
Swarm v3: towards tera-scale sequence clustering
Table of Contents

1. Disclaimer
2. Methods
3. Benchmark
4. Plot creation
5. Supplementary Figures

5.1. Supp. Fig. 1: Performance improvement of swarm version 3 relative to version 2
5.2. Supp. Fig. 2: Detailed speed of swarm version 3 relative to version 2
5.3. Supp. Fig. 3: Detailed memory footprint requirements of swarm version 3 relative to version 2

6. References

Frédéric Mahé, Lucas Czech, Alexandros Stamatakis, Christopher Quince, Colomban de Vargas, Micah Dunthorn, and
Torbjørn Rognes

1 Disclaimer

The purpose of this document is to provide the reader with details on the bioinformatics methods used to prepare this
paper. The code snippets and shell commands presented here were executed on a CentOS Linux release 7.5, and might
have to be adapted to your particular system. Use them carefully.

2 Methods

Swarm 3.0 introduces a new hash function to identify similar sequences. Swarm previously used the Google CityHash
library (https://github.com/google/cityhash) to perform hashing of sequences, but we have now switched to a simpler hash
function using a tabulated hashing approach (Zobrist, 1970). The hash function is initialized with a set of 4n pseudo-
random 64-bit constants representing any of the four nucleotides in any of the n positions in the longest input sequence.
These constants are then used to compute the hash value of each sequence via a bit-wise XOR. This results in a fast hash
function that can be updated incrementally, and has been mathematically proved to be of high quality (3-independent and
universal). During an incremental update, small changes in the sequence (e.g., a single base substitution) require just a few
operations on the hash value (e.g., two XOR operations) instead of a full recalculation. Swarm generates all the so-called
microvariants of each sequence in order to find all other sequences with distance 1 that should be linked during clustering.
Each microvariant of a sequence involves only either one single base substitution, single base insertion or single base
deletion. When generating microvariants, swarm now avoids generating the full variant sequences, and only generates the
hash of each variant, which can easily be performed in an incremental manner. This results in a substantial speed
improvement over swarm version 2. All input sequences were initially hashed and stored in a hash table. In swarm version
3, sequences are now additionally recorded in an efficient Bloom filter (Putze et al., 2009), allowing swarm to quickly
reject requests for sequences that are not present.

3 Benchmark

The "18S V4 Neotropical Soils" and "18S V9 TARA OCEANS" fasta files are available on demand (1.5 GB of gziped
data in total).

Computational experiments were performed on the IFB cluster (France), using DELL C6320 nodes with 2x Intel Xeon
E5-2695v3 (2.3GHz, 14 cores), 256GB RAM, and CentOS Linux release 7.5.1804 (see the cluster description).

To ensure comparability, each swarm 3 vs swarm 2 comparison was executed sequentially on the same node. Swarm being
a deterministic algorithm, it normally shows very little variance in execution times when running in a single-user
environment (typically less than 2% of variance). However, in multi-user environments such as a busy cluster, CPU and
I/O load can vary significantly and affect runtime comparisons. To mitigate that we performed 30 repeats per setting and
excluded outliers (see R code in the next section).

cd ${HOME}

set up

mkdir -p swarm3_benchmark/{data,results,src}

cd ./swarm3_benchmark/

https://github.com/google/cityhash
https://ifb-elixirfr.gitlab.io/cluster/doc/cluster-desc/

4 Plot creation
Outlier values for the different metrics and for each set of 30 repeats were detected and excluded following Tukey's
method (Tukey 1977, pp. 43-44). Points represent average values, and error-bars represent 95%-confidence intervals.

produce the subsampled files

(cd ./data/

 SSU_V9="18S_V9_496_samples_100.fas"

 SSU_V4="18S_V4_175_samples_10M_100.fas"

 module purge && module load gcc/9.3.0

 export LC_ALL=C

 VSEARCH="${HOME}/src/vsearch/bin/vsearch"

 for FASTA_INPUT in "${SSU_V4}" "${SSU_V9}" ; do

 for PERCENTAGE in 1 10 20 30 40 50 60 70 80 90 ; do

 "${VSEARCH}" \

 --fastx_subsample "${FASTA_INPUT}" \

 --randseed 1 \

 --sample_pct ${PERCENTAGE} \

 --sizein \

 --sizeout \

 --fastaout "${FASTA_INPUT/_100.fas}_${PERCENTAGE}.fas"

 done

 done

md5sum -c MD5SUM

)

create swarm binaries

(cd ./src/

 module purge && module load gcc/9.3.0

 git clone https://github.com/torognes/swarm.git

 cd swarm/src/

 make -j

 mv ../bin/swarm ../../swarm3

 make clean

 git checkout tags/v2.2.2

 make -j

 mv ../bin/swarm ../../swarm2

 make clean

 git checkout master

 cd ../..

 ./swarm2 -v

 ./swarm3 -v

 rm -rf ./swarm/

)

swarm clustering (for each condition, swarm 2 and 3 run

sequentially, allowing for direct comparison)

(cd ./src/

 GLOBAL_MEMORY=72

 for FLAVOR in normal fastidious ; do

 for FASTA_FILE in $(ls ../data/*.fas | sort -V) ; do

 NUMBER_OF_SEQUENCES=$(grep -c "^>" "${FASTA_FILE}")

 NUMBER_OF_NUCLEOTIDES=$(grep -v "^>" "${FASTA_FILE}" | tr -d "\n" | wc -c)

 for THREADS in 16 8 4 1 ; do

 for ITERATION in {1..30} ; do

 sbatch \

 --cpus-per-task="${THREADS}" \

 --mem=${GLOBAL_MEMORY}G \

 ./swarm.sh \

 "${FASTA_FILE}" \

 "${THREADS}" \

 "${ITERATION}" \

 "${NUMBER_OF_SEQUENCES}" \

 "${NUMBER_OF_NUCLEOTIDES}" \

 "${FLAVOR}"

 done

 done

 done

 done

)

R version 3.5.2 (2018-12-20) -- "Eggshell Igloo"

library(tidyverse)

library(RColorBrewer)

library(scales)

setwd("${HOME}/swarm3_benchmark/results/")

input <- "all.table"

mycolumns <- c("method", "flavor", "dataset", "percentage",

 "sequences", "nucleotides", "threads", "iteration",

 "speed", "memory", "CPU")

detect outliers (Tukey method, not influenced by extreme values)

outlier on the upper side = 3rd quartile + 1.5 * IQR

outlier on the lower side = 1st quartile – 1.5 * IQR

IQR (interquartile range) = 3rd quartile – 1st quartile

is_outlier <- function(x) {

 return(x < quantile(x, 0.25) - 1.5 * IQR(x) | x > quantile(x, 0.75) + 1.5 * IQR(x))

}

load the data

read_tsv(input, col_names = mycolumns) %>%

 select(-CPU) %>%

 mutate(threads = as.factor(threads)) %>%

 mutate(flavor = if_else(flavor == "normal", "default", "fastidious")) %>%

 mutate(marker = if_else(grepl("^18S_V4", dataset), "18S rRNA V4", "18S rRNA V9")) %>%

 gather("metric", "value", speed, memory) %>%

 spread(method, value) %>%

 mutate(ratio = if_else(metric == "speed", swarm2 / swarm3, swarm3 / swarm2)) %>%

 select(-swarm2, -swarm3) %>%

 group_by(marker, flavor, sequences, threads, metric) %>%

 mutate(outlier = is_outlier(ratio),

 ratio_mean = mean(ratio),

 ratio_conf_int = 1.96 * sd(ratio) / sqrt(length(ratio))) %>%

 filter(outlier == FALSE) %>%

 ungroup() -> d

number of thread levels and color palette

n_blues_levels <- brewer.pal.info["Blues",]$maxcolor

n_thread_levels <- d %>% pull(threads) %>% nlevels()

n <- n_blues_levels - n_thread_levels

thread_colors <- brewer.pal(n_blues_levels, "Blues")[-(1:n)]

thread_colors <- c("#4292C6", "#2171B5", "#08519C", "#000000") # replace darkest shade with black

normality tests (Shapiro-Wilk, very sensitive to deviation, n = 40)

d %>%

 filter(metric == "speed") %>%

 group_by(marker, flavor, sequences, threads) %>%

 mutate(p_values = shapiro.test(ratio)$p.value) %>%

 ungroup() %>%

 filter(p_values <= 0.01) %>%

 count(marker, flavor, sequences, threads)

some conditions are still strictly deviating from a normal

distribution, even after removing outliers

--- summary plot

speed, memory footprint for 18SV4 (default parameters)

d %>%

 filter(marker == "18S rRNA V4" & flavor == "default") %>%

 mutate(metric = case_when(

 metric == "memory" ~ "memory footprint",

 TRUE ~ metric)) %>%

 mutate(metric = fct_rev(metric)) %>%

 ggplot(aes(x = sequences / 10**6,

 y = ratio_mean,

 group = threads,

 colour = threads)) +

 geom_line() +

 geom_pointrange(aes(ymin = ratio_mean - ratio_conf_int,

 ymax = ratio_mean + ratio_conf_int),

 position = position_dodge(width = 0.4)) +

 facet_grid(metric ~ ., scales = "free_y") +

 expand_limits(x = 0, y = c(0, 0.6)) +

 scale_y_continuous(name = "swarm 3 vs. swarm 2 (performance ratios)") +

 scale_x_continuous(name = "number of sequences (in millions)") +

 theme_bw(base_size = 16) +

 theme(legend.justification = c(0, 0),

 legend.position = c(0.725, 0.02),

 legend.background = element_rect(colour = "gray90", size = 1),

 legend.text = element_text(size = 10),

 legend.title = element_text(size = 12)) +

 scale_colour_manual(values = thread_colors,

 guide = guide_legend(reverse = TRUE))

ggsave("figureS1_18SV4_swarm_default_all_metrics.png",

 width = 4.5, height = 5.5, units = "in", dpi = "print")

-- detailled plots

speed plot

d %>%

 filter(metric == "speed") %>%

 ggplot(aes(x = sequences / 10**6,

 y = ratio_mean,

 group = threads,

 colour = threads)) +

 geom_line() +

 geom_pointrange(aes(ymin = ratio_mean - ratio_conf_int,

 ymax = ratio_mean + ratio_conf_int),

 position = position_dodge(width = 0.4)) +

 facet_grid(flavor ~ marker) +

 expand_limits(x = 0, y = 0) +

 scale_y_continuous(name = "swarm 3's speed\n(times faster than swarm 2)") +

 scale_x_continuous(name = "number of sequences (in millions)") +

 theme_bw(base_size = 16) +

 theme(legend.justification = c(0, 0),

 legend.position = c(0.01, 0.01),

 legend.background = element_rect(colour = "gray90", size = 1),

 legend.text = element_text(size = 10),

 legend.title = element_text(size = 12)) +

 scale_colour_manual(values = thread_colors,

 guide = guide_legend(reverse = TRUE))

ggsave("figureS2_speedup.png", dpi = "print")

memory footprint plot (no visible dependency to thread number)

d %>%

 filter(metric == "memory") %>%

 ggplot(aes(x = sequences / 10**6,

 y = ratio_mean,

 group = threads,

 colour = threads)) +

 geom_line() +

 geom_pointrange(aes(ymin = ratio_mean - ratio_conf_int,

 ymax = ratio_mean + ratio_conf_int),

 position = position_dodge(width = 0.4)) +

 facet_grid(flavor ~ marker) +

 coord_cartesian(ylim = c(0, 1)) +

 expand_limits(x = 0) +

 scale_y_continuous(name = "swarm 3's memory footprint\n(compared with swarm 2)") +

 scale_x_continuous(name = "number of sequences (in millions)") +

 theme_bw(base_size = 16) +

 theme(legend.justification = c(0, 0),

 legend.position = c(0.01, 0.01),

 legend.background = element_rect(colour = "gray90", size = 1),

 legend.text = element_text(size = 10),

 legend.title = element_text(size = 12)) +

 scale_colour_manual(values = thread_colors,

 guide = guide_legend(reverse = TRUE))

ggsave("figureS3_memory_footprint.png", dpi = "print")

quit(save = "no")

5 Supplementary Figures

5.1 Supp. Fig. 1: Performance improvement of swarm version 3 relative to version 2

The speed (top) and memory footprint (bottom) of swarm v3 relative to swarm v2 is shown. The relative performance is
indicated on the vertical axis, while the number of sequences is indicated on the horizontal axis. Performance was
assessed on a dataset of 10.6 million unique SSU-rRNA V4 sequences with an average length of 380 bp. Analyses were
performed by subsampling at 1% and at 10% intervals from 10% to 90% as well as on the full dataset. The experiments
were run on 1, 4, 8 or 16 cores as indicated by the light blue to dark blue colour, 30 repeats per condition. The fastidious
option was disabled. Vertical bars represent 95%-confidence intervals.

5.2 Supp. Fig. 2: Detailed speed of swarm version 3 relative to version 2

The four panels show the speed of swarm v3 relative to swarm v2 using the default non-fastidious clustering mode (top)
and the optional fastidious clustering mode (bottom) on SSU-rRNA V4 sequences (left) and the shorter V9 sequences
(right). The relative performance is indicated on the vertical axis, while the number of sequences is indicated on the
horizontal axis. Performance was assessed using a dataset of 10.6 million unique SSU-rRNA V4 sequences with an
average length of 380 bp (left), and on a dataset of 10.6 million unique SSU-rRNA V9 sequences with an average length
of 130 bp (right). Analyses were performed by subsampling at 1% and at 10% intervals from 10% to 90% as well as on
the full datasets. The experiments were run on 1, 4, 8 or 16 cores as indicated by the light blue to dark blue colour, 30
repeats per condition. Vertical bars represent 95%-confidence intervals.

5.3 Supp. Fig. 3: Detailed memory footprint requirements of swarm version 3 relative to version 2

The four panels show the memory footprint of swarm v3 relative to swarm v2 using the default non-fastidious clustering
mode (top) and the optional fastidious clustering mode (bottom) on SSU-rRNA V4 sequences (left) and the shorter V9
sequences (right). The relative memory usage is indicated on the vertical axis, while the number of sequences is indicated
on the horizontal axis. The performance was analysed using a dataset of 10.6 million unique SSU-rRNA V4 sequences
with an average length of 380 bp (left), and on a dataset of 10.6 million unique SSU-rRNA V9 sequences with an average
length of 130 bp (right). Analyses were performed by subsampling at 1% and at 10% intervals from 10% to 90% as well
as on the full dataset. The experiments were run with 1, 4, 8 or 16 cores as indicated by the light blue to dark blue colour,
30 repeats per condition. Vertical bars represent 95%-confidence intervals.

6 References

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. 2015. Swarm v2: highly-scalable and high-resolution amplicon
clustering. PeerJ 3:e1420 https://doi.org/10.7717/peerj.1420

Putze F, Sanders P, Singler J (2009) Cache-, Hash- and Space-Efficient Bloom Filters. Journal of Experimental
Algorithmics, 14, 4. https://doi.org/10.1145/1498698.1594230

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.r-project.org/.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ
4:e2584 https://doi.org/10.7717/peerj.2584

Tukey, John Wilder (1977) Exploratory Data Analysis. Addison-Wesley. ISBN 978-0-201-07616-5.

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686,
https://doi.org/10.21105/joss.01686

Zobrist AL (1970) A New Hashing Method with Application for Game Playing. Tech. Rep. 88, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, USA. http://digital.library.wisc.edu/1793/57624

Date: 2021-06-30 mer. 00:00
Author: Frédéric Mahé
Created: 2021-06-30 mer. 12:02
Validate

https://doi.org/10.7717/peerj.1420
https://doi.org/10.1145/1498698.1594230
https://www.r-project.org/
https://doi.org/10.7717/peerj.2584
https://doi.org/10.21105/joss.01686
http://digital.library.wisc.edu/1793/57624
http://validator.w3.org/check?uri=referer

