Supplementary Table 2. Excluded studies by full text review

Author	Title	Journal	Year	Volume and page range
US LI-RADS				
Banerjee I et al.	A scalable machine learning approach for inferring probabilistic US-LI-RADS categorization	AMIA Annu Symp Proc	2018	2018:215-224
Choi HH et al.	Association of advanced hepatic fibrosis and sonographic visualization score: a dual-center study using ACR US LI-RADS $$	Abdom Radiol	2019	44:1415–1422
Millet JD et al.	ACR ultrasound liver reporting and data system: multicenter assessment of clinical performance at one year	J Am Coll Radiol	2019	16:1656–1662
Son JH et al.	Validation of US Liver imaging Reporting and Data System version 2017 in patients at high risk for hepatocellular carcinoma	Radiology	2019	292:390-397
Kang JH et al.	US LI-RADS visualization score: diagnostic outcome of ultrasound-guided focal hepatic lesion biopsy in patients at risk for hepatocellular carcinoma	Ultrasonography	2020	40:167-175
Not ACR CEUS LI-RA	NDS			
Schellhaas B et al.	LI-RADS-CEUS: proposal for a contrast-enhanced ultrasound Algorithm for the Diagnosis of Hepatocellular Carcinoma in High-Risk Populations	Ultraschall Med	2016	37:627-634
Study included pati	ents who do not meet CEUS LI-RADS high-risk			
Li F et al.	Distinguishing intrahepatic cholangiocarcinoma from hepatocellular carcinoma in patients with and without risks: the evaluation of the LR-M criteria of contrastenhanced ultrasound liver imaging reporting and data system version 2017	Eur Radiol	2020	30:461-470
Insufficient data on	the calculation of probability of CEUS LR-M category for HCC and non-HCC malignance	ry .		
Chen LD et al.	Differentiation of intrahepatic cholangiocarcinoma from hepatocellular carcinoma in high-risk patients: a predictive model using contrast-enhanced ultrasound	World J Gastroenterol	2018	24:3786-3798
Schellhaas B et al.	Interobserver and intermodality agreement of standardized algorithms for non-invasive diagnosis of hepatocellular carcinoma in high-risk patients: CEUS-LI-RADS versus MRI-LI-RADS	Eur Radiol	2018	28:4254–4264
Schellhaas B et al.	Interobserver agreement for contrast-enhanced ultrasound (CEUS)-based standardized algorithms for the diagnosis of hepatocellular carcinoma in high-risk patients	Ultraschall Med	2018	39:667–674
Hu J et al.	Resolution of indeterminate MRI with CEUS in patients at high risk for hepatocellular carcinoma	Abdom Radiol	2020	45:123-133
Kang HJ et al.	Additional value of contrast-enhanced ultrasound (CEUS) on arterial phase non-hyperenhancement observations (≥2 cm) of CT/MRI for high-risk patients: focusing on the CT/MRI LI-RADS categories LR-3 and LR-4	Abdom Radiol	2020	45:55–63
Schellhaas B et al.	Contrast-enhanced ultrasound algorithms (CEUS-LIRADS/ESCULAP) for the noninvasive diagnosis of hepatocellular carcinoma: a prospective multicenter DEGUM study	Ultraschall Med	2021	42:178–186
Wang JY et al.	Usefulness of the contrast-enhanced ultrasound Liver Imaging Reporting and Data System in diagnosing focal liver lesions by inexperienced radiologists	J Ultrasound Med	2020	39:1537–1546
Wang JY et al.	Comparison of contrast-enhanced ultrasound versus contrast-enhanced magnetic resonance imaging for the diagnosis of focal liver lesions using the Liver Imaging Reporting and Data System	Ultrasound Med Biol	2020	46:1216–1223

US, ultrasound; LI-RADS, Liver Imaging Reporting and Data System; ACR, American College of Radiology; CEUS, contrast-enhanced ultrasound; LR-M, LI-RADS category M; HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging; CT, computed tomography; ESCULAP, Erlanger Synopsis for Contrast-enhanced Ultrasound for Liver lesion Assessment in Patients at risk.

Supplementary Table 3. Meta-analytic summary frequency of CEUS LR-M imaging features for HCC and non-HCC malignancy

	Rim arterial phase hyperenhancement		Early (<60 s) washout		Marked washout	
	HCC	Non-HCC malignancy	HCC	Non-HCC malignancy	HCC	Non-HCC malignancy
Meta-analytic summary	1 (0-1)	30 (17–45)	15 (7-26)	79 (66–90)	3 (2-6)	42 (21–64)

Values are presented as percentage of each imaging feature (95% confidence interval).

CEUS, contrast-enhanced ultrasound; LR-M, Liver Imaging Reporting and Data System category M; HCC, hepatocellular carcinoma.