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Graphical integrity issues in open access 
publications: detection and patterns of 

proportional ink violations 
Han Zhuang, Tzu-Yang Huang, Daniel E. Acuna 

School of Information Studies 
Syracuse University 

Abstract 

Academic graphs are essential for communicating complex scientific ideas and results. To 
ensure that these graphs truthfully reflect underlying data and results, visualization researchers 
have proposed several principles to guide their creation process. However, it is unknown the 
extent of violations of these principles in academic publications. In this work, we develop a deep 
learning-based process to accurately measure violations of the proportional ink principle—one 
of the most basic and simplest data visualization rules—and apply it to analyze a large sample 
of 300K open access figures. Our results reveal that graphical integrity issues are significantly 
more prevalent in some types of journals, research fields, and regions of the globe. Additionally, 
we found no increase in integrity violations over time and seniority. Apart from openly releasing 
our large annotated dataset and technique, we discuss how these kinds of analyses should be 
part of the peer-review post-publication processes. 

1. Introduction 
Scientific communication needs the accurate transmission of results. This goal is best achieved when 
research findings are conveyed clearly and honestly without integrity issues. Intentionally or 
unintentionally, however, scientific publications can contain fabrication, falsifications, or plagiarism 
(Office of Research Integrity, 2021). Research integrity issues waste time and valuable resources for 
scientists and the public at large (Sox & Rennie, 2006). While these behaviors may seem rare and extreme, 
they are more prevalent than we might expect. For example, a survey of researchers revealed that around 
9% of them have observed or have evidence of others’ research misconduct (Titus et al., 2008). We as 
scientists should guard against these issues by attempting to actively detect and correct them. 

Research integrity encompasses a broad range of media such as text, data, and graphs. Text and data are 
usually accessible in a machine-readable format and therefore are relatively simpler and better studied 
compared to graphs and images. Still, studies driven by human examination have found that common 
manipulations of graphs and images can produce serious integrity violations (Beck, 2016). Some of these 
manipulations, such as adjusting the size and brightness of images, are very common and might be misused. 
Several guidelines have been proposed to avoid these problems (Cromey, 2010; Jordan, 2014).  

While there are also guidelines for integrity in scientific graphs (Tufte, 2001), the prevalence of graphical 
integrity issues in this domain is relatively unknown. Scientific graph problems can have negative 
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consequences especially considering how much the other scientists and the public trust scientists. For 
example, truncating the y-axis of bar charts is a simple yet way of exaggerating differences among groups 
but it is hard to detect and has detrimental effects. Graphical integrity issues such as this can successfully 
deceive the receivers of the information (Yang et al., 2021), affecting their ability to make decisions (Larkin, 
1990). Even if the readers are trained to detect manipulations, they can still be misled (Raschke & Steinbart, 
2008). To the best of our knowledge, we do not know the seriousness of graphical integrity issues among 
scholarly publications. With the availability of new datasets about scientific figures and open access 
publications, we have unprecedented opportunities to understand the extent of these issues. 

Researchers have proposed automated techniques that scale to detect violations of research integrity. For 
example, researchers have developed computer techniques to detect image tampering and image reuse at 
scale (Acuna et al., 2018; Xiang & Acuna, 2020). These studies reveal the prevalence of image fabrications 
in science beyond small samples of images (Bik et al., 2016a). Graphical integrity in graphs is as important 
as these other kinds of integrity issues. However, we lack techniques and curated datasets to create methods 
to detect them appropriately. 

This study develops a novel method based on deep learning to detect graphical integrity issues 
automatically. We specifically focus on proportional ink principle violations. Our framework is general 
enough that it can be adapted to other kinds of graphical integrity issues (i.e., data-ink principle). Armed 
with this highly accurate technique (AUC > 0.9), we seek to answer how common these kinds of problems 
are in academia and whether there are systematic differences among researchers, journals, fields, and 
countries. Further, we examine whether graphical integrity issues “run in the family”: does being a co-
author of an article with issues in the past predict problems in the future? Finally, we discuss applications 
of these ideas beyond the proportional ink principle and graphical integrity. 

2. Literature review 

2.1 Graphical integrity 

In visualization design, graphical integrity requires designers to create graphs reflecting the actual data. 
There are several graphical integrity principles studied in the literature, and two of the most common are 
the principle of proportional ink and the principle of data-ink (Tufte, 2001). The principle of proportional 
ink states that “the representation of numbers, as physically measured on the surface of the graphic itself, 
should be directly proportional to the numerical quantities represented” (Tufte, 2001). The principle of data-
ink states that the graphs should use most of the ink to present the data instead of using it to show the 
background and aesthetic features. According to the literature on visualization, violations of these principles 
can lead viewers to misunderstand the underlying data and results (Yang et al., 2021). 

A field that has extensively studied graphical integrity is business. Researchers in this area have investigated 
problems in annual reports and other forms of financial information, uncovering graph distortions and 
truncations of bar charts and other types of graphs (Beattie & Jones, 1992; Courtis, 1997). Some researchers 
have examined the effects of these distortions and found they can greatly mislead viewers (Beattie & Jones, 
2002). We would expect that these misleading potentials would translate into other fields beyond business. 
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Studies about graphical integrity issues in science are, in contrast, much less common. These issues, 
however, can be part of more significant problems such as misinformation in science (West & Bergstrom, 
2021), and therefore are essential to understand. For example, researchers have found inadequate reporting 
of research in the news (Gonon et al., 2011), exaggerations of research from press releases (Sumner et al., 
2014), and predatory publishing of research in some open access journals (Grudniewicz et al., 2019; Shen 
& Björk, 2015). Although we can find some graphical integrity issues in news and scientific publications 
(C. T. Bergstrom & West, 2020b), large-scale studies about graphical integrity in science are lacking.  

2.2 Chart mining 

Researchers can investigate the graphical integrity of science through automated computational techniques. 
Chart mining is a research field dedicated to developing strategies to extract figures from documents, 
recognize subfigures from compound figures, classify charts into categories, and extract data from them. 
We review some standard techniques in chart mining relevant to our research. 

Chart extraction. Charts can be embedded in documents and not available separately. Chart extraction is 
the process of extracting them from these documents. Some of these chart extraction techniques exploit 
metadata available in PDFs or are based on computer algorithms to guess the location and size of graphs 
within a document (Clark & Divvala, 2016; Li et al., 2019). With the development of neural networks, the 
accuracy of these algorithms has increased substantially (Siegel et al., 2018). Chart extraction is a relatively 
mature field. 

Subfigure separation. Even after we have extracted figures from publications, some of them need 
preprocessing before analysis. Subfigure separation is one typical preprocessing step that removes the 
panels present in an image (García Seco de Herrera et al., 2016). Of course, not all analyses need panel 
separation because compound figures can focus on some research in themselves. Researchers have 
proposed methods to separate subfigures from compound ones using traditional computer vision algorithms 
such as edge-based detection of spaces between panels (Taschwer & Marques, 2018, 2016). Similar to what 
has happened with chart extraction, subfigure separation has benefited from new deep learning techniques 
trained on large annotated compound figures (S. L. Lee & Zare, 2018). While there are still challenges for 
this step, subfigure separation is mature enough that can be applicable at scale. 

Chart classification. Different types of charts serve different kinds of analyses (Shneiderman, 2003; Tufte, 
2001). For example, a pie chart might represent proportions among components, and a line chart might 
represent temporal dynamics of such components. Chart classification is usually part of an analysis pipeline, 
and therefore classification performance has a cascading effect. Researchers have used a range of 
techniques from traditional computer vision algorithms (Prasad et al., 2007) to deep learning techniques 
(Chagas et al., 2018) to perform this task. This chart mining step is relatively less developed than the 
previous ones. 

Data extraction. A bar chart, plot, and pie chart panels might contain valuable information to extract—
charts are images without data. Data extraction is the most complex step as it attempts to reverse engineer 
the data used to produce such panels. It usually combines text detection, optical character recognition, 
keypoint analysis, and other advanced computer vision methods (Al-Zaidy & Giles, 2017) and neural 
networks (Choudhury et al., 2016; Vassilieva & Fomina, 2013). Depending on the type of graph, specialized 
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data extraction techniques (e.g., bar charts or pie charts use different methods; see (Nair et al., 2015)). Data 
extraction is thus an active area of research. 

2.3 Chat mining for graphical integrity 

One major step for evaluating graphic integrity automatically is to understand graphs with computer 
techniques. Several studies have attempted to achieve this step. For example, one study showed that we 
could tell the field of manuscript just by looking at its figures (P.-S. Lee et al., 2018). Another study 
developed machine learning techniques to extract information from graphs, including bar charts, line plots, 
and scatter plots (Cliche et al., 2017; Poco & Heer, 2017). In addition, powered by deep learning, some 
researchers have shown how these techniques can accurately extract the raw data used to construct a graph 
(Luo et al., 2021). There are, however, significant challenges left when deadline with low resolution images. 
Similarly, each domain and scientist can produce completely different charts to represent the same 
information, making chart mining for graphical integrity challenging. 

With the convergence of new chart mining techniques, more extensive datasets, and more computational 
power, the automation of graphical integrity investigation is bound to explode in possibilities. Yet, to the 
best of our knowledge, there is no study about the automated detection of graphical integrity issues in 
science.  

2.2 Datasets about science 

In the recent past, we lacked the datasets necessary to analyze science. For example, citations were only 
available from the Web of Knowledge from Web of Science (now Clarivate Analytics) dating back to 1995 
only. However, we now have access to a much broader set of information pieces about science. These 
datasets include citations and other artifacts (e.g. (Lo et al., 2020; Sinha et al., 2015)). For example, and 
due to the push for open access publications, we have unprecedented access to full text, citation contexts, 
figures, tables, and datasets (PMC Overview, 2021). These new datasets open up a wealth of opportunities 
to understand graphical integrity issues.  

3. Results 

3.1 Evaluation of our automated graphical integrity detector 

3.1.1 Labeled dataset for evaluation 

We labeled images from the large Pubmed Central (PMC) Open Access Subset collection (see Materials 
and Methods). The PMC Open Access Subset is a part of the total collection of articles in PubMed Central 
(denoted as PMC). We perform the traditional steps of chart mining from an initial 50,000 random samples 
of figures (see Literature Review and Fig. 1). The classification method detected 8,001 panels or figures as 
bar charts. Two annotators (co-authors) manually annotated these bar charts as having proportional ink 
principle violations or not. We found 356 graphs with integrity issues and 7,645 graphs without them. 
Because our prediction method relies on automatically extracting features from the bar charts (e.g., tick 
labels, the start of the y-axis, etc.), this extract was not always successful. In particular, among the 8,001 
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annotated bar charts, our method could only extract features from 4,834 of them (with integrity issue: 265, 
without integrity issue: 4569). 

3.1.2 Evaluation of the method for estimating graphical integrity issues 

We used Area under the ROC curve (denoted as AUC) with stratified 5-fold cross-validation to evaluate 
the performance of our graphical integrity evaluator. We additionally investigated the precision and recall 
of our method. Precision is computed as Eq. (1), which is the ratio of positive data points with true positive 
predictions to all positive data points (Manning et al., 2008). In our evaluation,  true means the image does 
have an integrity issue, and true positive means the image has an graphical integrity issue and our method 
also predicts the image has this issue; false positive means the image does not have an integrity issue, but 
our method predicts the image has an issue. And false negative means the image does have graphical 
integrity issues, but our method predicts it has no graphical integrity issues. The average precision across 
folds is 0.77 with 0.0209 standard error. The recall is the ratio of true positive data points to all true data 
points (Eq. (2)). False Negative means the image has an integrity issue, but the predicted class is not having 
problems. The average recall across folds is 0.37 with 0.0207 standard error. Additionally, the AUC 
indicates the ability of our detector to classify two classes, and the average AUC across folds is 0.917 with 
a standard deviation of 0.02 (Manning et al., 2008).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 !"#$	&'()*)+$
!"#$	&'()*)+$	,	-./($	&'()*)+$

                               (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"#$	&'()*)+$
!"#$	&'()*)+$	,	-./($	0$1.*)+$

                                   (2) 

3.2 Graphical integrity in open access journals 

With this automated graphical integrity evaluator, we can examine graphical integrity issues at scale. In the 
present study, we apply this evaluator to open access journals to investigate the commonness and patterns 
of graphical integrity issues in science. In the following subsections, we first present a descriptive analysis 
of our data. Then, we offer analysis by countries, research fields, years, seniority of researchers, and the 
journal’s impact. We combined the 50,000 figures from the labeled dataset with another 250,000 computer-
annotated figures to analyze.  

3.2.1 Representation quality of unlabeled data vs. labeled data 

We first ensure that the unlabeled data that we analyze is similar to the manually labeled dataset. We 
compare both datasets across various features related to publication, authors, journals, country, fields, and 
year. Because we randomly sampled both datasets, we expected them to be similar. Indeed, we found that 
the unlabeled and labeled distributions are nearly identical (Fig. 2). 

Hervorheben
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Figure 1. An example process for predicting violations of the proportional ink principle. A. Input image 
representing a scientific figure. Pubmed Open Access subset provides figures already extracted from the publications. 
B. Subplot extraction using the YOLO deep learning architecture (Bochkovskiy et al., 2020) trained on the hand-
annotated dataset (see Materials and Methods). C. Each subplot is extracted from the input image. D. Subfigure plot 
classification where only bar charts are extracted (E). For each bar chart, we detect a set of low-level features (F), 
which are later used for predicting whether a bar chart is violating the proportional ink principle (H, yes) or not (I, 
not). 

  Compound Figure

 Subplot Detection with Yolov4

 Compound Figure Seperation

Image Classification

 Bar Charts

 Stroke Width Transformation and Text Localization 

 Text Recognition, Text Role Classification, feature 

engineering, and Graphical Integrity Classification
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Figure 2. Labeled vs. unlabeled data. Both datasets are nearly identical therefore validating our 
prediction step. (A) compares the percentage of publications in each country of affiliations (having more than 
20 publications). (B) is the histogram of the rank of the journal of publications.  (C) compares the percentage of 
publications in each field of journals (having more than ten publications) (D) is the histogram of the h-index of 
the first author of publications (E) is the histogram of the h-index of the last author of publications. (F) is the 
histogram of the year of publications. 
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3.2.2 The commonness of graphical integrity issues in open access journals 

Among our sample of images, we found 265 graphical integrity issues in 4,834 human-annotated bar charts 
that can be processed by our algorithm (6.5% per publication with bar chart, 5.5 % per bar chart) (Not all 
bar charts can have their features extracted for our algorithm. See Methods and Materials.) We additionally 
predict that there are 479 graphic integrity issues of 20,666 bar charts (3.6 % per publication with bar chart, 
2.3 % per bar chart). A summary display of the data is in Table 1 in Materials and Methods. We found that 
the percentage of graphical integrity issues is significantly larger in human-annotated than automated 
prediction bar charts (the p-value is less than 0.05 for both the ratio per publication with a bar chart and the 
ratio per chart by Fisher’s exact test). This difference suggests that our method is significantly under-
estimating the extend of graphical integrity issues. 

3.2.2 Graphical integrity differences by seniority 

We now investigate if there is a relationship between seniority and the ratio of graphical integrity issues. 
To examine this research question, we conducted a correlation test between the likelihood of having 
graphical integrity issues and the h-index of the first author of publications and the last author of 
publications. (We acknowledge that the h-index of researchers might not fully reflect the seniority of 
researchers.) We found no statistically significant correlation for first author (r = 0.024, N = 2,530, p-value 
= 0.22) or last author (r = 0.018, N = 3,179, p-value = 0.31). Similarly, we compared the h-index of the first 
authors with graphical integrity issues to those without and found no significant difference (Welch's t-test, 
t(80.55) = 0.52, p-value = 0.61). We did a similar analysis comparing the last authors and found no statistical 
significance (Welch's t-test, t(94.25) = 0.98, p-value = 0.33).  

3.2.3 Graphical integrity across the impact of journals 

High-impact journals are generally expected to publish rigorous research articles. Graphs as a part of 
research articles should also be accurate, but we do not know if the review of high-impact journals weeds 
out low-quality graphs. We tested the correlation between the rank of journals and journals’ likelihood of 
having at least one article with graphical integrity issues. To measure this likelihood, we compute the 
maximum likelihood of a graph integrity per journal. A Pearson correlational analysis revealed that the 
higher the ranking (here, “higher” means closer to 1), the more likely to have articles with graphical 
integrity issues (r = -0.16, N = 530, p-value < 0.001). Similarly, we compared the difference between the 
rank of journals of articles with graphical integrity issues and the rank of journals of articles without 
graphical integrity issues (Welch’s t-test, t(88.97) = -3.6099, p-value < 0.001). 
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Figure 3. Correlation between journal rank and the likelihood of having articles with graphical integrity issues. 
The orange line represents the estimation of linear regression. 

3.2.4 Graphical integrity across research fields 

Graphical representations of information vary substantially across fields. Thus, proportional ink principles 
might be followed at different rates by different fields. To understand these differences, we compared the 
likelihood of having graphical integrity issues across research fields. As we can see in Figure 4, different 
research fields have different commonness of graphical integrity issues (F(6, 3084) = 3.68, p-value = 
0.001). A posthoc analysis (Tukey's HSD) reveals that computer science contains violations of proportional 
ink principles significantly more frequently than material science (p-value = 0.01), chemistry (p-value = 
0.004), and biology (p-value = 0.002).  

 

Figure 4. The likelihood of having graphical integrity issues across each research field 
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3.2.5 Graphic integrity across countries 

As previously shown, there are significantly different attitudes toward research integrity across countries 
(Bik et al., 2016b). Here, we examined the likelihood of having articles with graphical integrity issues for 
authors from different countries and found that there is a statistical difference between authors from 
countries (F(12, 12591) = 10.34, p-value < 0.001). A posthoc analysis (Tukey's HSD) reveals that France 
is more likely to have graphical integrity issues than Japan (p-value = 0.019), China (p-value = 0.003), and 
Korea (p-value < 0.001). Also, Italy is more likely to have graphical integrity issues than Japan (p-value < 
0.001), China (p-value < 0.001), and Korea (p-value < 0.001). The United States is more likely to have 
graphical integrity issues than Japan (p-value = 0.002), China (p-value < 0.001), and Korea (p-value < 
0.001). We further aggregate the likelihood of having graphical integrity issues per article for each country 
in Fig. 5. 

 

Figure 5. The likelihood of having graphical integrity issues across each country 

3.2.6 Graphic integrity across years 

Whether publishers and research communities have been aware of graphical integrity issues in the past and 
taken actions to protect graphical integrity is another unknown research question. We computed the 
correlation between the likelihood of having graphical integrity issues and publication year to examine if 
graphical integrity issues are decreasing or increasing over time (see Fig. 6). We did not find a relationship 
between these quantities suggesting that graphical integrity issues have been consistent (r = 0.0005, N = 
18, p-value = 0.99). 
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Figure 6. The likelihood of having graphical integrity issues across each year 

3.2.7 Within-author integrity trends 

We now examined whether having experienced graphical integrity issues in the past is predictive of 
graphical integrity issues in the future. Of the graphs produced by authors who had graphical integrity issues 
in the past, we analyzed 301 bar charts in the future and found that only 5 of them had problems. Of the 
graphs produced by authors who did not likely have graphical integrity issues in the past, we analyzed 568 
bar chart features and found that 6 of them had problems. According to a Fisher's Exact Test, the difference 
between these two groups is not statistically significant (p-value = 0.53). We then analyzed at the author 
level. We found that 7 out of 218 authors with issues in the past had problems in the future; we found that 
10 of 423 authors with potential issues had problems in the future. Again, Fisher’s Exact Test’s difference 
between these groups of authors is not statistically significant (p-value = 0.61). These results suggest that 
graphical integrity issues do not seem to “run in the family”: having issues in the past might not make an 
author have problems in the future. 

4. Materials & Methods 

4.1 Materials 

4.1.1 Pubmed Open Access and annotations 

Pubmed Open Access is a subset of Pubmed Central, consisting of thousands of journals in biomedical 
research (PMC Overview, 2021). To train our machine learning-based graphical integrity evaluator, we 
annotated one subset of collected images mentioned in the previous subsection (after compound figure 
detection and subfigure separation) as graphical integrity issues and others (see Table 1). We consider 
images as graphical integrity issues if they violate the principle of proportional ink. The specific rules are: 
a bar chart’s y-axis should start from zero, have one scale, and not be partially hidden (C. T. Bergstrom & 
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West, 2020a; Tufte, 2001). We annotate images as others if they follow all three rules, do not have a full 
y-axis or x-axis, or are not bar charts.  

All PMC papers  7 million articles 

 Human annotations Predictions 

Images 50,000 250,000 

Papers* 29,901 68,265 

Bar charts 8,001 35,481 

Processable Bar charts 4,834 20,666 

With / Without graphical 
integrity issues 

265 / 4,569 479 / 20,187 

  *Image (and not the paper) was the unit of sample and analysis 

Table 1. Summary of human-annotated sample and prediction sample. Both sets are similar, as demonstrated by 
analysis in Fig. 2. 

4.1.3 Datasets for image processing techniques 

To automate graphical integrity evaluation, we need image processing techniques to obtain information 
from images. This study has six image processing steps: compound figure classification, subfigure 
separation, image classification, text localization, text recognition, and text role prediction (see the 
summary of training data and validation data in 2). 

Data for testing within-author integrity issues. After labeling images, we analyzed the publications of these 
authors in the following three years after the first year we annotated. Based on the labeled data, we found 
218 authors who produced graphs with integrity issues in their publications and analyzed 301 bar charts in 
their following publications. Also, there are 4780 authors which we did not find graphical integrity issues 
in our labeled data. Due to the unbalanced amount between the two groups, we randomly selected 3000 
images from the following publications and analyzed 568 bar charts. 

We now describe the features used in our statistical analyses: 

Seniority of researchers. As the research experience of researchers grows, some researchers might be aware 
of graphical integrity and want to avoid graphical integrity issues. Thus, graphic integrity issues might be 
less common among senior researchers, for they have more education and knowledge. If this hypothesis 
holds, then it might imply that researchers can learn graphical integrity over time by themselves. If not, 
research communities might need more education about this topic to reduce such problematic practices. To 
examine this hypothesis, we collected researchers’ h-index to proxy their seniority for the analysis.  

Impact of journals. High-impact journals usually have a strict standard for their publications. It is natural 
to expect high-impact journals to publish more rigorous research findings. However, whether high-impact 
journals value graphic integrity is unknown. Thorough research should make sure its visualizations convey 
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accurate information to readers. If not, the journal publishers might need to include graphical integrity into 
their review standard. To examine this research question, we collected the rank of journals of articles in our 
sample.  

Research fields. Different disciplines have their traditions, such as citation format and writing style. 
Similarly, other disciplines might have additional requirements for graphical integrity. However, this is a 
new and important research question because the publishers might want to enhance the review of graphical 
integrity for specific research fields. To address this question, we collected the field of study of journals of 
articles in our sample.  

Countries. Education and culture vary from country to country. But we do not know if some countries have 
stricter graphic integrity. This research question can help researchers to know which country needs more 
protection of graphical integrity. Thus, we collected the country of the author affiliation of articles in our 
sample.  

Year of publication. Science is changing with our research policy, education, and society over time. The 
time-series analysis of science helps researchers to understand the direction of new science. Similarly, 
graphical integrity over time can help the public to know if the awareness of graphical integrity changed in 
the past. To answer this research question,  we collected the year of publications of articles in our sample.   

4.2 Methods 

4.2.1 Image preprocessing 

The goal of image processing is to obtain information from images for feature engineering and classification 
of graphical integrity issues. Our image preprocessing includes the following steps: 

Compound figure classification. Compound figures are standard in academic papers (e.g. (P. Lee et al., 
2018)), but usually, graphical integrity issues are defined on non-compound figures. Therefore, we fine-
tuned a convolutional neural network (Resnet-101v2, pre-trained on ImageNet) to classify figures into 
compound figures and non-compound figures.  

Compound figure separation. After we have compound figures, we need to separate compound figures into 
subfigures because subfigures in compound figures might also have graphical integrity issues. To achieve 
subfigure separation, we trained a convolutional neural network (YOLO v4, pre-trained on MS COCO 
dataset) to localize subfigures in compound figures (Bochkovskiy et al., 2020).  

Image classification. This study focuses on bar charts because the violation of the principle of proportional 
ink is a widely-accepted graphical integrity issue for bar charts. Thus, we generated charts (bar charts, line 
charts, scatter charts, heatmap charts, box charts, area charts, radar plots, maps, pie charts, tables, Pareto 
charts, Venn diagrams, and violin charts) and collected diagnostic figures from ImageCLEF 2016 
competition (García Seco de Herrera et al., 2016). Then we fine-tuned a convolutional neural network 
(Resnet-101v2, pre-trained on ImageNet) to classify figures into categories. 

Text localization. To predict if a bar chart has graphical integrity issues, we also need to know the texts on 
images for our classification. Therefore, we fine-tuned a convolutional neural network (YOLO v4,  pre-

Hervorheben
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trained on MS COCO dataset) to detect or localize texts on academic figures, preprocessed with Stroke 
Width Transformation (Bochkovskiy et al., 2020; Epshtein et al., 2010).  

Text recognition. More than the location of texts on graphs, we also need their content. Thus, we used 
Tesseract to recognize the content of texts based on the predicted locations of texts from text localization. 
We used one fine-tuned Tesseract model of English texts for this task.  

Text role classification. Also, we need to know the role of texts on each figure for our analysis and thus use 
one open-source model to predict the role of texts on academic figures, based on the geometric information 
of texts on graphs (Poco & Heer, 2017).  

Image preprocessing validation. To evaluate the performance of previous tasks, we used public datasets 
and our own generated datasets (when we could not find public datasets). The summary of our performance 
and benchmarks is summarized in Table 2. 

Steps Training data Validation 
Data 

Our 
Performance 

Benchmark 

Compound 
Figure 
Detection 

ImageClef Medical 2016 
Compound Figure Task 

ImageClef 
Medical 2016 
Compound 
Figure Task 

Accuracy: 92% Accuracy: 92% (Top 
one team in ImageClef 
Medical 2016)  

Subfigure 
Separation  

ImageClef Medical 2016 
Compound Figure Task 

ImageClef 
Medical 2016 
Subfigure 
Separation Task 

Score: 83% Score: 84% (Top one 
team of ImageClef 
Medical 2016) 

Chart 
Classificatio
n 

Our generated charts Revision data 
(not fully 
available) 

Accuracy: 
100% 

Accuracy: 80%1 

Text 
Localization Localization from Arxiv 

papers through pdffigures 

Our generated 
charts 

F1: 76% F1: 88%2 

Text 
Recognition 

No training data (Used an 
open-source fine-tuned 
model) 

Our generated 
charts 

F1: Exact 82% 
/ Edit 90% 

F1: Exact 95%/ Edit 
98%2 

Text Role 
Classificatio
n 

No training data  
(Used an open-source 
fine-tuned model) 

Our generated 
charts 

F1: 80% F1: 100%2 

Table 2. Summary of Training and  Validation for Image Preprocessing. 1(Savva et al., 2011), 2(Poco & Heer, 
2017) 
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4.2.2 Feature engineering 

One way to build an automatic graphic integrity issues classifier is to apply classifiers from machine 
learning. A machine learning-based classifier needs features from data instead of the raw data. Thus, we 
conducted a feature engineering step from our image preprocessing (Table 3). Because the principle of 
proportional ink requires the ratios between the numeric value and the area of each bar to be the same in 
the same bar chart, the violation of this principle has the following symptoms for academic figures: bar 
charts with a non-zero y-axis and bar charts with a y-axis of multiple scales (also considering partially 
hidden y-axis). These two kinds of bar charts all violate the principle of proportional ink. Although bar 
charts with a log scale also violate the principle of proportional ink, we do not consider these bar charts as 
graphical integrity issues because log-scale is widely accepted in academic figures (C. Bergstrom & West, 
2021). To examine if one bar chart has the above symptoms of graphical integrity issues, we transform the 
information from our image preprocessing into features for the final classification. The first two features 
are derived directly from the principle of proportional ink for bar charts. However, based on our 
experiments, these two features are not enough to detect graphical integrity issues because our image 
preprocessing might introduce errors to these two features. For example, the y-axis label might not be 
recognized by our text localization model. Thus, we created other features to consider the errors from our 
image preprocessing. 

No Feature Description Reason 

1 The value of the lowest y-axis label on the y-
axis (detected or inference from y-axis) 

The lowest y-axis label should be zero 

2 The increasing rate between each pair of y-
axis labels 

The scales of y-axis should be consistent across 
each pair of neighbor y-axis labels 

3 If we need to inference the lowest text on the 
y-axis 

If the lowest label on the y-axis is far from the x-
axis, then we might ignore the actual lowest label 
on the y-axis 

4 If the y-axis has a mix of integer and float 
number  

Tesseract might not perform well with float 
number, and thus the increasing rate in the y-axis 
might not be accurate 

5 The probability of being texts We prefer texts with a higher probability of being 
texts 

6  The OCR confidences  of texts on the y-axis We prefer predictions of the content of texts with a 
higher confidence 

7 The probability of being bar charts Our classifier only classifies bar charts. Thus we 
prefer figures with a high probability of being bar 
charts 

Table 3. Summary of features for proportional ink violation detection 
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4.2.3 Proportional ink principle evaluator 

For an automatic graphical issue detector, rule-based methods are feasible when the features are highly 
correct. However, given the errors introduced from image processing, the texts and their roles on figures 
might not be correct. Thus, we took a probabilistic approach: the random forest model from machine 
learning. Our random forest model can predict if a figure is misleading or not based on the features of 
figures from our image processing techniques (see Fig. 7).  

5. Discussion 
In this article, we attempt to understand the extent of graphical integrity issues in scientific publications. 
We focused on violations of the proportional ink principle, one of the most basic visualization rules. We 
developed a method based on deep learning to detect these issues by learning from a large sample of human-
annotated charts. Our approach achieved high accuracy, allowing us to apply it to an extensive set of open 
access publications. Our results suggest varying degrees of prevalence across fields, countries, journal rank. 
Overall, our manuscript provides one of the first looks into using automated methods to explore issues of 
graphical integrity at scale. 

This study presents an automated method to detect the violation of the principle of proportional ink and 
shows the potential to automatically detect other graphical integrity issues. Researchers have relied on 
human experts in previous studies (Beattie & Jones, 2002; Courtis, 1997). Human experts can detect 
graphical integrity issues with very high accuracy, but the speed of annotation can be slow. Our automated 
method can examine various kinds of images at scale and detect graphical integrity issues with a relatively 
high accuracy to remedy this shortcoming. Moreover, the components in this method can address subfigure 
separation and compound figure classification for other graphical integrity issue investigations. Our process 
can complement other work in the field while being relevant and similarly effective (S. L. Lee & Zare, 
2018; Taschwer & Marques, 2018, 2016). Beyond graphical integrity issues, our results could be part of 
other kinds of analysis. For example, studies of the quality of visual communications using human 
perception and learning (Shukla & Samal, 2008). Thus, our method opens the door to new kinds of 
automated analysis of publications for pre-print services, peer review, and post review. 

Some researchers have found that research integrity issues have various frequencies across countries and 
journals (Bik et al., 2016b). We have discovered that graphical integrity issues vary across journal rank, 
research fields, and affiliation countries. Our result implies that graphical integrity issues might be more 
common in specific groups of researchers and various research communities. According to our results, 
articles published in a higher-ranked journal are more likely to have graphical integrity issues. This 
research finding might be generalizable to a broader range of journals because high-impact journals favor 
significant research findings (Murtaugh, 2002), and manipulations of graphs can exaggerate research 
findings for significance. According to this study, certain groups of articles are more likely to have such 
issues. Therefore, we can prioritize education, peer reviews, and post-publication corrections for these 
groups.

Hervorheben
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Figure 7. Flowchart of our graphical integrity classification. Refer to Fig. 1 for comparison. 

There are several limitations of this study. First, this proposed method makes mistakes in compound figure 
classification, subfigure separation, and bar chart classification (see Table 2). Thus, some bar charts might 
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not be separated from compound figures correctly or might not be classified into bar charts correctly. In 
such cases, some bar charts are missed from the final classification of graphical integrity issues, and some 
graphical integrity issues are overlooked by this method. Second, this method might not localize all texts 
and recognize the contents of all texts correctly (see Table 2). In this scenario,  our method does not have 
enough information about graphs to predict if one graph has graphical integrity issues (we could not process 
and predict all bar charts in our sample, see Table 1). We also think that there are limitations in our findings 
that we can improve in the future. First, our method can not detect all graphical integrity issues, and 
therefore we are underestimating their prevalence. In the future, we hope to incorporate this analysis with 
other kinds of integrity checks such as (Acuna et al., 2018; Xiang & Acuna, 2020). Second, in analyzing 
the association between the graphical integrity of articles and other features about articles, our sample does 
not cover some groups of articles in all journal rankings. This limitation might affect the trend that articles 
with graphical integrity issues are more likely to have a higher rank of journals. In the future, we will do a 
more hypothesis-driven sample where we will prioritize having a representative set of journal rankings, 
seniority, and other variables of interest. Improvements in these image analysis steps are an active area of 
research, and therefore should be improved in the future. 

Publishers, funders, and scientists might consider incorporating graphical integrity into their peer review 
procedures and conduct post-publication corrections. Research communities could enhance their education 
about graphical integrity to all researchers to reduce the burden of publishers and reviewers on graphical 
integrity. These ideas are already part of research integrity initiatives around the world including COPE 
practices and the Hong Kong Principles (Committee on Publication Ethics, 2021; Moher et al., 2020). 

6. Conclusion 
This study presents a method to detect graphical integrity issues and research findings of graphical integrity 
issues in science. This method enables researchers to detect proportional ink violation at scale and offers 
the potential to address other graphical integrity issues. With this method, we found that graphical integrity 
issues do appear among scientific articles. Even though the fraction of figures with graphical integrity issues 
is minor, publishers and research communities might still need to consider taking actions to protect readers 
from misunderstanding the research findings because of the graphs with graphical integrity issues. 
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