	8	6	10	167.36	0.00
5	6	4	7	167.36	0.00
4	5	2	24	167.36	0.00
25	24	27	26	167.36	0.00
7	8	5	27	167.36	0.00
18	20	21	17	334.72	35.26
13	15	17	11	334.72	35.26
11	20	13	8	334.72	35.26

Octanol

	Atom type	<u>Charge</u>			
1	HS14	0.432			
2	OA	-0.664			
3	CH2	0.192			
4	CH2	0.000			
5	CH2	0.090			
6	CH2	-0.134			
7	CH2	0.192			
8	CH2	-0.108			
9	CH2	0.068			
10	CH3	-0.068			
Bond st	tretching				
i	j	k _b (kJmol ⁻¹ nm ⁻⁴)	b_0 (nm)		
1	2	1.9581e+07	0.0972		

2	3	8.1800e+06	0.1430		
3	4	5.4300e+06	0.1520		
4	5	7.1500e+06	0.1530		
5	6	7.1500e+06	0.1530		
6	7	7.1500e+06	0.1530		
7	8	7.1500e+06	0.1530		
8	9	7.1500e+06	0.1530		
9	10	7.1500e+06	0.1530		
Angle b	ending				
;	;	k	$\mathbf{k}_{\mathbf{ heta}}$	Θ_0	
1	J	K	(kJmol ⁻¹ rad ⁻²)	(deg)	
1	2	3	450.00	109.50	
2	3	4	520.00	109.50	
3	4	5	530.00	111.00	
4	5	6	530.00	111.00	
5	6	7	530.00	111.00	
6	7	8	530.00	111.00	
7	8	9	530.00	111.00	
8	9	10	530.00	111.00	
Torsion	<u>s</u>				
i	i	k	1	$\mathbf{k}_{\mathbf{\phi}}$	ϕ_0
1	J	K	1	(kJmol ⁻¹ rad ⁻²)	(deg)
1	2	3	4	1.26	0
2	3	4	5	5.92	0
3	4	5	6	5.92	0
4	5	6	7	5.92	0
5	6	7	8	5.92	0
6	7	8	9	5.92	0
7	8	9	10	5.92	0

Fig. S1: Free energy difference of octanol (left) and cordycepin (right) dissolved in water and octanol, shown in red and black, respectively.

		Experiment	TI calculation		
		(kJ/mol)	(kJ/mol)		
Solvation free energy					
Solute	Solvent				
octanol	water	-17.11 ¹	-17.09		
octanol	octanol	-34.02 ²	-33.04		
Cordycepin	water	-	-75.50		
Cordycepin	octanol	-	-82.94		
Partition coefficient; log(P _{o/w})					
Cordycepin		-0.91 ³	-1.30		

 Table S2: Solvation free energy and octanol/water partition coefficient compared to
experiments.

Table S3: The rate constant (*K*) and haft-time $(t_{1/2})$ of the non-encapsulated and encapsulated cordycepin release, the release profiles are fitted to $= A \times (1 - e^{(-Kx)}) + B$, where K is the rate constant. The haft-time $(t_{1/2})$ is determined by $t_{1/2} = \frac{ln (2)}{K}$.

avatare	K	t _{1/2}	
system	(hour ⁻¹)	(hour)	
Non-encapsulated	4.11±1.67	0.20±0.10	
Encapsulated	1.42±0.11	0.49±0.04	

Fig. S2: 2D Chemical structure of cordycepin and the definition of the tilt angle (θ). The θ angle is characterized by the angle between the vector pointing from the COMs of the deoxyribose ring to the adenine rings and the bilayer normal.

(a) Biased simulation (free energy calculation)

Fig. S3: Density profile of cordycepin, DPPC phosphate groups and DPPC carbonyl groups for biased and unbiased simulation systems. Cordycepin preferably located around the DPPC carbonyl groups in all simulations. The locations of cordycepin molecules in biased and unbiased systems at 1:374 Cor:DPPC are consistent.

Fig. S4: (a) Local density of non-flipped and flipped cordycepin; flipping means turning the sugar ring toward to the bilayer's center. (b) Local lipid bilayer properties *i.e.* thickness and area per lipid in the *xy*-plane of the 1:20 Cor:DPPC system at the end of 1 μ s simulation. The presence of cordycepins (highlighted in green box) resulted in a slight increase in bilayer thickness. No bilayer damage was observed. Rotation of cordycepin did not significantly affect local thickness or area per lipid (highlighted in blue box).

Fig. S5: Hydrogen bond probability for cordycepin and lipids' polar groups *i.e.* phosphate and carbonyl groups. The number of hydrogen bond to carbonyls was higher than to the phosphate groups suggesting that binding to the carbonyls is favorable.

Fig. S6: Spheroidal HT-29 cell viability after 48 h treatment by cordycepin-encapsulated liposomes compared to blank liposomes. For statistical analysis, One-way ANOVA with *post hoc* Dunnett's test was performed. ****P<0.0001 was considered as statistically significant.

References

1. Rizzo, R. C.; Aynechi, T.; Case, D. A.; Kuntz, I. D. Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. *J. Chem. Theory Comput.* **2006**, *2* (1), 128-139.

2. Marenich, A.; Kelly, C.; Thompson, J.; Hawkins, G.; Chambers, C.; Giesen, D.; Winget, P.; Cramer, C.; Truhlar, D. Minnesota Solvation Database–version 2012 2012. *University of Minnesota: Minneapolis, MN*.

3. Maynard, R., The dictionary of substances and their effects. BMJ Publishing Group Ltd: 2000.