SUPPLEMENTARY INFORMATION

Functional gallic acid-based dendrimers as synthetic nanotools to remodel amyloid-beta 42 into non-cytotoxic forms

Ana R. Araújo^{1, 2*}, Juan Correa³, Vicente Dominguez-Arca⁴, Rui L. Reis^{1, 2}, Eduardo Fernandez-Megia^{3*}, Ricardo A. Pires^{1, 2*}

¹3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
²ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal
³Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
⁴Biophysics and Interfaces Group, Department of Applied Physics, Faculty of Physics, University of Santiago de

Compostela, 15782 Santiago de Compostela, Spain

* E-mail: rpires@i3bs.uminho.pt; ef.megia@usc.es; anarita.araujo@i3bs.uminho.pt

Table of Contents

1 Synthesis and characterization studies	3
Synthesis of Ga-terminated dendrimers	3
Synthesis of Benzyl 3,4,5-tris(benzyloxy)benzoate	3
Synthesis of 3,4,5-Tris(benzyloxy)benzoic acid	3
Synthesis of 2[G0]-GaOBn	3
Synthesis of 2[G0]-GaOH	4
Synthesis of 2[G1]-GaOBn	4
Synthesis of 2[G1]-GaOH	4
Synthesis of 3[G1]-GaOBn	5
Synthesis of 3[G1]-GaOH	5
Characterization of Ga-terminated dendrimers	6
Interference of the dendrimers in the Aβ supramolecular assembly	28
2 Cell studies	49
Ability of the dendrimers to modulate the Aß cytotoxicity	49

1 SYNTHESIS AND CHARACTERIZATION STUDIES

Synthesis of Ga-terminated dendrimers

Synthesis of Benzyl 3,4,5-tris(benzyloxy)benzoate: K₂CO₃ (12.04 g, 87.15 mmol), benzyl bromide (14.91 g, 87.15 mmol) and NaI (2.61 g, 17.43 mmol) were added to a stirred solution of gallic acid (3.0 g, 17.43 mmol) in MeOH (180 mL). The reaction was refluxed for 16 h, cooled down to rt and then, H₂O (30 mL) was added. After evaporation, the mixture was diluted with H₂O (50 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried and concentrated to give a crude product that was recrystallized from EtOH to give benzyl 3,4,5-tris(benzyloxy)benzoate as a white solid (8.19 g, 88%). ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.63-7.17 (m, 22H), 5.33 (s, 2H), 5.17 (s, 4H), 5.06 (s, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ : 165.3, 152.3, 141.7, 137.5, 136.9, 136.4, 128.7, 128.6, 128.4, 128.2, 128.1, 127.9, 127.8, 124.8, 108.4, 74.3, 70.4, 66.2. HRMS (APCI-FIA-TOF, positive mode, *m/z*): 531.2166. Calculated for [M+H]⁺, C₃₅H₃₁O₅: 531.2171. IR (neat, ATR) v_{max}: 3091, 3033, 1713, 1590, 1498, 1109 cm⁻¹.

Synthesis of 3,4,5-Tris(benzyloxy)benzoic acid: A stirred solution of benzyl 3,4,5-tris(benzyloxy)benzoate (5.69 g, 10.7 mmol) in a 3M KOH solution in MeOH (285 mL) was refluxed overnight. The mixture was cooled down to rt and acidified (pH= 3-4) by addition of 3M HCl. The resulting precipitate was filtered, dissolved in EtOAc (80 mL) and washed with H₂O (40 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phase was dried and concentrated. The crude product was purified by automated MPLC (gradient from hexane to EtOAc, silica, 40 min) to afford 3,4,5-tris(benzyloxy)benzoic acid as a white solid (4.20 g, 89%). ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.53-7.22 (m, 17H), 5.18 (s, 4H), 5.03 (s, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ : 166.9, 152.0, 140.9, 136.9, 128.4, 128.2, 128.1, 127.9, 127.6, 126.2, 108.2, 74.2, 70.2. HRMS (APCI-FIA-TOF, positive mode, *m/z*): 441,1694. Calcd for [M+H]⁺, C₂₈H₂₅O₅: 441.1702. IR (neat, ATR) v_{max}: 3029, 1686, 1595, 1128 cm⁻¹.

Synthesis of 2[G0]-GaOBn: 3,4,5-Tris(benzyloxy)benzoic acid (334 mg, 0.76 mmol), HOBt (103 mg, 0.76 mmol) and EDC (145 mg, 0.76 mmol) were added to a solution of 2,2'- (ethylenedioxy)bis(ethylamine) (45 mg, 0.30 mmol) in DMSO (6 mL). After 20 h of stirring at rt, the reaction mixture was distributed between EtOAc (30 mL) and brine (30 mL). The aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic phase was washed

with H₂O (30 mL), dried and evaporated under vacuum. The crude product was purified by automated MPLC (gradient from hexane to 100% EtOAc and then to 100% CH₂Cl₂, neutral alumina, 25 min) to afford 2[G0]-GaOBn (255 mg, 85%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ : 7.47-7.18 (m, 30H), 7.11 (s, 4H), 6.62-6.53 (m, 2H), 5.08 (s, 8H), 5.07 (s, 4H), 3.69-3.50 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ : 167.2, 152.8, 141.4, 137.5, 136.8, 129.9, 128.6, 128.2, 128.1, 128.0, 127.6, 107.1, 75.1, 71.4, 70.2, 69.8, 39.8. IR (neat, ATR) v_{max}: 3310, 3064, 3033, 1634, 1581, 1112 cm⁻¹.

Synthesis of 2[G0]-GaOH: Pd/C (16 mg, 10%) was added to a solution of 2[G0]-GaOBn (160 mg, 0.16 mmol) in a mixture of DMF-MeOH 3:1 (4 mL). The resulting mixture was stirred under H₂ (1 atm) for 20 h. The catalyst was removed by filtration through Celite. The filtrate was concentrated and then purified by short column chromatography (MeOH-CH₂Cl₂-H₂O 3:3:0.2, silica) to give 2[G0]-GaOH as a green solid (71 mg, 98%). ¹H NMR (300 MHz, CD₃OD) δ : 6.85 (s, 4H), 3.67-3.57 (m, 8H), 3.50 (t, *J*=5.5 Hz, 4H). IR (KBr) v_{max}: 3319, 1636, 1592, 1338, 1033 cm⁻¹.

Synthesis of 2[G1]-GaOBn: 3,4,5-Tris(benzyloxy)benzoic acid (466 mg, 1.06 mmol), Et₃N (0.224 mL, 1.06 mmol), HOBt (143 mg, 1.06 mmol) and EDC (210 mg, 1.06 mmol) were added to a solution of 2[G1]-NH₂·HCl (205 mg, 0.14 mmol) in DMSO (8 mL). After 24 h of stirring at rt, the reaction mixture was distributed between EtOAc (50 mL) and brine (50 mL). The aqueous phase was extracted with EtOAc (3 x 50 mL). The combined organic phase was washed with 0.1M HCl (30 mL) and H₂O (50 mL), dried and evaporated under vacuum. The crude product was purified by automated MPLC (gradient from EtOAc to 25% MeOH, neutral alumina, 25 min) to afford 2[G1]-GaOBn (428 mg, 75%) as a pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ : 7.40-7.10 (m, 102H), 6.97 (s, 4H), 5.03-4.94 (m, 36H), 4.07 (t, *J*=3.5 Hz, 4H), 3.96 (t, *J*=3.7 Hz, 8H), 3.75-3.38 (m, 72H). ¹³C NMR (75 MHz, CDCl₃) δ : 167.2, 167.1, 152.5, 152.1, 140.9, 137.4, 136.7, 129.8, 128.4, 128.1, 127.8, 127.7, 127.4, 106.9, 75.0, 72.2, 71.1, 70.5, 70.3, 70.1, 70.0, 69.8, 69.6, 69.5, 68.6, 40.7, 39.7. IR (neat, ATR) v_{max}: 3314, 3065, 3032, 1634, 1580, 1100 cm⁻¹.

Synthesis of 2[G1]-GaOH: Pd/C (60 mg, 20%) was added to a solution of 2[G1]-GaOBn (300 mg, 0.075 mmol) in a mixture of EtOAc-MeOH 1:1 (8 mL). The resulting mixture was stirred under H₂ (1 atm) for 14 h. The catalyst was removed by filtration through Celite. The filtrate was concentrated and then purified by short column chromatography (MeOH-CH₂Cl₂-H₂O

3:3:0.2, silica) to give 2[G1]-GaOH as a green solid (133 mg, 82%). ¹H NMR (300 MHz, CD₃OD) δ : 7.10 (s, 4H), 6.84 (s, 12H), 4.15-4.03 (m, 12H), 3.82-3.43 (m, 72H). IR (KBr) ν_{max} : 3296, 1625, 1593, 1330, 1116, 1097 cm⁻¹.

Synthesis of 3[G1]-GaOBn: 3,4,5-Tris(benzyloxy)benzoic acid (268 mg, 0.61 mmol), Et₃N (0.128 mL, 0.61 mmol), HOBt (82 mg, 0.61 mmol) and EDC (120 mg, 0.61 mmol) were added to a solution of 3[G1]-NH₂·HCl (134 mg, 0.05 mmol) in DMSO (4.9 mL). After 36 h of stirring at rt, the reaction mixture was distributed between EtOAc (50 mL) and brine (50 mL). The aqueous phase was extracted with EtOAc (3 x 50 mL). The combined organic phase was washed with 0.1M HCl (30 mL) and H₂O (50 mL), dried and evaporated under vacuum. The crude product was purified by automated MPLC (gradient from EtOAc to 25% MeOH, neutral alumina, 25 min) to afford 3[G1]-GaOBn (413 mg, 84%) as a pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ : 7.37-7.08 (m, 153H), 6.89 (s, 6H), 5.91 (s, 3H), 4.93 (s, 54H), 4.04-3.81 (m, 24H), 3.67-3.33 (m, 120H). ¹³C NMR (75 MHz, CDCl₃) δ : 167.2, 160.4, 152.6, 152.1, 140.9, 137.5, 136.7, 129.9, 129.8, 128.4, 128.1, 127.9, 127.5, 107.0, 106.8, 94.3, 75.1, 72.2, 71.2, 71.1, 70.5, 70.3, 70.1, 69.8, 69.5, 68.6, 67.3, 40.0. IR (neat, ATR) v_{max}: 3319, 3069, 3034, 1635, 1581, 1108 cm⁻¹.

Synthesis of 3[G1]-GaOH: Pd/C (10 mg, 20%) was added to a solution of 3[G1]-GaOBn (49 mg, 0.008 mmol) in a mixture of DMF-MeOH 4:1 (3 mL). The resulting mixture was stirred under H₂ (1 atm) for 24 h. The catalyst was removed by filtration through Celite. The filtrate was concentrated and then purified by short column chromatography (MeOH-CH₂Cl₂-H₂O 3:3:0.2, silica) to give 3[G1]-GaOH as a green solid (26 mg, 90%). ¹H NMR (300 MHz, DMSO-d6) δ : 7.17 (s, 6H), 6.81 (s, 18H), 6.07 (s, 3H) 4.18-3.94 (m, 24H), 3.80-3.20 (m, 120H). IR (KBr) v_{max}: 3334, 1629, 1597, 1336, 1109, 1097 cm⁻¹.

Characterization of Ga-terminated dendrimers

Figure S1. ¹H NMR spectrum (DMSO-d₆) of benzyl 3,4,5-tris(benzyloxy)benzoate.

Figure S2. ¹³C NMR spectrum (DMSO-d₆) of benzyl 3,4,5-tris(benzyloxy)benzoate.

Figure S3. IR spectrum of benzyl 3,4,5-tris(benzyloxy)benzoate.

Figure S4. HR-MS of benzyl 3,4,5-tris(benzyloxy)benzoate.

Figure S5. ¹H NMR spectrum (DMSO-d₆) of 3,4,5-tris(benzyloxy)benzoic acid.

Figure S6. ¹³C NMR spectrum (DMSO-d₆) of 3,4,5-tris(benzyloxy)benzoic acid.

Figure S7. IR spectrum of 3,4,5-tris(benzyloxy)benzoic acid.

Figure S8. HR-MS of 3,4,5-tris(benzyloxy)benzoic acid.

Figure S9. ¹H NMR spectrum (CDCl₃) of 2[G0]-GaOBn.

Figure S10. ¹³C NMR spectrum (CDCl₃) of 2[G0]-GaOBn.

Figure S11. IR spectrum of 2[G0]-GaOBn.

Figure S12. ¹H NMR spectrum (CD₃OD) of 2[G0]-GaOH.

Figure S13. IR spectrum of 2[G0]-GaOH.

Figure S14. ¹H NMR spectrum (CDCl₃) of 2[G1]-GaOBn.

Figure S15. ¹³C NMR spectrum (CDCl₃) of 2[G1]-GaOBn.

Figure S16. IR spectrum of 2[G1]-GaOBn.

Figure S17. ¹H NMR spectrum (CD₃OD) of 2[G1]-GaOH.

Figure S18. IR spectrum of 2[G1]-GaOH.

Figure S19. ¹H NMR spectrum (CDCl₃) of 3[G1]-GaOBn.

Figure S20. ¹³C NMR spectrum (CDCl₃) of 3[G1]-GaOBn.

Figure S21. IR spectrum of 3[G1]-GaOBn.

Figure S22. ¹H NMR spectrum (DMSO-d₆) of 3[G1]-GaOH.

Figure S23. IR spectrum of 3[G1]-GaOH.

Figure S24. GPC elugrams of x[Gn]-GaOBn (THF).

Interference of the dendrimers in the Aβ supramolecular assembly

Molecular dynamics simulations of the dendrimer-A β interactions

Figure S25. Optimized geometry from MD simulations of 2NAO model (full-length Aβf).

Table S1. MD simulation analysis of the interaction between bull-length $A\beta_f$ (2NAO pdb file) and dendrimers under a $A\beta_f$:dendrimers ratio of 1:1 showing the average number of H-bonds between the peptide chains of $A\beta_f$ and the corresponding dendrimer, as well as the solvent-accessible surface area (SASA) of the region where dendrimers are interacting.

Disassembly 1:1	Net H-Bond (number #)	SASA (nm ²)
2NAO		145 ± 4
2NAO - Ga	23 ± 3	141 ± 4
2NAO - 2G0-GaOH	29 ± 3	147 ± 5
2NAO - 2G1-GaOH	45 ± 4	153 ± 4
2NAO - 3G1-GaOH	64 ± 4	113 ± 3

Simulation Time (0 to 80 ns)

Figure S26. Dynamic interaction energy between full-length $A\beta_f$ (2NAO pdb file) and Ga (1:1 ratio). Preferential binding residues were calculated by the nonbonded interaction energy and the number of H-bonds between each $A\beta_f$ and Ga.

Simulation Time (0 to 80 ns)

Figure S27. Dynamic interaction energy between full-length $A\beta_f$ (2NAO pdb file) and 2G0-GaOH (1:1 ratio). Preferential binding residues were calculated by the nonbonded interaction energy and the number of H-bonds between each full-length $A\beta_f$ and 2G0-GaOH.

Figure S28. Dynamic interaction energy between full-length $A\beta_f$ (2NAO pdb file) and 2G1-GaOH (1:1 ratio). Preferential binding residues were calculated by the nonbonded interaction energy and the number of H-bonds between each full-length $A\beta_f$ and 2G1-GaOH.

Figure S29. Dynamic interaction energy between full-length $A\beta_f$ (2NAO pdb file) and 3G1-GaOH (1:1 ratio). Preferential binding residues were calculated by the nonbonded interaction energy and the number of H-bonds between each full-length $A\beta_f$ and 3G1-GaOH.

Thioflavin T (ThT) assay

Figure S30. (A) 3D fluorescence spectra of Gallic acid (Ga, 50µM) using the following acquisition parameters: $\lambda_{ex} = 400-580$ nm; $\lambda_{em} = 415-600$ nm; (B) Fluorescence spectrum of Ga (50µM) acquired using a $\lambda_{ex} = 435$ nm and a $\lambda_{em} = 445-600$ nm; excitation bandwidth = 5nm; emission bandwidth = 10nm; response = 2s.

Figure S31. (A) 3D fluorescence spectra of 2G0-GaOH (50 μ M) using the following acquisition parameters: $\lambda_{ex} = 400-580$ nm; $\lambda_{em} = 415-600$ nm; (B) Fluorescence spectrum of 2G0-GaOH (50 μ M) acquired using a $\lambda_{ex} = 435$ nm and a $\lambda_{em} = 445-600$ nm; excitation bandwidth = 5nm; emission bandwidth = 10nm; response = 2s.

Figure S32. (A) 3D fluorescence spectra of 2G1-GaOH (50 μ M) using the following acquisition parameters: $\lambda_{ex} = 400-580$ nm; $\lambda_{em} = 415-600$ nm; (B) Fluorescence spectrum of 2G1-GaOH (50 μ M) acquired using a $\lambda_{ex} = 435$ nm and a $\lambda_{em} = 445-600$ nm; excitation bandwidth = 5nm; emission bandwidth = 10nm; response = 2s.

Figure S33. (A) 3D fluorescence spectra of 3G1-GaOH (50 μ M) using the following acquisition parameters: $\lambda_{ex} = 400-580$ nm; $\lambda_{em} = 415-600$ nm; (B) Fluorescence spectrum of 3G1-GaOH (50 μ M) acquired using a $\lambda_{ex} = 435$ nm and a $\lambda_{em} = 445-600$ nm; excitation bandwidth = 5nm; emission bandwidth = 10nm; response = 2s.

Figure S34. (A) Multivalent inhibition of the $A\beta_0$ aggregation kinetics evaluated using the ThT assay. Ga, 2G0-GaOH, 2G1-GaOH and 3G1-GaOH inhibited the $A\beta$ fibril elongation at an $A\beta$:Ga molar ratio of 1:1. Dendrimers were mixed with $A\beta_0$ in the lag-phase of the $A\beta$ fibril formation and fluorescence was measured over 10 days. All experiments were performed at room temperature. (B) Multivalent disassembling of $A\beta_f$ fibrils evaluated using the ThT assay. Ga, 2G0-GaOH, 2G1-GaOH and 3G1-GaOH promoted the disassembly of $A\beta$ fibrils at an $A\beta$:Ga molar ratio of 1:1. Compounds were mixed with $A\beta_f$ at the plateau phase and fluorescence was measured over 5 days. All experiments were performed at room temperature.

Circular Dichroism (CD)

Figure S35. CD spectra of $A\beta_0$ recorded for 5 days in the presence of different molar ratios of Ga. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S36. CD spectra of $A\beta_0$ recorded for 5 days in the presence of different molar ratios of 2G0-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S37. CD spectra of $A\beta_0$ recorded for 5 days in the presence of different molar ratios of 2G1-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S38. CD spectra of $A\beta_0$ recorded for 5 days in the presence of different molar ratios of 3G1-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S39. CD spectra of $A\beta_f$ recorded for 5 days in the presence of different molar ratios of Ga. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S40. CD spectra of $A\beta_f$ recorded for 5 days in the presence of different molar ratios of 2G0-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S41. CD spectra of $A\beta_f$ recorded for 5 days in the presence of different molar ratios of 2G1-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S42. CD spectra of $A\beta_f$ recorded for 5 days in the presence of different molar ratios of 3G1-GaOH. In all the cases, incubation was made at room temperature, under constant agitation.

Figure S43. Loss of antiparallel β -sheets for the aggregation pathway (A β_0) followed by CD during 1 and 5 days. All experiments were done using an A β :Ga molar ratio of 1:1; [A β]=25 μ M; and under constant agitation at 37 °C. Error bars = SD; n = 3. CD data were fitted using BeStSel - RMSD: 1.0283; NRMSD: 0.04966.

Scanning transmission electron microscopy (STEM)

Figure S44. Representative STEM images of $A\beta_f$ samples. Each dendrimer was added into an $A\beta_f$ solution (under $A\beta$:dendrimer concentration ratios of 1:0.5, 1:1 and 1:2) and left to incubate for 24h under constant agitation. Both compounds directly altered $A\beta_f$ morphological presentation. Scale bars = 500 nm.

Atomic Force Microscopy (AFM)

Figure S45. Representative AFM images of $A\beta_f$. Each dendrimer was added into an $A\beta_f$ solution ($A\beta$:Ga molar ratio of 1:1) and left to incubate for 24h under constant agitation. The dendrimers with higher number of Ga units (i.e., 2G1-GaOH and 3G1-GaOH) were more effective than Ga to alter the $A\beta_f$ presentation. Scale bars = 500 nm.

Western Blot (WB) analysis

Figure S46. Relative densitometric bar graphs of $A\beta_o$ (25µM) assembly quantified by WB (using the antibody 6E10); experiments were executed at 37°C in PBS, during 1 and 5 days. Error bars = SD, * p < 0.05, ** p < 0.01 and *** p < 0.001 vs control 25µM $A\beta_o$; n=3.

Figure S47. Relative densitometric bar graphs of $A\beta_f$ (25µM) disassembly quantified by WB (using the antibody 6E10); experiments were executed at 37°C in PBS, during 1 and 5 days. Error bars = SD, * p < 0.05, ** p < 0.01 and *** p < 0.001 vs control 25µM $A\beta_f$; n=3.

2 CELL STUDIES

Ability of the dendrimers to modulate the A^β cytotoxicity

AlamarBlue® and Live/Dead assays

Figure S48. SH-SY5Y cell viability in the presence of (A) A β oligomers (A β_0 , 25 μ M) and (B) A β fibrils (A β_f , 25 μ M) during 24h (using AlmarBlue® assay). Cells were incubated during 24h with different concentrations of A β . * p < 0.05, ** p < 0.01, *** p < 0.001 (vs control); n=3.

Figure S49. (A) Metabolic activity measured by AlamarBlue® assay of SH-SY5Y in the presence of a solution of $A\beta_0$ oligomeric species (25µM) during 24h, for a Aβ:dendrimers concentration ratio of 1:1. *** p < 0.001 (vs fibrillar Aβ); n=3; (B) Representative images of the Live/Dead assay. Scale bar = 50µm; n=3.

Figure S50. (A) Metabolic activity measured by AlamarBlue® assay of SH-SY5Y in the presence of a solution of A β_f pre-formed fibrils (25 μ M) during 24h, for a A β :dendrimers concentration ratio of 1:1. *** p < 0.001 (vs No A β); n=3. (B) Representative images of the Live/Dead assay. Scale bar = 50 μ m; n=3.

Figure S51. Metabolic activity measured by AlamarBlue® assay of SH-SY5Y in the presence of a solution of (A) $A\beta_0$ and (B) $A\beta_f$ pre-formed fibrils (25µM) during 24h. Experiments done at an $A\beta$:Ga molar ratio of 1:1. *** p < 0.001 (vs $A\beta$); n=3.

Quantification of the β-sheet content under cell culture determined by ThT assay

Figure S52. ThT fluorescence measurements in SH-SY5Y cell culture, after incubation with $A\beta_0(A)$ and $A\beta_f(B)$ species and dendrimers for a A β :dendrimers concentration ratio of 1:1, during 1 day of culture. Error bars = SD, ### p < 0.01 (vs control 25 μ M A β); * p < 0.05, ** p < 0.01 and *** p < 0.001 vs No A β ; n=3.

Figure S53. ThT fluorescence measurements in SH-SY5Y cell culture, after incubation with $A\beta_0$ species and dendrimers (A β :Ga molar ratio of 1:1), during 1 day of culture. Error bars = SD, ^{###} p < 0.01 (vs No A β); ** p < 0.01 and *** p < 0.001 vs control 25 μ M A β ; n=3.

Figure S54. ThT fluorescence measurements in SH-SY5Y cell culture, after 1 day of incubation with A. solution of dendrimers at 25 μ M concentration and B. solution of dendrimers at the concentrations used in the multivalency experiments (i.e., A β :Ga 1:1 molar ratio, per gallate). Error bars = SD, ** p < 0.01; n=3.

Protein expression

Figure S55. Immunofluorescence analysis of $A\beta_0$ species in the SH-SY5Y cell culture visualized by confocal microscopy (mAb 6E10, green) after incubation with dendrimers for a A β :dendrimer concentration ratio of 1:1, during 1 and 5 days (A β : green, cell nuclei: blue). Scale bar: 200 μ m (50 μ m for the insets).

Figure S56. Immunofluorescence analysis of $A\beta_f$ species in the SH-SY5Y cell culture visualized by confocal microscopy (mAb 6E10, green) after incubation of dendrimers for a $A\beta$:dendrimers concentration ratio of 1:1, during 1 and 5 days ($A\beta$: green, cell nuclei: blue). Scale bar: 200 µm (50 µm for the insets).

Figure S57. Immunofluorescence analysis of $A\beta_0$ species in the SH-SY5Y cell culture visualized by confocal microscopy (A11 antibody, green) after incubation of dendrimers for a $A\beta$:dendrimers concentration ratio of 1:1, during 1 and 5 days ($A\beta$: green, cell nuclei: blue). A11 antibody specifically bind to oligomeric $A\beta$ species. Scale bar: 50µm.

Figure S58. Immunofluorescence analysis of $A\beta_f$ species in the SH-SY5Y cell culture visualized by confocal microscopy (A11 antibody, green) after incubation of dendrimers to a 1:1 ratio, for 1 and 5 days (A β : green, cell nuclei: blue). A11 antibody specifically bind to oligomeric A β species. Scale bar: 50 µm.

Bio-AFM experiments

Figure S59. Representative AFM topographic images of SH-SY5Y cells cultured during 24h in the presence of (A) $A\beta_0$ (assembly) and (B) $A\beta_f$ (disassembly) and Ga, 2G0-GaOH, 2G1-GaOH and 3G1-GaOH using a $A\beta$:dendrimers ratio of 1:1.

Figure S60. Statistical comparison of the cells height profile from the nanomechanical properties obtained by AFM topographic images of normal SH-SY5Y cells with 1:1 ratio of A β :dendrimers, under different conditions: (A) assembly pathway (A β_0) and (B) disassembly pathway (A β_f). All experiments were conducted after 24h of incubation with A β (25µM). Error bars = SD, ^{###} p < 0.01 (vs No A β); ** p < 0.01 and *** p < 0.001 vs control 25µM A β_0 /A β_f ; n=3.