Supporting Information

New insights into Structure-Activity-Relationship (SAR) and neuroprotective profile of benzodiazepinone derivatives of Neurounina-1 as modulators of the Na+/Ca2+ Exchanger isoforms

Elisa Magli,^{†°} Caterina Fattorusso,^{†°} Marco Persico,[†] Angela Corvino,[†] Gianluca Esposito,[†] Ferdinando Fiorino,[†] Paolo Luciano,[†] Elisa Perissutti,[†] Vincenzo Santagada,[†] Beatrice Severino,[†] Valentina Tedeschi,[‡] Anna Pannaccione,[‡] Giuseppe Pignataro,[‡] Giuseppe Caliendo,[†] Lucio Annunziato,[§] Agnese Secondo,[‡] Francesco Frecentese[†]*

° These two authors equally contributed to this article.

[†] Department of Pharmacy, University of Naples «Federico II», Via D. Montesano 49, 80131, Naples, Italy

[‡] Department of Neuroscience, Division of Pharmacology, University of Naples «Federico II», via Pansini 5, 80131, Naples, Italy

§ IRCCS SD, via F.Crispi 8, 80121, Naples, Italy

* To whom correspondence should be addressed.

E-mail: frecente@unina.it

Content:

Calculated prevalent ionic forms, clogD and clogP of Neurounina-1, compounds 1-19, ethanol, citalopram nifedipine and Bay K 8644 (Table S1)
$\Delta E_{\rm m}$, values (kcal/mol) and torsional angle values (degrees) of conformational families of Neurouning-1
ΔE_{GM} values (keal/mol) and torsional angle values (degrees) of comormational families of (ventormational families of (ventormational families of (ventormation)) and compounds 1–19 (Table S2-S21) S3-S22
The effect of compounds 1-19 on NCX1 and NCX3 reverse mode activity measured in BHK-NCX1 and
BHK-NCX3 loaded by Fura-2 AM (Figure S1)
Concentration dependent neuroprotective profile in cortical neurons of compound 1 (Figure
S2) S24
Comparison of the global minimum conformers ($\Delta E_{GM} = 0$ kcal/mol) of 1 (Figure
S3)
The $\alpha 1$ and $\alpha 2$ repeat regions identified to be involved in Neurounina-1 binding to NCX1 (Figure
S4)
X-ray structures of the BRD4/I-BET and ELIC/flurazepam complexes (Figure
S5)
Molecular interaction model between compound 4 and NCX_mj resulting from our bioinformatics and
structural analysis (Figure S6)
Molecular interaction model between compound 14 and NCX_mj resulting from our bioinformatics and
structural analysis (Figure S7)
Topology model of the outward- and inward-facing NCX_mj (Figure S8)S30
Predicted protein-protein interaction motifs on TM1, TM2, TM6, and TM7 of NCX_mj and Canis lupus
familiaris NCX1 (Figure S9)S31
Residues not conserved among the NCX isoforms used in the experimental studies (Canis lupus
familiaris NCX1, Rattus NCX2 and Rattus NCX3) mapped on the molecular interaction model between
Neurounina-1 and NCX_Mj (Figure S10)S32
Multiple sequences alignment (excluding the f-loop) of Canis lupus familiaris NCX1, Rattus NCX2 and
Rattus NCX3 (Figure S11)
Multiple sequences alignment (excluding the f-loop) of Human NCX1, NCX2 and NCX3 (Figure
S12)

Compound	Prevalent io	nic form (%)	clo	gD	clogP
	pH 7.4	рН 7.2	рН 7.4	рН 7.2	-
Neurounina-1	P (72%)	P (80%)	1.75	1.59	2.43±1.05
1	P (72%)	P (80%)	1.93	1.77	2.59 ± 1.08
2	P (83%)	P (89%)	2.91	2.74	3.77±0.95
3	P (93%)	P (95%)	1.76	1.57	2.99±1.05
4	P (96%)	P (98%)	0.96	0.77	2.43 ± 1.04
5	P (96%)	P (98%)	1.49	1.30	2.99 ± 1.04
6	P (98%)	P (99%)	1.70	1.51	3.48 ± 1.04
7	P (97%)	P (98%)	1.95	1.76	3.48 ± 1.04
8	N (80%)	N (72%)	1.37	1.33	1.46 ± 1.03
9	N (56%)	N (67%)	1.16	1.03	1.54 ± 1.02
10	N (72%)	N (61%)	3.37	3.32	3.47 ± 1.08
11	N (72%)	N (61%)	4.43	4.33	4.70 ± 1.08
12	N (100%)	N (100%)	1.83	1.83	1.83 ± 1.09
13	N (100%)	N (100%)	2.40	2.40	$2.40{\pm}1.09$
14	N (100%)	N (100%)	2.89	2.89	2.89 ± 1.09
15	N (100%)	N (100%)	2.89	2.89	2.89 ± 1.09
16	N (100%)	N (100%)	1.33	1.33	1.33 ± 1.03
17	N (100%)	N (100%)	1.33	1.33	1.33 ± 1.12
18	N (100%)	N (100%)	2.60	2.60	2.60 ± 1.13
19	N (100%)	N (100%)	3.83	3.83	3.83±1.13
Ethanol	N (100%)	N (100%)	-0.19	-0.19	-0.19±0.18
Citalopram	P (99%)	P (100%)	0.39	0.21	2.51±0.74
Nifedipine	N (100%)	N (100%)	1.58	1.58	1.58 ± 0.42
Bay K 8644	N (100%)	N (100%)	2.39	2.39	2.39 ± 0.42

Table S1. Prevalent ionic forms, clogP and clogD.^a

^aACD/Percepta, Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2017, http://www.acdlabs.com. P: protonated form; N: neutral form.

Table S2. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of **Neurounina-1** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle $\tau_{flip.}$

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
Ia	0.00	-57.03	55.48
IIb	1.43	57.92	-57.10
IIIb	1.91	-128.67	-61.65
IIa	3.03	85.89	43.07
IIIc	3.49	-103.21	173.63
IVa	4.52	97.24	45.90

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S3. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound 1 considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	$\Delta \mathbf{E}_{\mathbf{GM}}^{a}$ (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
Ia	0.00-1.34	-55.50	57.67
IIb	1.60-2.72	57.62	-58.69
IIIb	2.42-3.44	-128.72	-51.58
IIa	3.18-4.51	85.59	41.10
IIIa	3.34	-111.56	40.90

Table S4. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **2** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
Ia	0.00	-57.69	59.73
IIb	1.48	57.93	-57.92
IIIb	1.92	-129.37	-56.87
IVa	3.07	97.66	46.26
IIIc	3.34	-92.80	173.49

Table S5. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **3** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Table S6. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **4** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

F	$\Delta \mathbf{E}_{\mathbf{GM}}^{a}$	Torsion	al Angles
Family	(kcal/mol)	(°) ^{<i>b,c</i>}	
		$\tau 1^d$	$\tau 2^e$
IIc	0.00-0.92	74.06	-178.96
IIb	0.73-1.58	75.65	-81.13
Ic	1.02-2.07	-76.10	179.01
Ia	1.76-1.79	-85.73	60.63
Ib	2.02-3.34	-60.94	-64.41
IIa	2.73-4.02	65.19	56.05
IIIa	3.18-4.06	-111.49	65.00

Table S7. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **5** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	(kcal/mol)	(°)) ^{b,c}
		τ 1 d	$\tau 2^e$
IIc	0.00-0.82	74.22	-175.05
IIb	0.31-1.40	74.82	-79.67
Ic	1.00-1.78	-75.38	175.56
Ib	1.70-3.19	-61.65	-65.89
Ia	2.18-2.54	-89.68	61.91
IIIa	2.63-4.01	-101.57	65.64
IIa	2.80-4.77	63.47	60.65

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S8. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of the two enantiomers of compound **6** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
IIc	0.00-3.02	74.42	-170.61
Ic	0.72-4.22	-73.73	179.82
IIb	1.09	76.66	-76.68
Ib	1.45-4.02	-62.20	-67.38
Ia	1.88-2.89	-86.07	68.45
IIIa	3.12-3.83	-107.20	74.58
IIa	3.98	63.22	62.28
IIIb	4.53	-92.30	-82.62

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The configurational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S9. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of the two enantiomers of compound 7 considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	$\Delta \mathbf{E}_{\mathbf{GM}}^{a}$	Torsion	al Angles
	(kcal/mol)	(°) ^{<i>b,c</i>}	$)^{b,c}$
		$\tau 1^d$	$\tau 2^e$
IIc	0.00-3.00	74.18	-174.93
IIb	0.54-3.44	77.33	-73.49
Ic	1.08-3.73	-76.86	175.57
Ib	1.33-4.82	-58.11	-48.84
Ia	2.21	-89.95	62.76
IIIa	2.43-4.51	-109.13	71.44
IIa	2.69-3.68	63.28	60.24

Table S10. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **8** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S11. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound 9 considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Table S12. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **10** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE_{GM}^{a}	Torsiona	al Angles
	(Real/mor)	(°) ^{<i>b,c</i>}	
		$\tau 1^d$	$\tau 2^e$
Ib	0.00-4.77	-80.16	-61.39
IIIa	0.93-4.92	-116.94	52.18
IIa	1.72-3.78	68.89	56.32
IIc	2.04-2.06	74.65	169.96
IIIb	2.97-4.17	-103.13	-68.04
IIb	3.07-4.94	82.46	-68.99

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S13. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **11** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S14. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **12** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angl (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
IIIc	0.00-0.31	-132.61	-164.85
IIc	0.50-0.60	86.83	171.75
IIIa	2.64-2.97	-138.11	65.53

Table S15. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **13** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

		r^{2}	
Family	ΔE_{GM}^{a} (kcal/mol)	Torsion: (°)	al Angles
		$\tau 1^d$	$\tau 2^e$
IIIc	0.00-0.35	-129.60	-167.60
IIc	0.42-0.52	86.17	175.34
IIIa	2.82-3.02	-142.12	61.26

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S16. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of the two enantiomers of compound **14** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Table S17. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of the two enantiomers of compound **15** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Table S18. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **16** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
IIIa	0.00-0.97	-142.99	59.18
IIIe	1.26-2.06	-130.55	-124.51
IId	2.61-3.45	86.49	-3.39
Ib	3.56-4.28	-53.62	-45.81
IVf	3.60-4.54	92.70	138.72

^{*a*}The values reported refer to the lowest and the highest energy conformers of the family. ^{*b*}The conformational enantiomer present the same absolute values of torsional angles with the opposite sign. ^{*c*}The values reported refer to the lowest energy conformer of the family. ^{*d*} τ 1: a, b, c, and d atoms. ^{*e*} τ 2: b, c, d, and e atoms.

Table S19. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound 17 considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Б. 1	$\Delta \mathbf{E}_{\mathbf{GM}}^{a}$	Torsional Angles (°) ^{b,c}	
Family	(kcal/mol)		
		$\tau 1^d$	$\tau 2^e$
IIIa	0.00	-143.27	59.74
IIIe	1.30	-131.11	-124.73
Ib	3.92	-53.46	-49.39
IVf	4.03	93.54	137.93

Table S20. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **18** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
IIIc	0.00-3.51	-126.75	-171.60
IIc	0.34-1.69	84.97	175.28
IIIa	2.47-4.40	-125.97	91.78

Table S21. ΔE_{GM} values (kcal/mol) and torsional angle values (degrees) of conformational families of compound **19** considering MM conformers within 5 kcal/mol from the global minimum characterized by negative value of torsional angle τ_{flip} .

Family	ΔE _{GM} ^a (kcal/mol)	Torsional Angles (°) ^{b,c}	
		$\tau 1^d$	$\tau 2^e$
IIIc	0.00-4.97	-110.80	-145.47
IIc	0.52-1.88	84.84	175.69
IIIa	1.89-4.43	-124.72	93.36

Figure S1. The effect of the compounds **1-19** on NCX1 and NCX3 reverse mode activity measured in BHK-NCX1 and BHK-NCX3 loaded by Fura-2 AM.

Figure S2. Concentration dependent neuroprotective profile in cortical neurons of compound 1

Figure S3. Comparison of the global minimum conformers ($\Delta E_{GM} = 0$ kcal/mol) of 1 having the opposite flip of the benzodiazepinone ring. Structures were superimposed by the sp² heavy atoms of the benzodiazepinone ring and are displayed as ball and sticks. Hydrogens are omitted for clarity of presentation with the exception of those involved inhydrogen bonds. Hydrogen bonds are displayed as white dashed lines.

Figure S4. (A) The α 1 repeat region identified to be involved in Neurounina-1 binding to NCX1. (B) The α 2 repeat region identified to be involved in Neurounina-1 binding to NCX1.

Figure S5. (A) X-ray structure of the BRD4 bromodomain in complex with I-BET (PDB ID : 3P5O). The binding site is colored in red (BRD4_BDZ_BS_1) and cyan (BRD4_BDZ_BS_2). The BRD4 residues establishing interactions with I-BET are displayed as sticks, the ligand is displayed as CPK. (B) Sequence alignments of the $\alpha 1$ and $\alpha 2$ repeat regions suggested to be involved in Neurounina binding with the BRD4 alprazolam binding site. BRD4 residues establishing interactions with the benzodiazepine ligand are evidenced with red squares. P848 (NCX1) and P85 (BRD4) are labelled.

(C) X-ray structure of the ELIC in complex with flurazepam (PDB ID : 2YOE). The binding site is colored in red (ELIC_BDZ_BS). The ELIC residues establishing interactions with flurazepam are displayed as sticks, the ligand is displayed as CPK. (D) Sequence alignments of the $\alpha 1$ and $\alpha 2$ repeat regions suggested to be involved in Neurounina binding with the ELIC flurazepam binding site. ELIC residues establishing interactions with the benzodiazepine ligand are evidenced with red squares. P848 (NCX1) and P85 (ELIC) are labelled.

Figure S6. Longitudinal (A) and transverse (B) views of the molecular interaction model between compound **4** and NCX_mj resulting from our bioinformatics and structural analysis. The X-ray structure of NCX_mj transporter in the calcium loaded occluded conformation (PDB ID: 5HXR) is colored in grey with NCX1_alpha1_Neu and NCX1_alpha2_Neu evidenced in cyan and yellow, respectively. The protein structure is displayed as follows: helical structures as wide cylinders, beta-sheets as arrows, and coil and turn regions as tubes. The calcium atoms are displayed in ball&stick and colored in magenta. The putative bioactive conformer of **4** is displayed in ball&stick and colored by atoms (C = pink, O = red, and N = blue). Compound **4** solvent accessible surface is showed and colored in white/transparent. Proline P212 is evidenced in CPK and colored in orange. (C) Sequence alignments of the α 1 and α 2 repeat regions of human NCX1 suggested to be involved in neurounina-1 binding with the corresponding segments of NCX_Mj (ref. 31 in main text). NCX_Mj P212 and NCX1 P848 proline residues are evidenced and labeled.

Figure S7. Longitudinal (A) and transverse (B) views of the molecular interaction model between the compound **14** and NCX_mj resulting from our bioinformatics and structural analysis. The X-ray structure of NCX_mj transporter in the calcium loaded semiopen conformation (PDB ID: 5JDF) is colored in grey with NCX1_alpha1_Neu and NCX1_alpha2_Neu evidenced in cyan and yellow, respectively. The protein structure is displayed as follows: helical structures as wide cylinders, beta-sheets as arrows, and coil and turn regions as tubes. The calcium atom is displayed in ball&stick and colored in magenta. The putative bioactive conformer of **14** is displayed in ball&stick and colored by atoms (C = green, O = red, and N = blue). Compound **14** solvent accessible surface is showed and colored in white/transparent. Proline P212 is evidenced in CPK and colored in orange. (C) Sequence alignments of the α 1 and α 2 repeat regions of human NCX1 suggested to be involved in neurounina-1 binding with the corresponding segments of NCX_Mj (ref. 31 in main text). NCX_Mj P212 and NCX1 P848 proline residues are evidenced and labeled.

Figure S8. Topology model of the outward- (A) and inward-facing (B)NCX_mj. The X-ray structure of NCX_mj transporter in the sodium loaded semiopen conformation (PDB ID: 5HWY) is colored in white with NCX1_alpha1_Neu and NCX1_alpha2_Neu evidenced in cyan and yellow, respectively. The protein structure is displayed as follows: helical structures as wide cylinders, beta-sheets as arrows, and coil and turn regions as tubes. The sodium atoms are displayed in ball&stick and colored in violet. The proline P212 is evidenced in CPK and colored in orange.

Figure S9. Predicted protein-protein interaction motifs (LxxLL-like and heptad repeats) on TM1, TM2, TM6 and TM7 of A) *Methanocaldococcus jannaschii* NCX and B) *Canis lupus familiaris* NCX1. The motifs conserved between the two species are coloured in violet while those not conserved are coloured in green. The proline residues on TM2C and TM7C are evidenced with a red square.

Figure S10. Longitudinal (A) and transverse (B) views of the molecular interaction model between **Neurounina-1** and NCX_Mj (PDB ID: 5HWY). Residues not conserved among *Canis lupus familiaris* NCX1, *Rattus* NCX2 and *Rattus* NCX3 are shown and colored as follows: white (residues not conserved among NCX1, NCX2 and NCX3); yellow (residues mutated only in NCX1); blue (residues mutated only in NCX2); magenta (residues mutated only in NCX3). Those within 5 Å from **Neurounina-1**, **4** and **14** are evidenced in CPK while the others are displayed in ball&stick. The protein structure is displayed as wide cylinders (helices) and tubes (coils and turns) and colored in white. NCX1_alpha1 and NCX1_alpha2 are evidenced in cyan and yellow, respectively. The putative bioactive conformer of **Neurounina-1** is displayed in ball&stick and colored by atoms (C = green, O = red, and N = blue). The solvent accessible surface of the ligand is colored in white/transparent. The conserved proline residues on TM2C and TM7C (P53 and P212; respectively) are coloured by atoms (C = orange) and displayed in CPK.

NCX1_Canis	1	MLQLRLLPTFSMGCHL-LAVVALLFSHVDLISAETEMEGEGNETGECTGSYYCKKGVILPI	60
NCX2 Rat	1	MAPLALVGVALLLGAPHCL-GEATPTPSLPPPPANDSDASPGGCQGSYRCQPGVLLPV	57
NCX3_Rat	1	MAWLRLQPLTSAFLHFGLVTFVLFLNGLRAEAGDLRDVPSAGQNNESCSGSSDCKEGVILPI	62
Consensus aa:		Mhh.LhshhLhhsl.tEhphs.s.ps.CpGS.Cp.GVlLP1	
		TM1	
NCX1_Canis	61	WEPQDPSFGDKIARATVYFVAMVYMFLGVSIIADRFMSSIEVITSQEKEITIKKPNGETTKTTVRIWNET	130
NCX2_Rat	58	WEPDDPSLGDKAAR <mark>A</mark> VVYFVA <mark>MV</mark> YMFLG <mark>L</mark> SIIADRFM <mark>A</mark> SIEVITS <mark>K</mark> EKEITITKANGETSVGTVRIWNET	127
NCX3_Rat	63	WYPENPSLGDKIAR <mark>W</mark> IVYFVALIYMFLG <mark>V</mark> SIIADRFMASIEVITS <mark>O</mark> EREVTIKKPNGETSTTTIRVWN <mark>E</mark> T	132
Consensus aa:		WbPpsPshGDKhARhhvyFvahlyMFLGlstIADRFMtSIEVITSpE+ElTIpKsNGETo.sTlRlWNET	
		TM2TM3TM4	
NCX1_Canis	131	VSNLTLMALGSSAPEILLS IEVCGHNFTAGDLGPSTIVGSAAFNMFTIIALCVYVVDGETRKIKHLRV	200
NCX2_Rat	128	VSNLTLMALGSSAPEILLS <mark>V</mark> IEVOGHNFQAGELGPGTIVGSAAFNMF <mark>VV</mark> IAVCVYV <mark>I</mark> PAGESRKIKHLRV	197
NCX3_Rat	133	VSNLTLMALGSSAPEILLS	202
Consensus aa:		VSNLTLMALGSSAPEILLS/IEVOGHSF.AG-LGPtTIVGSAAFNMF//IL1/CVYV/PSGEGRKIKHLRV	
		TM5	
NCX1_Canis	201	FFVTAAWSIFAYTWLYIILSVISPGVVEVWECLLTFFFFPICVVFAWVADRRLLFYKYVYKRYRAG//	270
NCX2_Rat	198	FFVTA <mark>S</mark> WS <mark>1</mark> FAYVWLYLILAVFSPGVVQVWEALLTLVFFPVCVVFAWMADKRLLFYKYVYKRYRTD//	267
NCX3_Rat	203	FFVTAAWS <mark>W</mark> FAYIWLYMILAVFSPGVVQVWE <mark>G</mark> LLT <mark>LF</mark> FFP <mark>V</mark> CV <mark>LL</mark> AW <mark>V</mark> ADKRLLFYKYMHKRYRTD//	272
Consensus aa:		<u>FFVTAtWSlFAYhWLYhILtV</u> hSPGVV <mark>rVWEtLLThhFFPlCVlhAWhA</mark> D+RLLFYKYh@KRYRhs	
		TM6	
NCX1_Canis	756	DDDDDECGEEKLPSCFDYVMHFLTVFWKVLFAFVPPTEYWNGWACFIVSILMIGILTAFIGDLASHFG	823
NCX2_Rat	705	DEEEDEDGSREERLPSCFDYVMHFLTVFWKVLFACLPPTEYCHGWACFGVCILVIGLLTALIGDLASHFG	774
NCX3_Rat	713	DEEEDESGEERLPSCFDYVMHFLTVFWKVLFACVPPTEYCHGWACFYVSILLIGMLTAIIGDLASHFG	780
Consensus aa:		DDEsGEE+LPSCFDYVMHFLTVFWKVLFAhlPPTEYhpGWACF.VtILhIGhLTAhIGDLASHFG	
		TM7 TM8	
NCXI_Canis	824	CTIGLKISVTAVVFVALGTSVPDTFASKVAATODOYADASIGNVTGSNAVNVFLGIGVAWSTAAIYHAAN	893
NCX2_Rat	775	CTVGLKLSVNAVVFVALGTSTPDTFASKVAALODOQADASIGNVTGSNAVNVFLGLGVAWSVAAVYWAVO	844
NCX3_Rat	/81	CTIGLKISVTAVVFVA-GTSVPDTFASKAAAIODVAADASIGNVTGSNAVNVFLGIGLAWSVAAIYWAMO	850
Consensus aa:		CTIGLKUSVSAVVFVAnGTSIPDTFASKNAANOD. AADASIGNVTGSNAVNVFLGIGIAWSIAAIY@Anp	
would a '	004	TM9 TM10	0.00
NCXI_Canis	894	GEOFKVSPGTIAFSVTLFTIFAFINVGVLLYRRRPEIGGELGGPRTAKLITSCLFVLLWLIYFFFSSLEA	963
NCX2_Rat	040	GRPFEVRTGTIAFSVTLFTVFAFVGIAVLLFRRPHIGGELGGPRGFRGFALATTALFGLWFLYLFRALEA	914
NCX3_Rat	001	GOEPHVSAGTIAPSVTLFTFAPVCLSVLLTKRRPHLGGELGGPRGCKLATTWLFVSLWLTMLFATLEA	920
consensus aa:		GD.FCVpSGTIAFSVTLFTIFAFISIUVLLIKRRPCIGGELGGPRSSNLATOALFI.LWALTIAFCOLEA	
NOV1 Cania	064	VCULTURE 070	
NCX2 Pat	904	VCUTDER 921	
NCV2 Pot	913	VCVIVCE 027	
Conconcuta and	941	VCALLOP	
consensus aa:		1001101	

Figure S11. Multiple sequences alignment of *Canis lupus familiaris* NCX1, *Rattus* NCX2 and *Rattus* NCX3, excluding the f-loop. Residues not conserved among the three isoforms are highlighted in grey; residues mutated only in NCX1 are highlighted in yellow; residues mutated only in NCX2 are highlighted in cyan, residues mutated only in NCX3 are highlighted in magenta. The proline residues on TM2C and TM7C as well as the non-conserved residues within 5 Å from **Neurounina-1**, **4** and **14** are underlined and evidenced in bold.

NCX1 Human	1	MYNMRRLSLSPTFSMGFHLLVTVSLLFSHVDHVIAETEMEGEGNETGECTGSYYCKKGVIL	61
NCX2 Human	1	MAPLALVGVTLLLA-APPCSGAATPTPSLPPPPANDSDTSTGGCQGSYRCQPGVLL	55
NCX3 Human	1	MAWLRLQPLTSAFLHFGL-VTFVLF-LNGLRAEAGGSGDVPSTGQNNESCSGSSDCKEGVIL	60
Consensus aa:		h.h.l.Vohlh.hs.h.t.h.psp.s.ssCpGSCp.GVlL	
		* TM1 *	
NCX1_Human	62	PIWEPQDPSFGDKIAR <mark>A</mark> TVYFVA <mark>MV</mark> YMFLGVSIIADRFM <mark>SS</mark> IEVITS <mark>O</mark> EKEITIKKPNGETTKTTVRIWN	131
NCX2_Human	56	pvwepddpslgdkaar <mark>a</mark> vvyfva <mark>mv</mark> ymflgvsiiadrfm <mark>aa</mark> ievits <mark>k</mark> ekeititkangetsvgtvriwn	125
NCX3_Human	61	PIWYPENPSLGDKIAR <mark>W</mark> IVYFVA <mark>LI</mark> YMFLGVSIIADRFM <mark>AS</mark> IEVITS <mark>O</mark> EREVTIKKPNGETSTTTIRVWN	130
Consensus aa:		PlwbPpsPShGDKhARbhvyFvablymFigvsttadrfmtttevttspe+eltipKsnGeto.stlrlwn	
		TM2 TM3 * TM4	
NCX1_Human	132	ETVSNLTLMALGSSAPEILLS <mark>VIEVC</mark> GHNFTAGDLGPSTIVGSAAFNMF <mark>II</mark> IALC <mark>V</mark> YVVDGETRKIKHL	201
NCX2_Human	126	ETVSNLTLMALGSSA <u>P</u> EILLS <mark>V</mark> IEVCGHNFQAGELGP <mark>G</mark> TIVGSAAFNMF <mark>VV</mark> IAVC <mark>I</mark> YVIPAGESRKIKHL	195
NCX3_Human	131	ETVSNLTLMALGSSAPEILLSLIEVCGHGFIAGDLGPSTIVGSAAFNMFIIICVVVIPDGETRKIKHL	200
Consensus aa:		ETVSNLTLMALGSSAPEILLSIEVOGHSF.AG-LGPTTVGSAAFNMFIITTCIVVIPSGEGRKIKHL	
		* * TM5	
NCX1_Human	202	RVFF <mark>WTAA</mark> WSIFAYTWLYIIL <mark>SV</mark> ISPGVVE <mark>VWEGLLTFF</mark> FFP <mark>ICVVEAWVA</mark> DRRLLFYKYVYKRYRAG//	271
NCX2_Human	196	RVFF <mark>WTAS</mark> WSIFAYVWLYLILAVFSPGVVQVWEALLTL <mark>V</mark> FFP <mark>V</mark> CV <mark>VF</mark> AWMADKRLLFYKYVYKRYRTD//	265
NCX3_Human	201	RVFF <mark>I</mark> TAAWSIFAYIWLYMILAVFSPGVVCVWE <mark>G</mark> LLT <mark>LF</mark> FFP <mark>V</mark> CV <mark>LL</mark> AW <mark>V</mark> ADKRLLFYKYMHKKYRTD//	270
Consensus aa:		RVFF1TAtWS1FAYhWLYhILtV <mark>hSPGVVr</mark> VWEtLLThhFFP1CV1hAWhAD+RLLFYKYh@K+YRhs	
		* * TM 6	
NCX1_Human	758	/DDDDDECGEEKLPSCFDYVMHFLTVFWKVLFAFVPPTEYWNGWACFTVSIIMIGUITAFIGDLASHFGC	827
NCX2_Human	706	/eeeedgsreerlpscfdyvmhfltvfwkvlfacvppteychgwacfgvsilvighltaligdlashfgc	775
NCX3_Human	712	/DEDEDESGEERLPSCFDYVMHFLTVFWKVLFACVPPTEYCHGWACFAVSILIIGDLASHFGC	781
Consensus aa:		D.t.EE+LPSCFDYVMHFLTVFWKVLFAhVPPT <mark>EYhpGWACF.VSILhIGhLTAhIGDLASHFGC</mark>	
		TM7TM8	
NCX1_Human	828	TIGLKISVTAVVFVALGTSVPDTFASKVAATQDQYADASIGNVTGSNAVNVFLG <mark>IGV</mark> AWSIAAIYHAANG	897
NCX2_Human	776	TVGLKISVNAVVFVALGTSIPDTFASKVAALQDQQADASIGNVTGSNAVNVFLGLGVAWSVAAVYWAVQG	845
NCX3_Human	782	TIGLKISVTAVVFVAFGTSVPDTFASKAAAIQDVYADASIGNVTGSNAVNVFLG <mark>IGI</mark> AWS <mark>V</mark> AAIYWALQG	851
Consensus aa:		TIGLKISVSAVVFVAhGTS1PDTFASKhAAHQD.HADASIGNVTGSNAVNVFLG1G1AWS1AA1Y@AhpG	
		TM9TM10 * *	
NCX1_Human	898	EQFKVSPGTIAFSVTLFT <mark>I</mark> FAF <mark>I</mark> NVGVLLYRRPEIGGELGGPRTAFLL <mark>TS</mark> CLF <mark>V</mark> LLWLLYI <mark>F</mark> FSSLEAY	967
NCX2_Human	846	RPFEVRTGTIAFSVTLFT <mark>V</mark> FAF <mark>V</mark> GIAVLLYRRPHIGGELGGPRGPHL <mark>ATT</mark> ALF <mark>L</mark> GLWLLYI <mark>LF</mark> ASLEAY	915
NCX3_Human	852	QEFHVSAGTIAFSVTLFTIFAFVCISVLLYRRPHLGGELGGPRGCHLATTWLFVSLWLLYILFATLEAY	921
Consensus aa:		p.FcVpsGTIAFSVTLFTlFAFlsltVLLYRRRPclGGELGGPRssMLhTohLFl.LWLLYIhFtoLEAY	
	0.00		
NCX1_Human	968	CHIRGE 973	
NCX2_Human	910	CHIKGE 921	
NCX3_Human	922	CTIRGE 927	
Consensus aa:		Cet+Gr	

Figure S12. Multiple sequences alignment of *Human* NCX1-3, excluding the f-loop. Residues not conserved among the three isoforms are highlighted in grey; residues mutated only in NCX1 are highlighted in yellow; residues mutated only in NCX2 are highlighted in cyan, residues mutated only in NCX3 are highlighted in magenta; residues mutated with respect to *Canis lupus familiaris* (NCX1), *Rattus* (NCX2) and *Rattus* (NCX3) are labelled with an asterisk. The proline residues on TM2C and TM7C as well as the non-conserved residues within 5 Å from **Neurounina-1**, 4 and 14 are underlined and evidenced in bold.