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1 The Zipf’s law and its relation to Pareto

The Zipf’s power-law is a power-law discrete distribution based on ranks whose probability
mass function is given by:

f(k;x, I) =
1/ks

H(I, s)
= Czk

−s

where I is the number of elements, k the vector of their ranks and s the coefficient char-
acterizing the distribution. H(I, s) is the generalized harmonic series and Cz is equal to
1/H(I, s).

The estimation of s is not available in closed form and it is necessary to estimate it
through recursive optimization methods. We used the stats4::mle R function to compute
the estimate of s as the value that maximizes the likelihood function. We used Nelder and
Mead (1965) optimization method (the default of optim function) which uses the concept of
simplex to approximates a local optimum.

Both Pareto and Zipf distributions are simple power laws with negative exponent and
Zipf can be derived from the Pareto distribution if X is a Pareto random variables and its
values are binned into I ranks.

Specifically, the Pareto’s density function f(x) is a power-law:

f(x) = αmαx−(α+1) = Cpx
−β

where Cp = αmα and the parameter of a generic power-law β is equal to α + 1.
Then, the mean of the k-th random variable X distributed as Zipf is equal to E[Xk] ∼

C1 × k−s with the meaning that there are k variables with the expected value higher than
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this quantity. We obtain that Pr[X ≥ C1 × k−s] = C2 × k and given y = k−s and deriving
the distribution function the result is P [X = y] ∼ y−1+(1/s) = y−β. So from the relationships
between α and β and between β and s we obtain:

β = α + 1 = 1 + 1/s⇒ α = 1/s

2 Banchmarked methods

Count per million (CPM). This method simply divides read counts by the sequencing
depth defined as the sum of the expression of the genes per cell. Each count is then multiplied
by a million to make normalized count not too much compressed. Usually, the base 2
logarithm of the normalized pseudo-count is taken, defining the logCPM values:

x̃ij = log2

(xij × 106

Nj

+ 1
)

with Nj =
∑

i xij the sum of the counts of cell j.

Centered Log-Ratio (CLR). CLR is similar to logCPM with the difference that it di-
vides pseudo-counts by the geometric mean of each cell. Given gmxj+1 the geometric mean
of the j-th cell:

gmxj+1 =
( n∏
i=1

(xij + 1)
) 1

n

the normalized counts are:
x̃ij = log

( xij
gmxj+1

+ 1
)

scran. scran is based on a cell pooling strategy. Given the global reference x defined as:

x =
1

J

∑
j

xij, i = 1, ..., n, j = 1, ..., J

and k overlapping groups of cells, scran estimates the size factor SFpk of each pool under
the assumption that every SFpk is a linear combination of the size-factors of the cells that
belong to the pool:

∀ poolk :
∑
j∈pk

xij =
[
x1pk , ..., xnpk

]
SFpk = Median

(x1pk
x1

, ...,
xnpk
xn

)
=
∑
j∈pk

SFj

Solving the equations, we obtain size factors for each cell and define the normalized values
as:

x̃ij = log
( xij
SFj

+ 1
)
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DESeq2 Deseq2 uses as reference the geometric means of the of gene across cells. For
every gene i:

gmxi =
( J∏
j=1

xij

) 1
J

Then each count is divided by its geometric mean and the median of these ratios is the
size factor for the sample j.

SFj = Median
( x1j
gmx1

, ...,
xnj
gmxn

)
The normalized counts are obtained by taking the log of the ratio of each counts and its

size factor:
x̃ij = log2

( xij
SFj

+ 1
)

Trimmed Mean of M-values (TMM). TMM (Robinson and Oshlack, 2010) defines the
log-fold-changes (M) and absolute expression levels (A) between each cell and a reference
(by default the cell whose upper quartile is closest to the mean upper quartiles across cells):

M
(r)
ij = log2

(xij/Nj

xir/Nr

)
A

(r)
ij =

1

2
log2(xij/Nj ∗ xir/Nr)

to apply a trimming procedure. By default the method trims the 30% of highest and
lowest values for Mij and 5% of highest and lowest values for Aij. After the trimming, the
mean of Mij weighted by the inverse of the approximate asymptotic variances is used to
normalize the counts:

log2(SF
(r)
j ) =

∑
i∈I∗ M

(r)
ij w

(r)
ij∑

i∈I∗ w
(r)
ij

w
(r)
ij =

Nj − xij
Njxij

+
Nr − xir
Nrxir

x̃ij = log2

( xij
SFjNj

+ 1
)

where I∗ is the set of genes with valid Mij and Aij values.

Linnorm. Linnorm (Yip et al., 2017) filter genes according to their sparseness, variability
and skewness in order to identify a set of stable genes. Then, given Rij =

xij
Nj

it defines the

log of the normalized pseudo-counts as follow:

Tij = ln(λRij + 1)
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The purpose is to identify the λ (dataset-specific) that minimize the deviation from ho-
moscedasticity and normality:

F (λ) = V (λ)2 + S(λ)2

λ = argmin(F (λ))

where V (λ) represents the deviation of Tij from homoscedasticity and S(λ) the deviation

from the skewness of the dataset. Once λ̂ has been obtained, Linnorm uses the quantities
Gij = ln(λ̂Rij) to define n regression models, gi = mjxij+cj, where gi is the mean expression
and xij the sample’s expression. Model parameters, m and c, are updated with the equations
mupdated = µ(m − 1) + 1 and cupdated = c × µ with µ set by default to 0.5 which provides
a moderate level of normalization strength. Finally, given Bij = exp(mupdated

j Gij + cupdatedj )
the counts are normalized:

x̃ij = ln(Bij + 1)

sctransform. sctransform is based on a regression model per gene with negative binomial
error distribution and logarithmic link function (Hafemeister and Satija, 2019). For a given
cell j and gene i it can define the expected counts and the expected standard deviation as
follow:

log(µij) = β0i + β1ilog10Nj

σij =

√
µij +

µ2
ij

θi

where β0i and β1i and the dispersion parameter θ have to be estimated. To avoid overfitting,
SCT exploits the trend of the estimates versus gene mean to perform independent regular-
izations for all parameters. The regularized parameters are used to define the normalized
counts as the Pearson residuals of the model:

x̃ij =
xij − µij

σij

where µij is the expected count of gene i in cell j in the regularized negative binomial
regression model, and σij is the expected standard deviation.
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3 Supplementary Tables

Supplementary Table 1: Description of the datasets used to compare and evaluate PsiNorm
normalization performances.

Dataset name N. genes N. cells N. clusters % nulls Technology Sample type Reference
10x 16468 902 3 .45 10x Cell mixture mixology Tian et al. (2019)
CELSeq 19759 274 3 .64 celseq Cell mixture mixology Tian et al. (2019)
DropSeq 14947 225 3 .62 dropseq Cell mixture mixology Tian et al. (2019)
CELSeq51 15564 297 5 .61 celseq Cell mixture mixology Tian et al. (2019)
CELSeq52 14078 307 5 .60 celseq Cell mixture mixology Tian et al. (2019)
CELSeq53 13426 305 5 .64 celseq Cell mixture mixology Tian et al. (2019)
10x5 11786 3918 5 .63 10x Cell mixture mixology Tian et al. (2019)
csmart 17998 500 14 .53 smart cells BICCN Zeng Yao et al (2020)
nsmart 17902 500 17 .73 smart nucleus BICCN Zeng Yao et al (2020)
cV2 15784 500 17 .73 10x cells BICCN Zeng Yao et al (2020)
cV3 16837 500 17 .61 10x cells BICCN Zeng Yao et al (2020)
nV2 14791 500 14 .89 10x nucleus BICCN Zeng Yao et al (2020)
nV3 15889 500 15 .80 10x nucleus BICCN Zeng Yao et al (2020)

Supplementary Table 2: Normalization evaluation using median values of selected metrics.
See Table 1 of the main text for average values.

Median
ARI

Median
silhouette

Median correlation
PCA-depth

Median within
concordance

Median between
concordance

sctransform 0.796 0.248 0.313 0.582 0.256
Linnorm 0.888 0.244 0.310 0.481 0.267
PsiNorm 0.879 0.224 0.421 0.532 0.247
Scran 0.922 0.241 0.345 0.492 0.211
TMM 0.454 0.232 0.515 0.511 0.281
logCPM 0.703 0.176 0.426 0.504 0.219
DESeq 0.689 0.225 0.303 0.504 0.244
CLR 0.621 0.187 0.783 0.490 0.263
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4 Supplementary Figures

Supplementary Figure 1: Goodness of fit. Panel A. Log-frequency vs log rank plot of three
cells representative of the minimum, median and maximum depth per technology. The rank
is based on the unique expression values from the lowest to the highest. Each dot in the
graph represents more than one gene, namely all the genes that share the same expression
value in that cell. Linear fit is reported along with least-squares estimates of the slopes
and R2 values of the linear fit. Panel B. Distribution of the log ratios between simulated
and empirical third quartiles per cell across different technologies. Supplementary Figure
S2 shows the same quantity for other quantiles. The figure shows that the Zipf simulated
quantiles are far from the empirical ones, while the Pareto distribution (especially when
applied to x+ 1) provides a much better fit given that values are closer to zero.
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Supplementary Figure 2: Goodness of fit. Average log ratios between observed and expected
quantiles across cells for different technologies and models. Colors represent different models,
while bars of the same colors represent from the left to the right 10x, 10x5, celseq2, celseq51,
celseq52, celseq53 and dropseq datasets.
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Supplementary Figure 3: Goodness of fit for Smartseq data. Panel A. Log-frequency vs
log rank plot of three cells representative of the minimum, median and maximum depth
per technology. The rank is based on the unique expression values from the lowest to the
highest. Each dot in the plot represents more than one gene, namely all the genes that
share the same expression value in that cell. Linear fit is reported along with least-squares
estimates of the slopes and R2 values of the linear fit. Panel B. Distribution of the log
ratios between simulated and empirical third quartiles per cell. Panel C. Average log ratios
between observed and expected quantiles across cells. Colors represent different models.
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Supplementary Figure 4: Pareto normalization. Panel A. The log expression versus the log
rank (ordered from the highest to the lowest) of three cells representative of low, moderate
and high coverage, is reported for raw and Pareto normalized data. The linear fit is reported
for each cell. Panel B. The density distributions (across all cells per technology) of the
linear fit estimates (slopes and intercepts) of raw and normalized data.
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Supplementary Figure 5: Pareto normalization. Panel A. The log expression versus log
rank (ordered from the highest to the lowest) of three cells representative of low, moderate
and high coverage, is reported for raw and Pareto normalized data. The linear fit is reported
for each cell. Panel B. The density distributions (across all cells per technology) of the
linear fit estimates (slopes and intercepts) of raw and normalized data.
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(a) 10x data.

(b) CELSeq data.

Supplementary Figure 6: PCA plot of the data with 3 cell types (highlighted with different
colours and by data ellipses using multivariate t-distribution)
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(a) DropSeq data (3 clusters).

(b) 10x5 data (5 clusters).

Supplementary Figure 7: PCA plot of the data with 3 and 5 cell types (highlighted with
different colours and by data ellipses using multivariate t-distribution)
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(a) CELSeq1 data.

(b) CELSeq2 data.

Supplementary Figure 8: PCA plot of the data with 5 cell types (highlighted with different
colours and by data ellipses using multivariate t-distribution)
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Supplementary Figure 9: Silhouette index across different dataset and different normalization
methods. Datasets are sorted by the silhouette index. The dot size is proportional to the
dimension of the datasets in terms of number of cells.
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Supplementary Figure 10: The maximum correlation index between PC1 and PC2 and cell
sequencing depths is reported for each dataset. Datasets are sorted by the correlation index.
The dot size is proportional to the dimension of the datasets in terms of number of cells.
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Supplementary Figure 11: Upset plot obtained comparing the top 100 differentially expressed
genes (obtained using edgeR package) with the selected normalization methods. scran with
default setting and with clustering option give the same top 100 differentially expressed
genes, the second is not reported in the Figure. Panel A Pvalb vs Sst cell types comparison
Panel B Astro vs Oligo cell types comparison

16



Supplementary Figure 12: Panel A Scatterplot comparing scran and PsiNorm scaling fac-
tors. Panel B Boxplot of the distribution of the sequencing depths for each cell type.
Panel C Barplot of the frequency of cells within each cell types. Colors represent different
population cell types.
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