Title:

Risk Factor Characterization of Ischemic Stroke Subtypes among West Africans

Running title: Ischemic Stroke in West Africa

Authors:

Fred S. Sarfo¹, Bruce Ovbiagele², Onoja Akpa^{3,4}, Albert Akpalu⁵, Kolawole Wahab⁶, Reginald Obiako⁷, Morenikeji Komolafe⁸, Lukman Owolabi⁹, Godwin Ogbole¹⁰, Benedict Calys-Tagoe⁵, Ezinne O. Uvere^{11,} Taofeek Sanni¹², Gebregziabher Mulugeta¹³, Salaam Abdul¹⁴, Adeseye A. Akintunde¹⁵, Samuel Olowookere⁸, Moyinoluwalogo M. Tito-Ilori¹¹, Philip Ibinaiye⁷, Joshua Akinyemi¹⁶, Kelechukwu Uwanuruochi¹⁷, Balogun Olayemi⁷, Olufemi A. Odunlami¹⁸, Esther Abunimye⁹, Oyedunni Arulogun¹⁶, Suleiman Y. Isah⁹, Sani A. Abubakar⁷, Adebayo Oladimeji¹⁹, Philip Adebayo²⁰, Vincent Shidali²¹, Innocent I. Chukwuonye¹⁷, Josephine Akpalu⁵, Fakunle Adekunle¹¹, Osahon J. Asowata¹, Emmanuel O. Sanya⁶, Ganiyu Amusa¹⁴, Ugochukwu Onyeonoro¹⁷, James A. Ogunmodede⁶, Abdullateef G. Sule⁷, Cynthia Akisanya¹⁸, Yaw Mensah²², Olalekan I. Oyinloye⁶, Lambert Appiah²³, Atinuke M. Agunloye^{16,19}, Godwin O. Osaigbovo¹⁴, Eunice Olabinri¹², Philip M. Kolo⁶, Obiora Okeke¹⁷, Abiodun M. Adeoye^{16,19}, Olabamiji Ajose⁸, Carolyn Jenkins¹³, Daniel T. Lackland¹³, Adedeji A. Egberongbe²⁴, Olaleye Adeniji¹⁸, Osimhiarherhuo Ohifemen Adeleye¹⁸, Hemant K. Tiwari²⁵, Ruth Y. Laryea⁵, Taiwo Olunuga¹⁸, Kazeem S. Akinwande¹⁸, Lucius Imoh¹⁴, Okechukwu S. Ogah¹⁹, Ezinne S. Melikam¹⁹, Adeyemo Adebolaji¹⁶, Wisdom Oguike⁷, Mayowa Ogunronbi¹¹, Wasiu Adeniyi¹⁸, Obiabo Y. Olugbo²⁶, Abiodun H. Bello⁶, Kenneth A. Ohagwu¹⁷, Luqman Ogunjimi²⁷, Francis Agyekum²⁸, Henry Iheonye²⁹, Julius Adesina¹⁸, Samuel Diala¹¹, Hamisu A. Dambatta⁹, Joyce Ikubor²⁶, Arti Singh¹, Sheila Adamu²³, Vida Obese²³, Nathaniel Adusei²³, Dorcas Owusu¹, Michael Ampofo²³, Raelle Tagge², Richard Efidi¹⁹, Bimbo Fawale⁸, Joseph Yaria¹⁹, Rufus Akinyemi^{18,30} Mayowa Owolabi^{11,30}, on behalf of SIREN

Authors' affiliations

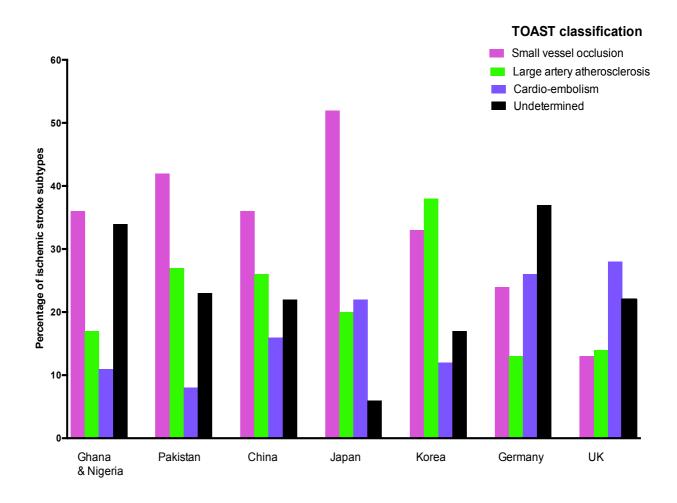
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Weill Institute for Neurosciences, School of Medicine, University of California San-Francisco, USA
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan
- Preventive Cardiology Research Unit, Institute of Cardiovascular Diseases, College of Medicine, University of Ibadan, Nigeria
- 5. Department of Medicine, University of Ghana Medical School, Accra, Ghana.
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria.
- 7. Department of Medicine, Ahmadu Bello University, Zaria, Nigeria.
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
- 9. Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria.
- 10. Department of Radiology, University of Ibadan, Nigeria
- 11. Department of Medicine, University of Ibadan, Nigeria
- 12. Federal Teaching Hospital, Ido-Ekiti Ado-Ekiti, Nigeria
- 13. Medical University of South Carolina, Charleston, USA
- 14. Jos University Teaching Hospital Jos, Nigeria
- 15. Ladoke Akintola University of Technology/Teaching Hospital, Ogbomosho, Nigeria
- 16. College of Medicine, University of Ibadan, Nigeria
- 17. Federal Medical Centre Umuahia, Abia state, Nigeria
- 18. Federal Medical Centre, Abeokuta, Nigeria.
- 19. University College Hospital, Ibadan, Nigeria
- 20. Aga Khan University Dar es Salaam, Tanzania
- 21. Federal Medical Centre, Keffi Zaria, Nigeria
- 22. Korle Bu Teaching Hospital Accra, Ghana
- 23. Komfo Anokye Teaching Hospital Kumasi, Ghana
- 24. Federal Medical Centre, Owo Ondo State, Nigeria
- 25. University of Alabama at Birmingham, Birmingham, Alabama, USA
- 26. Delta State University/Delta State University Teaching Hospital, Oghara, Nigeria

- Department of Pharmacology and Therapeutics, Olabisi Onabanjo University. Abeokuta, Nigeria
- 28. Greater Accra Regional Hospital, Accra, Ghana
- 29. Federal Medical Centre, Lokoja, Kogi state, Nigeria
- 30. Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Nigeria

Corresponding Author:

Mayowa O. Owolabi, MBBS, MSc, DrM, FAAN, FANA, FRCP, FAS Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria , University College Hospital Ibadan and Blossom Specialist Medical Center, Ibadan, Nigeria Tel: +234 802 077 5595 Email: mayowaowolabi@yahoo.com

Table I: Comparison of demographic and clinical characteristics of stroke-free controls to ischemic stroke cases


Characteristic	Control N=2431	Cases N=2431	p-value
Gender, Male, n (%)	1283(52.78)	1284(52.82)	0.868
Age, mean \pm SD	60.1±13.8	62.1 ± 14.0	0.471
Age categories, n (%)			
<30	38(1.56)	52(2.14)	0.002
30-49	491(20.20)	355(14.60)	
50-69	1240(51.01)	1210(49.77)	
>=70	662(27.23)	803(33.03)	
Age >65years, n (%)	864(35.54)	984(40.44)	< 0.001
Domicile			
Rural, n (%)	457(18.80)	221(9.09)	< 0.001
Semi-urban, n (%)	632(26.00)	713(29.33)	
Urban, n (%)	1341(55.16)	1482(60.96)	0.001
Monthly Income >\$100, n (%)	897(36.90)	983(40.44)	<0.001
Education, (some) n (%)	1846(75.94)	1898(78.7)	0.031
Country, Ghana, n (%)	864(35.54)	735(30.23)	<0.001
Akan	526(2.14)	524(21.55)	< 0.001
Gal/Adange	130(5.35)	92(3.78)	
Ewe	99(4.07)	70(1.93)	
others	109(4.48)	49(2.02)	<0.001
Country, Nigeria, n (%)	1558(64.09)	1680(69.11)	<0.001
Yoruba	880(36.20)	877(36.08)	0.001
Igbo	85(3.50)	102(4.20)	
Hausa Othoma	425(17.48)	438(18.02)	
Others	168(6.91)	253(10.41)	<0.001
Hypertension, n (%)	1496(61.54)	2279(93.75)	<0.001
Dyslipidemia, n (%)	$\frac{1316(54.13)}{287(11.81)}$	2062(84.82)	<0.001
Diabetes, n (%)	287(11.81)	1000(41.14)	<0.001
Cardiac Disease, n (%)	110(4.52)	336(13.82)	<0.001
HDL-Cholesterol, mg/dl, mean ± SD	52.9±17.7	46.3 ± 18.2	0.211
HDL-Cholesterol \leq 18.54 mg/dl, n	480(19.74)	816(33.57)	< 0.001
(%)	100.0.11.6		.0.001
LDL-Cholesterol, mg/dl, mean \pm SD	120.3±44.6	121.0 ± 51.0	<0.001
LDL-Cholesterol \geq 61.2 mg/dl, n (%)	742(30.52)	787(32.37)	0.164
LDL/HDL ratio, mean \pm SD	2.54±1.4	3.0 ± 1.8	< 0.001
LDL/HDL ratio >2.96, n (%)	599(24.64)	785(32.29)	< 0.001
LDL/HDL ratio by thirds:			
≤2.00	763(31.39)	601(24.72)	< 0.001
2.01 - 2.96	620(25.50)	594(24.43)	
≥ 2.97	599(24.64)	1980(81.45)	
Total Cholesterol, mmol/l, mean \pm SD	194.7±49.1	190.3 ± 57.8	< 0.001
Total Cholesterol \geq 93.6 mg/dl, n(%)	841(34.59)	836(34.39)	0.576
Triglyceride, mg/dl , $mean \pm SD$	105.4±49.7	130.6 ±84.9	< 0.001
Triglyceride \geq 30.6 mg/dl, n (%)	306(12.59)	538(22.13)	< 0.001
Waist-to-hip Ratio, mean \pm SD	0.92 ±0.09	0.6 ± 0.5	0.294
Waist-to-hip Ratio raised, n (%)	1697(69.81)	1884(77.50)	< 0.001
Waist-to-hip Ratio by thirds:			
$\leq .90$	923(37.97)	560(23.04)	< 0.001
.9196	729(29.99)	811(33.36)	
≥.97+	684(28.14)	864(35.54)	
WHR ^{**} , Lowest vs highest thirds, n (%)	684(28.14)	864(35.54)	< 0.001

WHR**, 1 st vs 2 nd +3 rd thirds, n (%)	1413(58.12)	1675(68.90)	< 0.001
BMI*** (kg/m2), mean \pm SD	26.2±6.0	26.7 ± 5.3	0.001
BMI*** >30kg/m ² , n (%)	506(20.81)	430(17.69)	0.664
Physical Inactivity n (%)	66(2.71)	114(4.70)	< 0.001
Tobacco use in past 12 months, n (%)	33(1.36)	70(2.88)	< 0.001
Tobacco (any use), n (%)	178(7.32)	234(9.63)	0.001
Alcohol (current user), n (%)	350(14.40)	332(13.66)	0.546
Alcohol (any use), n (%)	714(29.37)	716(29.45)	0.772
Alcohol use categories:			
Never Use	1694(69.68)	1668(68.61)	< 0.001
Ever Low Use	428(17.61)	386(15.88)	
Ever High Use	12(0.49)	47(1.93)	
Stress, n (%)	307(12.63)	424(17.44)	< 0.001
Cancer, n (%)	3(0.12)	15(0.62)	< 0.001
Depression, n (%)	140(5.76)	177(7.32)	< 0.001
Family history of CVD, n (%)	613(25.22)	898(36.94)	< 0.001
Adding salt at table, n (%)	200(8.23)	145(5.96)	0.007
Low Vegetable Consumption, n (%)	397(16.33)	565(23.24)	< 0.001
Whole grains consumption, n (%)	1995(82.06)	1857(76.39)	0.945
Legumes consumption, n (%)	1471(60.51)	1471(60.51)	1.00
Fruit consumption, n (%)	2005(82.48)	1848(76.02)	0.279
Sugar consumption or otherwise, n (%)	779(32.04)	618(25.42)	0.001
Meat consumption or otherwise, n (%)	1543(63.47)	1587(65.28)	<0.001
Fish consumption or otherwise, %	2135(87.82)	2001(82.31)	0.834
Investigations	· /	, , , , , , , , , , , , , , , , , , ,	
Electrocardiography		1467 (60.3)	
Echocardiography		1022 (42.0)	
Carotid Doppler		930 (38.3)	
Cranial CT scan		2431 (100.0)	
Previous stroke, n (%)		272(11.19)	

Number of risk factors	All Ischemic stroke N=2431	Small vessel disease N=1024	Large-vessel atherosclerosis N=427	Cardio- embolism N=258	Undetermined etiology N=722	P-value (Exact test)
0	9(0.37%)	6(0.59%)	2(0.47%)	0(0%)	1(0.14%)	0.336
1	42(1.763%)	24(2.34%)	12(2.81%)	2(0.78%)	5(0.69%)	0.012
2	216(8.89%)	98(9.57%)	45(10.54)	23(8.91%)	(6.93%)	0.146
3	593(24.39%)	245(23.93%)	11(2.58/%)	52(20.16%)	185(25.62%)	0.222
4	434(17.85%)	174(16.99%)	77(18.03)	34(13.18%)	(20.64%)	0.032
5	485(19.95%)	207(20.21%)	79(18.50%)	54(20.93%)	143(19.81%)	0.827
6	214(80.80%)	91(8.89%)	27(6.32%)	(12.79%)	63(8.73%)	0.045
7	58(2.39%)	23(2.25%)	6(1.41%)	13(5.04%)	16(2.22%)	0.023
8	16(0.66%)	7(0.68%)	4(0.94%)	4(1.55%)	1(0.14%)	0.086
9	3(0.12%)	1(0.10%)	0(0%)	1(0.39)	1(0.14%)	0.584
10	0	0	0	0	0	0

Table II. Clustering of Modifiable Risk factors of Ischemic stroke and its pathophysiologic subtypes

Risk factor combinations (score 1 or 0) for hypertension, dyslipidemia, diabetes mellitus, obesity, cardiac disease, smoking, alcohol use, perceived stress, depression, low vegetable consumption, physical inactivity and meat consumption.

Supplementary Figure I. Comparison of ischemic stroke subtypes in West Africa, Asian (Pakistan, China, Japan, Korea) and Western (Germany and UK) countries.

STROBE Statement-Checklist of items that should be included in reports of case-control studies

	Item		Please	insert
	No		check	where
			include	d or
			N/A	where
		Recommendation	not app	olicable
Title and abstract	1	(a) Phenotypic Characterization of Ischemic Stroke Subtypes among West Africans		

(b) **Objective:** To identify the qualitative and quantitative contributions of conventional risk factors for occurrence of ischemic stroke and its key pathophysiologic subtypes among West Africans.

Methods: The Stroke Investigative Research and Educational Network (SIREN) is a multicenter, case-control study involving 15 sites in Ghana and Nigeria. Cases include adults aged \geq 18 years with ischemic stroke who were etiologically subtyped using the A-S-C-O-D classification into Atherosclerosis, Small-vessel occlusion, Cardiac pathology, Other causes and dissection. Controls were age-and-gender matched stroke-free adults. Detailed evaluations for vascular, lifestyle and psychosocial factors were performed. We used conditional logistic regression to estimate adjusted odds ratios (aOR) with 95% Confidence Interval.

Results: There were 2,431 ischemic stroke case and stroke-free control pairs with respective mean ages of 62.2 ± 14.0 versus 60.9 ± 13.7 years. There were 1,024(42.1%) small vessel occlusions, 427(17.6%) large-artery atherosclerosis, 258(10.6%) cardio-embolic, 3(0.1%) carotid dissections and 719(29.6%) undetermined/other causes. The aOR (95%CI) for the 8 dominant risk factors for ischemic stroke were hypertension 10.34(6.91,15.45), dyslipidemia 5.16(3.78,7.03), diabetes mellitus 3.44(2.60,4.56), low green vegetable consumption 1.89(1.45,2.46), red meat consumption 1.89(1.45,2.46), cardiac disease 1.88(1.22,2.90), monthly income \$100+1.72(1.24,2.39) and psychosocial stress 1.62(1.18,2.21). Hypertension, dyslipidemia, diabetes were confluent factors shared by small-vessel, large-vessel and cardio-embolic subtypes. Each stroke case and stroke-free control pair had an average of 5.3 \pm 1.5 and 3.2 \pm 1.0 adverse cardio-metabolic risk factors respectively (p<0.0001).

Conclusion: Traditional vascular risk factors demonstrate important differential effect sizes with pathophysiologic, clinical and preventative implications on the occurrence of ischemic stroke among indigenous West Africans.

Introduction

Background/rationale 2

The qualitative and quantitative contributions of the various traditional medical and lifestyle risk factors to the occurrence of key pathophysiologic subtypes of ischemic stroke among indigenous Africans, has not been comprehensively explored.

Objectives	3	To identify the qualitative and quantitative contributions of conventional risk factors	
-		for occurrence of ischemic stroke and its key pathophysiologic subtypes among West Africans.	
Methods			
Study design	4	A multi-center Case-control study design. Cases were stroke patients presenting within hospitals at study sites. Controls were stroke-free subjects recruited mainly from the communities from the catchment areas of stroke cases.	
Setting	5	 Study was conducted at 15 sites in Ghana and Nigeria. Study centers were tertiary referral hospitals. Study recruitment commenced in August 2014 to June 2018. 	
Participants	6	 Stroke cases included consecutive consenting Ischemic strokes (in unconscious/aphasic subjects, consent from next of kin was obtained) adults aged >18 years with first clinical stroke within 8 days of current symptom onset or 'last seen without deficit' with neuroimaging confirmation with CT or MRI scan within 10 days of symptom onset. 	
		• Controls were consenting stroke-free adults, mostly from the communities in the catchment areas of the SIREN hospitals where cases were recruited. Stroke-free status was confirmed with the 8-item questionnaire for verifying stroke-free status (QVSFS).	
		(b) Case-control study—For matched studies, give matching criteria and the number of controls per case	
		 Controls were matched by age (+/- 5 years), sex and ethnicity to minimize the potential confounding effect of these variables on the relationship between stroke and its risk factors. 	

• Case : Control matching was 1:1

7

We collected basic demographic and lifestyle data including ethnicity of the subjects and their parents, socioeconomic status, cardiovascular risk profile and dietary patterns. We used validated instruments to assess physical activity, stress, depression, cigarette smoking, and alcohol use. Using a uniform SOP across all study sites, we collected blood samples for HbA1c and early morning samples after overnight fast in cases (post-acute phase when fasting is feasible) and controls for fasting blood glucose, and fasting lipid profile [total cholesterol (TC), Low Density Lipoprotein-cholesterol (LDL-C), High Density Lipoprotein-cholesterol (HDL-C) and triglyceride (TG)].

Data sources/ 8*	Definition of risk factors
measurement	 Hypertension: Blood pressure (average of three measurements used) was recorded at baseline and daily for 7 days or until death. A cutoff of ≥140/ 90 mmHg for up to 72 hours after stroke, a history of hypertension, or use of antihypertensive drugs before stroke or >72 hours after stroke were regarded as indicators of hypertension. Adjustments to systolic BP (SBP) based on reported associations between pre-morbid BP and acute post-stroke BP in the Oxford Vascular Study (OXVASC) were also applied in sensitivity analyses. Definition of hypertension in controls was self-reported history of hypertension or use of antihypertensive drugs or average BP at first clinical encounter ≥140/90mmHg.
	• Diabetes mellitus was defined based on history of diabetes mellitus, use of medications for DM, an HBA1c >6.5% or a fasting blood glucose (FBG) levels > 7.0mmol/l at first encounter in controls or measured after the post-acute phase in cases due to the known acute transient elevation of glucose as a stress response after stroke.
	 Dyslipidemia was defined as fasting TC ≥5.2mmol/L, HDL-C ≤1.03mmol/l, TG ≥ 1.7mmol/l or LDL-C ≥ 3.4mmol/l according to NCEP guidelines or use of statin prior to stroke onset. Based on distribution of the LDL/HDL ratio in the present study, the LDL/HDL ratio was dichotomized using the lowest two tertiles (≤1.97 and 1.98-2.95) as normal versus highest tertile (≥2.96) as high.
	• Cardiac disease was defined after evaluation by study cardiologists based on history or current diagnosis of atrial fibrillation, cardiomyopathy, heart failure, ischemic heart disease, rheumatic heart disease, valvular heart diseases.
	• Obesity: We assessed both waist-to-hip ratio (WHR) and body-mass index. Subjects were classified individually either using the WHO guidelines using cutoffs of 0.90 (men) and 0.85 (women) for WHR or 30kg/m ² for BMI (Obesity).
	• Individuals were classified as physically active if they were regularly involved in moderate exercise (walking, cycling, or gardening) or strenuous exercise (jogging, football, and vigorous swimming) for 4hours or more per week.
	• Dietary history included regularity of intake of food items such as meat, fish, green leafy vegetables, addition of salt at table, nuts, sugar and other local staple food items. Regular intake was defined as intake on daily, weakly on at least once monthly years none in a month

daily, weekly or at least once monthly versus none in a month.

•	Alcohol use was categorized into current users (users of any form of
	alcoholic drinks) or never/former drinker while alcohol intake was
	categorized as low drinkers (1-2 drinks per day for female and 1-3
	drinks per day for male) and high drinker (>2 drinks per day for female
	and >3 drinks per day for male. 1 drink or 1 unit of alcohol = 8g of
	alcohol).

- Smoking status was defined as current smoker (individuals who smoked any tobacco in the past 12 months) or never/former smoker.
- For psychosocial risk factors, we adapted measures of psychosocial stress and depression in the INTERSTROKE study. Psychosocial stress combined measures of stress at home/work (e.g., irritability, anxiety or sleeping difficulties) and life events, experienced in the 2 weeks preceding the stroke. Depression combined depressed mood and a checklist of other depression symptoms experienced in the 4 weeks preceding the stroke.
 - Family history of cardiovascular risk/diseases was defined based on self-reported history of any of hypertension, diabetes, dyslipidemia, stroke, cardiac disease or obesity in participants' father, mother, sibling or second degree relative.

		stroke, cardiac disease or obesity in participants' father, mother, sibling or second degree relative.
Bias	9	 Selection and Referral biases were approached by: maintaining a Log/Registry of all patients admitted to a hospital with acute stroke by screening all stroke admissions 3 times a week,
		• use of surrogate respondents (defined above) for patients unable to communicate because of severe stroke or aphasia.
		• Broadening patient recruitment to include patients admitted to hospital, seen in emergency room and ambulatory clinics.
		• Community engagement outreaches were conducted across sites periodically to sensitize members of the community and encourage stroke patients to present in SIREN hospitals.
		Diagnostic investigation bias was approached by developing a diagnostic algorithm and conducted regular training workshops to ensure similar level of investigations across sites. All our study sites were tertiary centers. Each site has a team comprising of neurologists, cardiologists, neuro-sonologists, neuroradiologists, and laboratory scientists.
		Recall bias result when the presence or absence of a medical condition may influence patients' or caregiver's ability to recall events. Where possible, objective evidence of risk factors by physical or laboratory measurements were performed.
		Interviewer Bias may result from knowledge of case or control status. This may influence the manner that questions are asked or indirectly influence interviewee response. To overcome this potential bias, interviewers were trained to obtain information in a standardized fashion.
Study size	10	Prevalence of stroke in Africa is up to 315 per 100,000 population. Given the current prevalence and incidence rate of stroke in Africa, a sample size of 2000 cases and 2000 controls will provide sufficient sample size for the intended study to get a power of 80% for detecting an effect size of odds ratio at least 1.4, allowing for several types of exposures (categorical, count or continuous).

variables		where appropriate.
Statistical methods	12	Bivariate associations between risk factors and ischemic stroke (including pathophysiologic subtypes) were assessed using McNemar and chi-square test for paired categorical outcomes. Furthermore, we determined the adjusted associations between the risk factors and ischemic stroke and stratified by its subtypes using conditional logistic regression with adjustment for potential confounders that were not used in the matching (except baseline age which was included as a residual confounder due to the non-exact age matching). Covariates were included in the adjusted models based on careful literature review, our clinical understanding of ischemic stroke risk, and empirical evidence (significant associations observed in bivariate analyses). The final adjusted models were assessed for collinearity using variance inflation factor (VIF) and goodness of fit using residual analysis. Odds ratio (OR) and 95% confidence intervals in the final models were estimated. The adjusted Population Attributable Risks (PARs) of ischemic stroke (and subtypes) with their respective 95%CI for each exposure variable included in the best-fitted adjusted models were estimated using the AF R-package ¹⁷ with the variance estimated via the delta method. Composite PARs for the risk factors for ischemic stroke and its etiologic subtypes were calculated using the ATTRIBRISK R package with its 95% CI computed via the bootstrap method. ²⁰ All statistical tests of hypotheses were two-sided at 5% significance level. Statistical analyses and graphics were produced with SAS 9.4 and R statistical program (version 3.4.2)
Participants	13*	 (a) 4,050 stroke cases were approached, 3,270 were enrolled, 2,431 had Ischemic stroke (b) 3,000 controls were approached, 2,944 were enrolled, 2,431 matched with Ischemic stroke cases
		(c) 1,056 cases were excluded due to stroke mimics, lack of cranial CT scan, unwillingness to participate in the study.(d) 56 controls were excluded because previous history of stroke.
Descriptive data	14*	(a) Of the 3,285 stroke cases in the SIREN cohort, 2431 (74.0%) had Ischemic stroke. The mean ages of stroke cases was 62.2 ± 14.0 versus 60.9 ± 13.7 years among controls.
Outcome data	15*	There were $1,024(42.1\%)$ small vessel occlusions, $427(17.6\%)$ large-artery atherosclerosis, $258(10.6\%)$ cardio-embolic, $3(0.1\%)$ carotid dissections and $719(29.6\%)$ undetermined/other causes.
Main results	16	The aOR (95%CI) for the 8 dominant risk factors for ischemic stroke were
		hypertension 10.34(6.91,15.45), dyslipidemia 5.16(3.78,7.03), diabetes mellitus
		3.44(2.60,4.56), low green vegetable consumption 1.89(1.45,2.46), red meat
		consumption 1.89(1.45,2.46), cardiac disease 1.88(1.22,2.90), monthly income
		\$100+1.72(1.24,2.39) and psychosocial stress 1.62(1.18,2.21). Hypertension,
		dyslipidemia, diabetes were confluent factors shared by small-vessel, large-vessel
		and cardio-embolic subtypes. Each stroke case and stroke-free control pair had an
		average of 5.3 \pm 1.5 and 3.2 \pm 1.0 adverse cardio-metabolic risk factors
		respectively (p<0.0001). Each table f_{p} is the factor of f_{p} i
		Each stroke case and stroke-free control pair had an average of 5.3 ± 1.5 and 3.2
Other englyses	17	± 1.0 adverse cardio-metabolic risk factors respectively (p<0.0001). N/A
Other analyses	17	N/A
Discussion	10	
Key results	18	The higher preponderance of SVO and lower frequency of cardio-embolic stroke in our study is in accord with data from other developing countries such as Pakistan ²² and China ²³ but contrasts with data from high-income countries such as Germany ¹³ and the United Kingdom (UK) ²⁴ . Data from this study and those of

		others support a growing notion that the relative frequency distribution of ischemic stroke subtypes follows geographic or ecological trends with racial or genetic underpinnings. In support of the latter, SVOs was twice more common among Africans in UK ²⁴ and US ²⁵ ischemic stroke cohorts than Caucasians who had a greater propensity towards cardio-embolic and large-artery atherosclerotic diseases. Indeed, in a unique tri-population study, SVO was more prevalent in indigenous Africans (47%), followed by African Americans (35%) and then European Americans (21%). ²⁶ The genetic architecture of the different ischemic stroke subtypes is now the pursuit of several research groups and consortia. ⁵⁻⁷
Limitations	19	 Case-control studies such as ours are limited in establishing causality but rather seek to demonstrate associations and quantify effect sizes of risk factors. Our estimates of DM should be cautiously interpreted given that only fasting blood glucose was used to diagnose DM in control subjects, while HbA1c, and/or FBS were combined in stroke cases. The burden of cardiac diseases may have been underestimated due to limited ECG and echocardiographic evaluations for subjects. A significant number of our stroke subjects had severe strokes at the time of recruitment, necessitating a proxy evaluation of lifestyle and behavioral history. However, valid proxies were spouses or first-degree relatives who had lived with the patient within the year before the stroke. The associations observed among proxies were in the same direction as for subjects with direct evaluation. Due to the high proportion of critically ill stroke patients, not all of them could undergo exhaustive investigations to determine the etiology of
Interpretation	20	ischemic and hemorrhagic strokes before their demise. Small vessel occlusion is the dominant ischemic stroke subtype among West Africans. Traditional vascular risk factors demonstrate important differential effect sizes with pathophysiologic, clinical and preventative implications on the occurrence of ischemic stroke among indigenous West African populations. Strategic and sustained efforts targeting multiple cardio-metabolic factors at both individual and population levels may yield the greatest dividends for primary and secondary prevention of stroke among indigenous Africans.
Generalisability	21	Implementation of interventions targeting these leading risk factors at the population level should substantially curtail the burden of stroke among West Africans.
Funding	22	NIH Grant U54 HG007479 under the H3Africa initiative and R01NS107900. The study funders had no role in study design, data collection, analysis, interpretation, or writing of the report.

*Give information separately for cases and controls.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

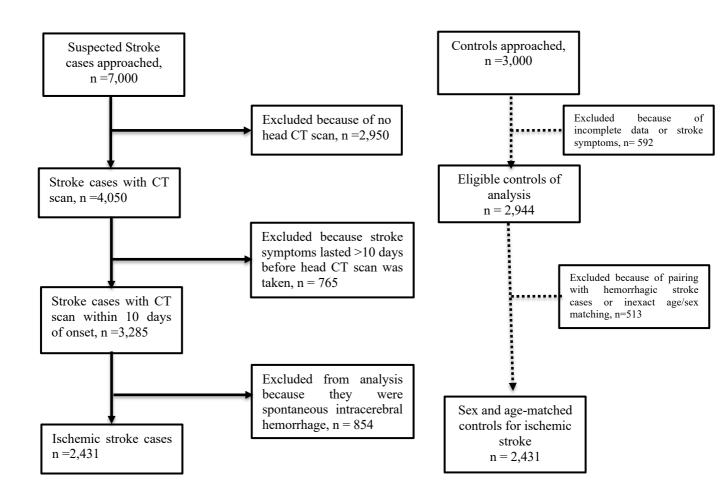


Figure II. Flow chart of stroke cases and controls included in the analysis