Biologically guided isolation and ADMET profile of new Factor Xa inhibitors from *Glycyrrhiza glabra* roots using *in-vitro* and *in-silico* approaches

Reham S. Ibrahim, ^{*a}, Rahma SR. Mahrous, ^a Rasha M. Abu EL-Khair, ^a Samir A. Ross, ^{b,c} Abdallah A. Omar ^a and Hoda M. Fathy ^a

^a Department of Pharmacognosy, Faculty of Pharmacy, Alexandria, Egypt;

^b National Center for Natural Products Research, University of Mississippi, Thad

Cochran Research Center, Oxford, MS, USA;

^c BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, USA

*Corresponding author. E-mail: rehamsaid84@yahoo.com,

Fig. S1 Scheme for the isolation of 10 compounds from EtOAc subfractions of the roots of G. glabra

Fraction	Concentration (mg/ml)	% Inhibition (%)
Light notucioum	1.5	1.55±0.056
Light petroleum	3	0.69 ± 0.083
	1.5	62.31±0.097
	3	71.94±0.034
EtOA a	1.5	87.26±0.034
LUAC	3	97.93±0.019
n BuOH	1.5	13.08 ± 0.095
II-BUOII	3	21.51±0.04
Rivaroxaban (positive control)	100 nM	88.64±0.76

Table S1. % inhibition of different fractions of *G. glabra* roots extract on FXa*

* Inhibition rate was expressed as mean±SD, n=2

Table S2. In-v	<i>itro</i> % inhibition	of EtOAc subfract	tions of G. glabra o	on FXa enzyme
				•

Subfraction [#] (1 mg/ml)	% inhibition
(A)	$60.94{\pm}1.18$
(B)	61.03±1.99
(C)	63.85±0.18
(D)	65.64±0.45
(E)	77.66±0.66
(F)	84.94±0.82
(G)	76 ± 0.87
(H)	77.39±0.46

Subfractions are arranged according to polarities from the least polar; A to the most polar; H

* Inhibition rate was expressed as mean±SD, n=2

δ H (J in Hz)														
Position	(1)	(2)	(3)	(5)	(6)	(8)	Position	(4)	(7)	(9)	(10)			
2	-	8.15, s	Ha (S): 3.96, t (10.1) Hb (R): 4.31, dd (10.35, 1.1)	5.45, dd (12.76, 3.02)	5.27, dd (13.1, 3.4)	5.43, dd (12.94, 2.87)	C-α	7.61, d (15.36)	7.61, d (15.62)	7.59, d (15.29)	7.68, d (15.35, 9.57)			
3	6.70, s	-	3.44, m	Ha: 2.73, dd (16.92, 3.04) Hb: 3.04, dd (16.94, 12.80)	Ha: 2.63, dd (16.4, 3.1) Hb: 2.93, dd (17.3, 13.0)	Ha: 2.72, dd (16.91, 2.92) Hb: 3.03, dd (16.84, 12.96)	C- β	7.79, d (15.4)	7.96, d (15.71)	7.78, d (15.35, 9.57)	7.80, dd (15.34, 10.04)			
4	-	-	Ha (S): 2.79, dd (15.7, 4.2) Hb (R): 2.90, dd (15.7, 10.7)	-	-	-	C=O	-	-	-	-			
5	7.86, d (8.70)	8.07, d (8.7)	6.77, d (8.3)	7.73, d (8.72)	-	7.72, d (8.73)	1	-	-	-	-			
6	6.89, dd (7.51, 2.23)	7.00, dd, (9.3, 1.65)	6.36, d (8.2)	6.5, dd (8.73, 2.27)	5.99, s	6.5, dd (8.70, 2.29)	2	7.63, d (8.64)	-	7.61, d (8.52)	7.69, d (8.79)			
7	-	-	-	-	-	-	3	6.85, d (8.61)	-	6.84, d (8.41)	7.12, d (8.77)			
8	6.95, d (2.22)	6.92, s	-	6.37, d (2.25)	6.33, d (17.5)	6.36, d (2.30)	4	-	-	-	-			
9	-	-	-	-	-	-	5	6.85, d (8.61)	6.65, d (8.52)	6.84, d (8.41)	7.12, d (8.77)			
10	-	-	-	-	-	-	6	7.63, d (8.64)	7.20, d (8.52)	7.61, d, (8.52)	7.69, d (8.79)			
1'	-	-	-	-	-	-	1'	-	-	-	-			
2'	7.91. d (8.80)	7.56. d (8.7)	-	7.44. d (8.70)	7.30. dd (8.7. 2.8)	7.43. d (8.69)	2'	-	7.51. d (2.10)	-	-			
	6.91. d (8.84)	6.99. d (8.7)	6.24. d (2.0)	7.14. d (8.68)	6.80. dd (8.6. 2.3)	7.11. d (8.68)		6.28. d (2.4)	-	6.57. d (2.39)	6.30. d (2.36)			
4'	-	-	-	-	-	-	4'	-	-	-	-			
5'	6.91, d (8.84)	6.99, d (8.7)	6.32, dd (8.3, 2.1)	7.14, d (8.68)	6.80, dd (8.6, 2.3)	7.11, d (8.68)	5'	6.41, dd (8.86, 2.42)	6.88, d (8.28)	6.64, dd (8.95, 2.48)	6.42, dd (8.85, 2.34)			
6'	7.91, d (8.80)	7.56, d (8.7)	6.86, d (8.4)	7.44, d (8.70)	7.30, dd (8.7, 2.8)	7.43, d (8.69)	6'	7.96, d (8.92)	7.54, dd (8.28, 2.08)	8.02, d (9.01)	7.97, d (8.93)			
OCH3-4'	-	3.83, s	-	-	-	-	OCH3-2	-	3.85, s	-	-			
2"	-	-	-	-	-	-	-	-	-	-	-			
3"	-	-	5.53, d (9.9)	-	-	-	-	-	-	-	-			
4"	-	-	6.61, d (9.9)	-	-	-	-	-	-	-	-			
5"	-	-	1.40, s	-	-	-	-	-	-	-	-			
6"	-	-	1.40, s	-	-	-	-	-	-	-	-			

Table S3. ¹H-NMR spectral data of compounds (1- 10), δ values in ppm, J values in Hz

Table S3. continued

$\delta H (J \text{ in } Hz)$														
Position	(1)	(2)	(3)	(5)	(6) (8)		Position	(4)	(7)	(9)	(10)			
-β-Glu moiety							- β -Glu moiety							
1" 2" 3" 4" 5" 6"	- - - -	- - - -	- - - -	4.94, d (7.94) 3.43- 3.47, m 3.43- 3.47, m 3.43- 3.47, m 3.43- 3.47, m Ha: 3.70, dd (12.05, 5.44) Hb: 3.90 d (11.90, 2.07)			1" - 2" - 3" - 4" - 5" - 6" -		- - - -	5.09, d (6.1) 3.67, m 3.49, m 3.43, m 3.98, d (1.58) Ha: 3.73, m Hb: 3.91, d (12.23)	5.05, d (7.33) 3.67, m 3.49, m 3.42, m 3.97, d (1.62) Ha: 3.71, m Hb: 3.91, d (12.18)			
- p -Api molety							- p -Api molety							
1'''	-	-	-	-	-	5.48, d (1.47)	1'''	-	-	5.48, dd (5.23, 1.62)	5.47, dd (5.66, 1.62)			
2''' 3''' 4'''	- - -	- -	- - -	- -	-	3.96, d (1.52) - Ha: 3.80, d (9.53) Hb: 4.06, d (9.60)	2''' 3''' 4'''		- -	3.67, m - Ha: 3.82, d (9.56)	3.67, m - Ha: 3.81, d (9.59)			
5'''	-	_	-	-	-	3.55, d (2.50)	5'''	-	-	Hb: 4.05, t (10.15) 3.55, d (2.17)	Hb: 4.05, dd (11.76, 9.61) 3.55, d (2.17)			

δ C (ppm)													
Position (1) (2) (3) (5) (6) (8)	Position	(4)	(7)	(9)	(10)								
2 162.70 153.45 69.98 80.85 79.98 80.89	C-α	118.54	120.77	117.94	120.17								
3 104.49 124.86 31.46 45.11 46.47 45.06	C-β	145.72	141.09	146.52	144.94								
4 176.39 175.77 30.38 193.35 192.59 193.36	C=O	193.74	191.65	194.02	193.48								
5 126.50 128.53 129.09 130.01 162.94 130.02	1	128.01	121.63	127.82	130.61								
6 114.89 115.75 108.78 112.04 102.06 112.00	2,6	131.96	150.07	132.15	131.57								
7 162.53 163.34 151.53 167.11 164.97 166.99	3, 5	117.10	139.84	117.09	117.93								
8 102.51 103.21 109.94 104.01 100.96 103.99	4	161.68	150.90	161.81	161.02								
9 157.44 158.77 149.58 165.55 166.84 165.53	5	117.10	112.90	117.09	117.93								
10 116.09 118.59 114.65 115.08 103.90 115.10	6	131.96	120.55	132.15	131.57								
1' 121.82 125.63 120.04 134.58 131.58 134.48	1'	114.71	131.98	116.67	114.81								
2' 128.16 131.08 154.51 128.92 129.06 128.98	2'	166.48	116.53	166.92	165.00								
3' 115.96 114.48 103.16 117.94 116.42 117.74	3'	104.06	146.72	105.03	103.98								
4' 160.74 160.41 154.88 159.36 159.01 159.21	4'	166.48	152.27	164.96	167.69								
5' 115.96 114.48 107.83 117.94 116.42 117.74	5'	109.55	116.10	110.95	109.38								
6' <u>128,16</u> <u>131,08</u> <u>128,29</u> <u>128,92</u> <u>129,06</u> <u>128,98</u>	6'	133.51	123.57	133.14	133.61								
OCH3-4' - 55.63	OCH3-2	-	61.90	-	-								
2" - 75.86	-	-	-	-	-								
3" - 129.24	-	-	-	-	-								
4" 116.83	-	-	-	-	-								
5" 27.61	-	-	-	-	-								
6" 27.41	-	-	-	-	-								
- β -Glu moiety	- β -Glu moiety												
1" 102.32 105.45 100.92	1"	-	-	100.03	100.51								
2" 75.04 74.90 78.73	2"	-	-	78.63	78.79								
3" 78.11 77.36 78.75	3"	-	-	78.25	78.30								
4" 71.50 71.34 71.52	4"	-	-	71.31	71.51								
5" 78.31 78.74 78.23	5"	-	-	78.74	78.71								
6" 62.64 62.61 62.61	6"	-	-	62.47	62.64								
- β -Api moiety	- β -Api moiety												
1'''	1""	-	-	109.45	110.93								
2'''	2""	-	-	78.65	78,79								
3'''	3"	-	-	80.89	80.88								
4"" 75.60	4'''	-	-	75.59	75.69								
5''' 66.18	5'''	-	-	66.11	66.19								

Table S4. ¹³C-NMR spectral data of compounds (1- 10), δ values in ppm

Fig. S2 ¹H-NMR spectrum of 7, 4'-dihydroxyflavone (1) in DMSO, d6 at 400 MHz

Fig. S3 ¹³C-DEPTQ spectrum of 7, 4'-dihydroxyflavone (1) in DMSO, d6 at 100 MHz (with expansion at 162.3-162.9 ppm)

Fig. S4 HRESIMS spectrum of 7, 4'-dihydroxyflavone (1) in negative mode

Fig. S5 ¹H-NMR spectrum of 7-hydroxy-4'-methoxyisoflavone (2) in Acetone, d6 at 500 MHz

Fig. S6 ¹³C-DEPTQ spectrum of 7-hydroxy-4'-methoxyisoflavone (2) in Acetone, d6 at 100 MHz

Fig. S7 HRESIMS spectrum of 7-hydroxy-4'-methoxyisoflavone (2) in negative mode

Fig. S8 ¹H-NMR spectrum of 3-R-glabridin (3) in CDCl₃ at 500 MHz

Fig. S9 ¹³C-NMR spectrum of 3-R-glabridin (3) in CDCl₃ at 125 MHz with expansion at (127.5-129.5 ppm)

Fig. S10 HRESIMS spectrum of 3-R-glabridin (3) in negative mode

Fig. S11 ¹H-NMR spectrum of isoliquirtigenin (4) in CD₃OD at 400 MHz

Fig. S12 ¹³C-DEPTQ spectrum of isoliquirtigenin (4) in CD₃OD at 100 MHz

Fig. S13 HRESIMS spectrum of isoliquirtigenin (4) in negative mode

Fig. S14 ¹H-NMR spectrum of liquirtin (5) in CD₃OD at 400 MHz

Fig. S15¹³C-DEPTQ spectrum of liquirtin (5) in CD₃OD at 100 MHz

Fig. S16 HRESIMS spectrum of liquirtin (5) in negative mode

Fig. S17 ¹H-NMR spectrum of naringenin 5-O-glucoside (6) in CD₃OD at 400 MHz

Fig. S18 ¹³C-DEPTQ spectrum of naringenin 5-O-glucoside (6) in CD₃OD at 100 MHz

Fig. S19 HRESIMS spectrum of naringenin 5-O-glucoside (6) in negative mode

Fig. S20 ¹H-NMR spectrum of 3,3',4,4'-tetrahydroxy-2-methoxychalcone (7) in CD₃OD at 400 MHz

Fig. S21 ¹³C-DEPTQ spectrum of 3,3',4,4'-tetrahydroxy-2-methoxychalcone (7) in CD₃OD at 100 MHz with expansion at (115-123 ppm)

Fig. S22 HRESIMS spectrum of 3,3',4,4'-tetrahydroxy-2-methoxychalcone (7) in negative mode

Fig. S23 ¹H-NMR spectrum of liquiritinapioside (8) in CD₃OD at 500 MHz

Fig. S24 ¹³C-NMR spectrum of liquiritinapioside (8) in CD₃OD at 125 MHz with expansion at (112-115 ppm)

Fig. S25 HRESIMS spectrum of liquiritinapioside (8) in negative mode

Fig. S26 ¹H-NMR spectrum of isoliquiritigenin-4'- O- β-D-apiosylglucoside (9) in CD₃OD at 400 MHz

Fig. S27 ¹³C-NMR spectrum of isoliquiritigenin-4'- O- β-D-apiosylglucoside (9) in CD₃OD at 125 MHz with expansion at (115-130 ppm)

Fig. S28 HRESIMS spectrum of isoliquiritigenin-4'- O- β-D-apiosylglucoside (9) in negative mode

Fig. S29 ¹H-NMR spectrum of isoliquiritigenin-4-O-β-D-apiosylglucoside (10) in CD₃OD at 400 MHz

Fig. S30 ¹³C-NMR spectrum of isoliquiritigenin-4-O-β-D-apiosylglucoside (10) in CD₃OD at 125 MHz with expansion at (115-130 ppm)

Fig. S31 HRESIMS spectrum of isoliquiritigenin-4-O-β-D-apiosylglucoside (10) in negative mode

Fig. S32 Absorbance-time curves of FXa mediated hydrolysis of chromogenic substrate using different concentrations of **A**. 7, 4'-dihydroxyflavone, **B**. 7-hydroxy-4'-methoxyisoflavone, **C**. 3-R-glabridin, **D**. isoliquirtigenin, **E**. liquirtin, **F**. naringenin 5-O-glucoside, **G**. 3,3',4,4'-tetrahydroxy-2 methoxychalcone, **H**. liquirtinapioside, **I**. licraside and **J**. isoliquirtinapioside

Table S5. ADMET	profile of com	oounds isolated from	licorice compared	to synthetic FXa inhibitors
-----------------	----------------	----------------------	-------------------	-----------------------------

No	Compound	#stars ^a	MW ^b	HBD	HBAd	QP logPo/w ^e	QP logS ^f	QPP Caco ^g	CNS ^h	QP logBB ⁱ	QPP MDCK ^j	% Human Oral Absorption ^k	QP Log Khsa ^L	#metab ^m	QP Log HERG ⁿ	Rule Of 5º	Rule Of 3 ^p
A	Rivaroxaban*	0	435.881	1	10.7	2.245	-5.128	425.979	-1	-0.87	837.713	87.151	-0.291	3	-5.884	0	0
В	Apixaban*	0	459.504	2	10.25	2.719	-6.394	171.933	-2	-1.608	73.767	82.875	0.314	4	-6.326	0	1
С	Edoxaban*	0	548.058	1.5	13.5	1.782	-4.603	27.918	-2	-1.347	59.787	37.343	-0.324	6	-5.585	2	0
D	Betrixaban*	0	451.911	2	7.25	4.048	-5.424	503.108	-2	-1.112	512.497	100	0.424	2	-5.84	0	0
1	7, 4'-Dihydroxyflavone	0	254.242	2	4	1.817	-3.271	269.304	-2	-1.031	119.815	81.084	-0.073	2	-5.247	0	0
2	7-hydroxy-4'-methoxyisoflavone	0	268.268	1	4	2.585	-3.422	1274.915	0	-0.448	643.225	100	0.019	2	-5.133	0	0
3	3-R- Glabridin	0	380.483	2	3	5.096	-6.465	1891.682	0	-0.269	985.349	100	1.133	3	-5.129	1	1
4	Isoliquiritigenin	0	256.257	2	3.25	2.074	-3.078	174.841	-2	-1.562	75.117	79.226	-0.084	3	-5.389	0	0
5	Liquiritin	0	418.399	5	12.75	-0.31	-3.232	21.721	-2	-2.737	7.883	49.06	-0.711	7	-5.672	0	2
6	Naringenin 5-O-glucoside	0	434.399	6	13.5	-0.7	-2.996	17.242	-2	-2.898	6.142	32.022	-0.823	8	-5.587	1	2
7	3,3',4,4'-Tetrahydroxy-2 methoxychalcone	0	302.283	4	5.75	0.949	-2.657	58.255	-2	-2.183	22.899	64.096	-0.419	5	-5.105	0	0
<u>8</u>	Liquiritin apioside	<u>6</u>	550.515	7	18.6	-1.293	-2.999	7.111	-2	-3.791	2.358	0	-1.166	9	-6.073	3	2
<u>9</u>	Licraside	7	550.515	7	17.6	-1.054	-2.294	4.771	-2	-4.231	1.532	0	-1.238	8	-6.056	3	2
<u>10</u>	Isoliquirtin apioside	<u>7</u>	550.515	7	17.6	-1.036	-2.318	4.621	-2	-4.246	1.48	0	-1.228	8	-6.043	3	2

*Synthetic FXa inhibitors

a) ADME-compliance score – druglikeness parameter (range 0 to 5). b) Molecular Weight of the molecule (range: 130.0 to725.0)

c) Hydrogen Bond Donor (range: 0.0 to 6.0). d) Hydrogen Bond Acceptor (range: 2.0 to 20.0)

e) Predicted octanol/water partition coefficient (range: -2.0 to 6.5). f) Predicted aqueous solubility (range: -6.5 to 0.5)

g) Predicted Caco cell permeability (range: < 25 is poor and >500 is great). h) Predicted central nervous system activity (-2 (inactive) to +2 (active)).

i) Predicted brain/blood partition coefficient (range: -3.0 to 1.2). j) Predicted apparent MDCK cell permeability (range: <25 is poor and >500 is great).

k) Percentage of human oral absorption (range: <25 is poor and >80% is high). L) Prediction of binding to human serum albumin (range: -1.5 to 1.5).

m) Number of likely metabolic reactions (range: 1 to 8). n) Predicted IC₅₀ value for blockage of HERG K+ channels (concern < -5).

o) Number of violations of Lipinski's rule of five (maximum is 4). p) Number of violations of Jorgensen's rule of three (maximum is 3).