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Supplemental Figure 1: Presentation of MTZ to vmhc:mCherry-NTR fish results in cell
death, related to Figure 1. A) Wild type AB zebrafish heart and vmhc:mCherry-NTR zebrafish
heart shown in brightfield, merged, and mCherry fluorescence. The mCherry signal shows the
tissue specific, ventricle, expression of the mCherry-NTR protein. The chambers of the heart are
outlined and labeled: A — atrium, V- ventricle, and B — bulbus arteriosus. The scale bars are: 500
pm. B) Confocal fluorescent microscopy image of a sectioned ventricle of the vmhc:mCherry-
NTR line. mCherry staining is found throughout the ventricle. Red — mCherry-NTR and Blue —
DAPI. Scale bar is 50 um. C) Confocal microscopy of vmhc:mCherry-NTR zebrafish heart
after 48 hours of vehicle (DMSO, uninjured) or MTZ (injured). Injured fish show TUNEL
positive cells, yellow arrow heads, while vehicle treated fish do not. During injury there is a loss
of ventricular muscle. Red — mCherry-NTR, Green — TUNEL, and Blue — DAPI. Scale bars are
10 pm.
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Supplemental Figure 2: Wnt/B-catenin signaling effects cardiomyocyte proliferation during
the early stages of regeneration, related to Figure 1. A-C) Immunohistochemistry images of
cardiomyocyte proliferation at 3 days post injury during Wnt/p-catenin inhibition via hsDkk1b
overexpression or no Wnt/B-catenin inhibition via no heat shock or no hsDkk1bGFP construct
present. D-E) Immunohistochemistry images of cardiomyocyte proliferation at 3 days post
injury during Wnt/p-catenin activation via hsWnt8a overexpression or no additional Wnt/-
catenin activation via no heat shock and no hsWnt8aGFP construct present. F) Quantification of
cardiomyocyte proliferation in the context of Wnt/B-catenin activation via hswnt8a. All animals
were presented with MTZ. Scale bar: 25 um. Blue-DAPI, Red-Pcna, and Green-Mef2c. Yellow
arrow heads denote proliferating cardiomyocytes, Pcna and Mef2c positive.
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Supplemental Figure 3: Metabolism is dynamically regulated during the first week of adult
zebrafish heart regeneration, related to Figure 2. A) RNA-sequencing data of cardiac
transcription factors, structural, and metabolic gene expression during adult zebrafish heart
regeneration and RT-gPCR validation of these genes. B) Principle component analysis of
isolated young uninjured, 3-day old hearts, and adult zebrafish hearts as compared to Bednarek et
al. adult zebrafish hearts. C) Principle component analysis of isolated young uninjured 3-day old
hearts, uninjured adult hearts, and NTR ablated adult zebrafish hearts as compared to Bednarek
et al. uninjured and cryo-injured adult zebrafish hearts. D) Venn diagrams for the genes that
revert to a fetal like expression level during regeneration. E) Key cardiac pathways that are
differentially expressed during adult zebrafish heart regeneration. Log2 fold change shown. F)
Metabolic pathways enrichment for up- and down-regulated genes during the first week of adult
zebrafish heart regeneration.
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Supplemental Figure 4: Proteomics analysis of adult zebrafish heart regeneration, related
to Figure 2. A) Schematic of adult zebrafish hearts used for proteomics analysis at Ul adult, 3,
or 7 dpi. B) Principle component analysis of full proteome analysis during the first week of heart
regeneration. C) Volcano plots of protein expression comparing adult hearts at Ul, 3, or 7 dpi.
D) Gene ontology terms that were down-regulated at 3 dpi. E) Gene ontology terms that were
up-regulated at 7 dpi. F) Protein validation of succinate dehydrogenase complex assembly factor
3 expression during the first week of adult zebrafish heart regeneration. G) RNA-sequencing
expression of succinate dehydrogenase complex assembly factor 3. H) Venn diagrams showing
the number of genes and proteins that were differentially regulated and found in both data sets
during heart regeneration. Bar graphs error bars represent standard error of the mean.
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Supplemental Figure 5: Dynamic transcriptional remodeling of metabolic enzymes during
the first week of heart regeneration, related to Figure 2. A) Heat map of TCA cycle enzyme
gene expression from RNA-sequencing data.
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Supplemental Figure 6: Cardiomyocytes and epicardial cells have higher TOR activity
during zebrafish heart regeneration related to Figure 3. A) Western blot of TOR activity
target p-Ulk1 and loading control protein alpha-tubulin. B) Quantification of protein abundance
in A shows increased Tor activity at 3 dpi. C-E) Whole heart immunohistochemistry images
assessing cardiomyocyte proliferation at 3 dpi in the uninjured, injured, and injured with
rapamycin treated conditions. Scale bars: 100 um. F-H) Immunohistochemistry assessing TOR
activity at 3 dpi of heart regeneration. Positive TOR cardiomyocytes are double positive for pS6
and NTR-mCherry (yellow arrows). Positive TOR epicardial cells are positive for pS6 and were
determined as the cells along the border of the heart. DAPI — blue, phosphorylation of S6 —
Green, and NTR-mCherry — Red. Full heart image scale bars are 100 um, magnified inset image
scale bars are 20 um. ) Quantification of the percentage of pS6 cardiomyocytes,
cardiomyocytes determined by vmhc::mCherry-NTR. One-way ANOVA performed. p=0.023
for uninjured (-Rapa -MT2Z) vs injured (-Rapa +MTZ) hearts. p=0.024 for injured (-Rapa
+MT2Z) vs rapamycin treated injured hearts (+Rapa +MTZ). N=2-3 biological replicates. J)
Quantification of the percentage of pS6 epicardial cells. p=0.029 for uninjured (-Rapa -MTZ) vs
injured (-Rapa +MTZ) hearts. p=0.050 for injured (-Rapa +MTZ) vs rapamycin treated injured
hearts (+Rapa +MTZ). N=4 biological replicates. K-M) Whole heart immunohistochemistry
images assessing cardiomyocyte TOR activation at 3 dpi in the uninjured, injured, and injured
with rapamycin treated conditions. Scale bars: 100 um. DAPI — blue, phosphorylation of S6 —
Green, and MF20 — Red. N) Quantification of the percentage of pS6 epicardial cells. p<0.001
for uninjured (-Rapa -MT2Z) vs injured (-Rapa +MTZ) hearts. p<0.001 for injured (-Rapa
+MT2Z) vs rapamycin treated injured hearts (+Rapa +MTZ). One-Way ANOVA performed.
N=3-4 biological replicates. Bar graphs show individual data points with error bars representing
standard error.
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Supplemental Figure 7: Single cell RNA-sequencing of the adult regenerating zebrafish
heart identifies transient cell populations, related to Figure 4. A) Principle component
analysis separated by day. B) Plot showing ventricular cardiomyocyte markers. C) Gene
expression of lamtor5 in cluster 1 cells at different time points. D) Plot showing bulbus
arteriosus markers. E) Gene expression of tgfb3 in each of the four clusters. F) Plot showing
epicardial markers. G) Plot showing activated epicardial markers. H) Plot showing fibroblast
markers. 1) Plot showing endocardial markers. J) Plot showing atrial cardiomyocyte markers.
K) Plot showing cells which are expressing the gene for the Wnt ligand wnt11r.



Transcriptional

reversion
— B RNA-Seq
72 hrs
Explanted adult
Cardiomyocytes
d

Mouse Explanted CM
Dedifferentiation

Glutamine Transport Schematic

glutamine

leucine

leucine

Ul

positive regulation of mTORCL
Negative regulation of mTORC1

e

glutamine

R

Lysosome

PRSI SS918i81y

High intracellular /

glutamine

arginine

4

glutamine

ity

glutamine

A} Yy,

‘M‘“

=

-2

condition
Ohr
24hr
48hr
72hr

Mouse Explanted CM
Dedifferentiation

condition

Pathways
OXPHOS
Glycolysis
TCA
FA.Oxidation



Supplemental Figure 8: Adult mouse cardiomyocyte de-differentiation resembles a
regenerative transcript profile, related to Figure 5. A) Schematic of adult mouse
cardiomyocyte isolation and in vitro culture. B) Heat map of cell proliferation, Wnt ligands and
Whnt/B-catenin targets during cardiomyocyte de-differentiation. Heatmap shows Log> fold
change. C) Heat map of the transcriptional change in metabolic pathways during cardiomyocyte
de-differentiation. Heatmap shows Log> fold change. D) Schematic of glutamine transport and
mMTORC1 activation in a cell.





