Effect of surface energy and roughness on cell adhesion and growth - facile surface modification for enhanced cell culture

B. Majhy, P. Priyadarshini, and A. K. Sen*

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India *Corresponding Author: ashis@iitm.ac.in

Table S1: The different parameters used for predicting the length of a particular cell for a given surface of certain surface energy and roughness. (all the parameters in Eqn. 1-5).

Parameter	Value	Reference
$ ho_b$	$0.015 \dot{A}^{-3}$	
μ_r^0	30 kJ.mol ⁻¹	
μ_b^0	5 kJ.mol ⁻¹	Zhao et al. NMR Biomed. 2008
V	$2600 \ \mu m^3$	Feb21(2):159-64
Т	310 K	
L _{co}	17 µm	

Fig. S1 The experimental images of cell growth and proliferation on normal PDMS surface, $\delta \approx 5 nm$ or a roughness ratio, r = 1.05.

Fig. S2 The experimental image of cell growth on extreme low surface energy surfaces such as the superhydrophobic surfaces of $E_s \approx 21 \text{ mJ/m}^2$ and roughness ratio of r = 2.5.