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1 Analytical equations used for fitting optical resonance

The surface Rayleigh or bulk scattering in the microresonator leads to the coupling of clockwise (acw) and
counter-clockwise (accw) modes [1]. Assuming both modes have degenerate frequencies ω with modal coupling
rate γ, the Hamiltonian of the microresonator system reads

H = ~ω(a†cwacw + a†ccwaccw) + ~γ(acw + a†cw)(accw + a†ccw). (1)

Considering the laser’s frame with frequency ωl = ω + ∆, under the rotating wave approximation, the
Hamiltonian reads

H = −~∆(a†cwacw + a†ccwaccw) + ~γ(acwa
†
ccw + a†cwaccw). (2)

After considering coupling to the bus waveguide with rate κex and losses to the environment with rate κ0,
this results in the Langevin equation (ignoring vacuum fluctuation)

ȧcw = (−κ/2 + i∆)acw − iγaccw +
√
ηκacw,in (3)

ȧccw = (−κ/2 + i∆)accw − iγacw, (4)

where κ = κex +κ0 describes the total loss rate and η = κex/κ denotes the coupling efficiency. The stationary
solution of the intracavity fields can be easily obtained as

acw =
−√ηκacw,in

−κ/2 + i∆ + γ2

−κ/2+i∆

(5)

accw =
−iγacw

−κ/2 + i∆
. (6)

The cavity transmission, reflection and dissipation are then obtained from the input-output formalism Oout =
Oin −

√
κexO ,

Pt/~ω = |acw,out|2 = |acw,in −
√
ηκacw|2 (7)

Pr/~ω = |accw,out|2 = | − √ηκaccw|2 (8)

Pdiss/~ω = | −
√

(1− η)κacw|2 + | −
√

(1− η)κaccw|2. (9)
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Figure 1: a) An optical transmission scan measured at the output of the chip is fitted using Eq.(7). The
sidebands generated via an electro-optic modulator are used to calibrate the frequency. b) Fitting to the
fitted g frequency sweep using Eq.(10). Note that the frequency sweep line shape difference near the resonance
is due to the coupling to the frequency degenerate counter-clockwise optical mode. c,d) The Markov chain
Monte Carlo random walk corner plot of the fitting to the optical data and the fitted g data. The fitted system
key parameters (cavity decay rate κ, splitting ratio γ/κ, sideband ratio Asb) of the two frequency sweeps
are all within 7% discrepancy, indicating great consistency between the optical and electron spectroscopic
measurements. Also strong correlation between the fitted γ and κ is observed for both fittings, indicating
the necessity of applying the coupled modes model to correctly extract the cavity decay rate.

And the intracavity photon numbers are simply

ncw =

∣∣∣∣∣ −√ηκ
−κ/2 + i∆ + γ2

−κ/2+i∆

∣∣∣∣∣
2

ṅcw,in (10)

nccw =

∣∣∣∣ −iγ
−κ/2 + i∆

∣∣∣∣2 ncw. (11)
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Figure 2: a) Simulated power distribution in the optical system when pump is along clockwise direction,
generated using parameters fitted from the frequency sweep measurement shown in Fig.1. b) |g|2 scan
where each point is obtained after fitting the electron energy distribution. c) Experimentally measured
optical signal of the cavity transmission (blue), reflection (red), and dissipation (green). The resonance
shaped (black dashed) curve shows the inferred cold cavity transmission without thermal absorption and
Kerr nonlinearity induced cavity frequency shift, which is present in the triangular shaped (blue) curve due
to high input power (∼ > 50µW ). d) Calibrated detuning ∆(t) based on the experimentally measured
optical signal in (c). e) Calibrated correction factor Pdiss,cw/Pdiss from the detuning plot (d). The reflection
calibration is empirically erroneous. This effect can be attributed to the etalon formed by the chip facets,
by which the transmission signal is less affected. f) The calibrated dissipated power in the clockwise mode
shows linear relation with |g|2 from different measurement channels (transmission and dissipation).

Eq.(7) and (10) are used for fitting the frequency sweep of the optical transmission Pt(∆). The frequency
sweep fitting was done using the Markov chain Monte Carlo (MCMC) methods [2], with the optical sidebands
±Ωsb and absorption induced cavity frequency shift χthPdiss(∆) included in the models. The fitting function
is Ffit(∆) =

∑
n=−1,0,1 Fi(∆ + nΩsb + χthPdiss(∆)), where Fi is either Pt for optical measurement or na for

measurement of the electron-light coupling g. The fitting results are shown in Fig.1, and the fitted system
parameters show great consistency between the two distinct measurements.
For the power sweep calibration, Eq.(7), (10) and (11) are used for calibrating the clockwise dissipated
power P̃diss,cw(t). The detuning ∆̃(t) was extracted from the experimentally measured P̃t(t) (Fig.2(b), suf-
fers the least from background noise) using the fitted resonator parameters (κ, η, γ) from the frequency
sweep (Fig.2(a)(c)). Then the clockwise dissipated power P̃diss,cw(t) (Fig.2(e)) was calibrated from the ex-

perimentally measured transmission power P̃t(t) and the calibrated ∆̃(t) by P̃diss,cw(t) =
Pdiss,cw(∆(t))
Pt(∆(t)) P̃t(t).

We later calculate the characteristic coupled optical power P = ncw~ωκ by scaling the dissipated power
P = κ

κ0
× P̃diss,cw, and plot it against the fitted coupling constant |g(t)|2 (fig. 2f), one could find the linear
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relation as is expected in theory. The observable oscillations in the linear dependence of |g|2 on the clock-
wise dissipated power are related to a 50 Hz noise in the beam position leading to variations in electron-light
coupling strength. To eliminate this 50 Hz noise, we binned the retrieved coupling strength in time intervals
of 20 ms. The resulting power dependence is shown in main text figure 2.e).

2 Quantum optical description of electron-photon interaction

As discussed in the main manuscript, for electron-photon interaction, it is more natural to work in the
velocity gauge [3]. For simplicity, we reduce the problem to one dimension (ẑ) along the electron propagation
direction. The vector potential is quantized as [4]

Â = Â(z) =

√
~

2εωV
(u(z)a+ u∗(z)a†),

where ε is the optical permittivity, ω is the optical frequency, V is the effective optical mode volume, and
u(z) is the z projection (along the propagation direction of electron ~ke) of the vector mode function ~u(~r)
which satisfies ∫

V

|~u(~r)|2d~r3 = V.

We choose the electron plane wave states as the basis,

|ke〉 =

∫
dz|z〉〈z||ke〉 = lim

L→∞

∫ L/2

−L/2
dzL−1/2 exp (ikez) |z〉

1 =
∑
ke

|ke〉〈ke| = lim
L→∞

L

2π

∫
dke|ke〉〈ke|.

The coupling term can then be readily calculated as

H1 =
e

2m
(p̂Â+ Âp̂)

=

√
~

2εωV

e

2m

∑
ke

|ke〉〈ke| · p̂ ·
∫
Lc

dz|z〉〈z|(u(z)a+ u∗(z)a†)
∑
k′e

|k′e〉〈k′e|+ h.c.

= lim
L→∞

√
~

2εωV

e

mL

(∑
∆ke

∑
ke

~(ke −∆ke/2)

∫
Lc

dze−i∆ke·zu(z)a|ke〉〈ke −∆ke|+ h.c.

)

=

√
~e2v2

e

2εωV

(
a
∑
ke

∫
∆ke

d∆ke
ke −∆ke/2

k0
e

Leff(∆ke)

2π
|ke〉〈ke −∆ke|+ h.c.

)
= ~g0ab

† + ~g∗0a†b,

with the vacuum coupling rate g0 =
√

e2v2e
2ε~ωV in which ve is the electron velocity and e is the electron

charge, and the electron transition operator b =
∑
ke

∫
∆ke

d∆ke
ke−∆ke/2

k0e

L∗eff (∆ke)
2π |ke − ∆ke〉〈ke|. Here,

Leff(∆ke) =
∫
Lc
dze−i∆ke·zu(z) is the effective interaction length, and represents the phase matching condi-

tion between the optical field profile function u(z) along the electron propagation trajectory and the electron
wavevector change e−i∆ke·z upon the absorption/emission of a photon. Under conditions of phase matching,
the expression can be reduced to the order of the physical length over which the optical field and the electron
interact.
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In the interaction picture, the scattering matrix, derived from the interaction Hamiltonian, is

Hint = ~g0a
∑
ke

∫
∆ke

d∆ke
ke −∆ke/2

k0
e

Leff(∆ke)

2π
|ke〉〈ke −∆ke|e−iωtei[E(ke)−E(ke−∆ke)]t/~ + h.c.

S = T exp

(
− i
~

∫
τ→∞

Hintdt

)
≈ exp

(
−ig0a

∑
ke

∫∫
τ,∆ke

d∆ke
ke −∆ke/2

k0
e

Leff(∆ke)

2π
|ke〉〈ke −∆ke|ei([E(ke)−E(ke−∆ke)]/~−ω)tdt− h.c.

)

= exp

(
−ig0a

∑
ke

∫
∆ke

d∆ke
ke −∆ke/2

k0
e

Leff(∆ke)|ke〉〈ke −∆ke|δ
[
E(ke)− E(ke −∆ke)

~
− ω

]
− h.c.

)

= exp

(
−ig0a

∑
Ee

ke −∆k/2

k0
e

Leff(∆k)

∂peE
|Ee〉〈Ee − ~ω| − h.c.

)

≈ exp

−ig0
Leff

ve
a

∑
Ee∈[E0

e−ε,E0
e+ε]

|Ee〉〈Ee − ~ω| − h.c.


= exp

(
−ig̃0τintab̃

† − h.c.
)
,

with a re-defined expression of b̃ =
∑
Ee∈[E0

e−ε,E0
e+ε] |Ee〉〈Ee − ~ω|. Moreover, ∆k ≈ ω

ve
, defined by

E(ke) − E(ke − ∆k) = ~ω, is the electron wave-vector change due to the absorption/emission of a pho-

ton. The vacuum coupling rate is also re-defined as g̃0 = η
√

e2v2e
2ε~ωV , so that the interaction time τint = Lint

ve
has a very clear physical meaning, which is the fly-by time of the electron over the interaction region Lint.
Here the phase matching coefficient η =

∫
dze−i∆k·zu(z)/Lint is re-introduced in the vacuum coupling rate g̃0.

In the presence of a strong coherent laser drive |α〉, the scattering matrix reduces to a displacement operator
on the electron state S ≈ exp

(
−ig0τintαb

† − h.c.
)
, which results in the probability distribution on the Nth

sideband

PN = |〈E0
e +N∆|S|E0

e 〉|2 = JN (2g)2

g = |αg0τint| =
√

nphe2

2ε~ωV

∣∣∣∣∫ dze−i∆·zu(z)

∣∣∣∣
=

e

2~ω

∣∣∣∣∫ dze−i∆·zẼ(z)

∣∣∣∣ ,
where the complex field Ẽ(z) is related to the physical electric field E(z, t) via E(z, t) = Real[Ẽ(z)e−iωt].

3 Estimation of transverse beam deflection

Since inelastic electron-light scattering is typically accompanied by a three-dimensional momentum transfer,
we here estimate the transverse deflection of the electron beam upon passing by the resonator structure.
For an electron energy of 120 keV, a photon energy of about 0.8 eV (corresponding to a wavelength of
1550 nm) and assuming Eϕ = Ez (i.e. electron-photon scattering above a straight waveguide), a single photon
scattering would lead to a deflection of ∼ 1.5µrad. Accordingly, in the case of multi-photon exchange with
N = 250, as shown in Fig. 2d of the main text, a deflection of < 0.4 mrad is expected. For the measurements
presented here, the STEM camera length was chosen such that it enables full beam transmission through
the angle-limiting aperture into the spectrometer.
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4 Integrated photonics platforms for electron beam modulation

Various integrated photonics platforms have been used for controlling manifold quantum systems [5–15].
The current Si3N4-based electron beam phase modulation demonstration could be potentially extended
to other well-established photonic integrated platforms showing the broader applicability. Finite element
method based simulations are performed to calculate the neff of the microresonators with different materials
by sweeping the frequency and changing the waveguide height. The width of the waveguide is kept at
1.5 µm for all materials (Fig. 3). Different shaded regions are calculated by performing simulations at two
different waveguide heights (e.g., solid light-red line GaP: 1500 x 800 nm2, dashed light-red line GaP: 1500
x 400 nm2). It is possible to achieve phase matching for electron kinetic energies ranging from 30 to 180
keV by using different established integrated photonic platforms (AlGaAs [16, 17], GaP [18], 4H-SiC [19],
Diamond [20], LiNbO3 [21], Si3N4 [22], Hydex [22, 23]). Some other prominent platforms, such as Si [24],
AlN [25], Ta2O5 [26], and SiO2 [27] are not shown due to overlapping phase matching, but could also be
considered for implementing the electron beam phase modulation. In addition to phase matching, other
important parameters that also need to be considered are linear propagation loss, light coupling into the
chip and optical power handling.
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Figure 3: Phase matching condition for different materials and optical frequencies. a) For each electron,
the electron velocity determines a phase-matched refractive index value, which is accessible through a wide
range of optical frequencies and material platforms by engineering of the waveguide geometry. The possible
simulated regions of the microresonators’ effective index (quasi-TM mode) with 50 µm radius for different
materials are achieved by varying either the waveguide dimensions (height) or the optical frequency. Each
shaded region shows a possible operating regime for a single integrated platform. Si3N4 could provide phase
matching from 95 to 145 keV, while phase matching below 80 keV could be implemented using 4H− SiC or
LiNbO3. b) The two shaded regions show phase matching windows for geometry or frequency tuning. The
light purple region can be reached by changing the Si3N4 waveguide height from 800 nm to 500 nm while
operating at a single frequency ( 193 THz). The gray-shaded region can be reached by changing the optical
frequency from ∼193 THz to 230 THz.
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