Sulfur quantum dot-based "ON-OFF-ON" fluorescence platform for detection and bioimaging of Cr(VI) and ascorbic acid in complex environmental matrices and biological tissues

Mengke Xia¹, He Mei², Qiuhui Qian¹, Randy A. Dahlgren², Ming Gao^{1*}, Xuedong Wang^{1#}

¹ School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

² College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China

*Corresponding author: Xuedong Wang, Email:zjuwxd@163.com, Phone: +86-5126809 5950.
Fax: +86-512-6809 5950

*Co-coresponding author: Ming Gao, Email:gaoming@usts.edu.cn

Submitted to RSC Advances

March 05, 2021

Methods	Linear range (µM)	Detection limit (µM)	Ref.
CD fluorescence sensor	2-180	2.10	1
Dual emissive carbon dots	2-300	0.40	2
Cobalt(II)-doped carbon dots	5-125	1.17	3
GQD-modified membranes	1-500	0.19	4
Au-Ag-Pt three material electrodes	2-200	0.90	5
SQD-based "ON-OFF"	5-1500	1.50	This work

Table S1. Comparison of SQDs-based "ON-OFF" method with previously reported methods for Cr(VI) detection

Methods	Linear range (µM)	Detection limit (µM)	Ref.
CdTe quantum dots	10-250	1.30	6
AuNCs-PbS quantum dots	3.0-40	1.50	7
P, N-CDs quantum dots	5.0-200	1.35	8
N, S co-doped carbon quantum dots/Fe ³⁺	10-200	4.96	9
LaF ₃ :Ce, Tb nanoparticles	8-100	2.40	10
Carbon dot nanosensor	30-100	1.20	11
SQD/Cr(VI)-based "ON-OFF-ON"	10-5500	3.00	This work

Table S2. Comparison of SQDs-based "ON-OFF" method with previously reported methods for

 AA detection

Fig. S1. FT-IR of SQDs

Fig. S2. (A) Effects of pH on the FIs of SQDs. (B) FI stability of SQDs tested

Note: (1) FI indicates abbreviation for fluorescence intensity. (2) All values were reported as

mean \pm std (n = 3).

Fig. S3. (A) Effects of reaction time on the FIs of the SQDs/Cr(VI) system. (B) Effects of pH on the FIs of SQDs and SQDs/Cr(VI) systems

Note: (1) Cr(VI) concentration was 25 mM in the SQDs/Cr(VI) system. (2) All values were reported as mean ±std (n = 4).

Fig. S4. (A) UV-Vis spectrum of SQDs in the presence of different concentrations Cr(VI); (B)

Zeta potential of SQDs and SQDs/Cr(VI) Note: Cr(VI) concentrations was 25 mM

Fig. S5. (A) Effects of reaction time on the FIs of the SQDs/Cr(VI)/AA system. (B) Effects of pH on the FIs of the SQDs and SQDs/Cr(VI)/AA systems

Note: (1) Cr(VI) and AA concentrations were 25 and 50 mM, respectively. (2) All values were reported as mean \pm std (n = 4).

Fig. S6. Effects of the SQDs amount on HeLa cell viability

Notes: (1) Incubation time of HeLa cells was 24 h after dialysis with fortified volumes of 0, 5, 10, 20, 24, 28, 32, 36, 40 and 50 μ L for groups 1-10, respectively, in a total constant volume of 200 μ L. (2) All values were reported as mean ±std (n = 8).

Fig. S7. Fluorescence imaging of HeLa cell with (a-c) and without SQDs (d-f)

References

- C. Li, W. Liu, X. Sun, W. Pan and J. Wang, Sens. Actuators B: Chem., 2017, 252, 544-553.
- 2. Y. Ma, Y. Chen, J. Liu, Y. Han, S. Ma and X. Chen, Talanta, 2018, 185, 249-257.
- H. Y. Zhang, Y. Wang, S. Xiao, H. Wang, J. H. Wang and L. Feng, Biosens. Bioelectron., 2017, 87, 46-52.
- P. M. Carrasco, I. García, L. Yate, R. Tena Zaera, G. Cabañero, H. J. Grande and V. Ruiz, Carbon, 2016, 109, 658-665.
- 5. D. Li, J. Li, X. Jia, Y. Xia, X. Zhang and E. Wang, Anal. Chim. Acta, 2013, 804, 98-103.
- 6. J. Zhu, Z.-J. Zhao, J.-J. Li and J.-W. Zhao, J. Lumin., 2017, 192, 47-55.
- P. Zhao, K. He, Y. Han, Z. Zhang, M. Yu, H. Wang, Y. Huang, Z. Nie and S. Yao, Anal. Chem., 2015, 87, 9998-10005.
- X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang and C. Dong, Anal Chim Acta, 2017, 968, 85-96.
- X. Luo, W. Zhang, Y. Han, X. Chen, L. Zhu, W. Tang, J. Wang, T. Yue and Z. Li, Food Chem., 2018, 258, 214-221.
- 10. C. Mi, T. Wang, P. Zeng, S. Zhao, N. Wang and S. Xu, Anal. Methods, 2013, 5, 1463.
- M. Zheng, Z. Xie, D. Qu, D. Li, P. Du, X. Jing and Z. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 13242-13247.