#### Environ Health Perspect

#### DOI: 10.1289/EHP9044

**Note to readers with disabilities:** *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

### **Supplemental Material**

# Long-Term Exposure to Low-Level $\mathrm{NO}_2$ and Mortality among the Elderly Population in the Southeastern United States

Yaoyao Qian, Haomin Li, Andrew Rosenberg, Qiulun Li, Jeremy Sarnat, Stefania Papatheodorou, Joel Schwartz, Donghai Liang, Yang Liu, Pengfei Liu, and Liuhua Shi

#### Table of Contents

**Table S1.** Summary statistics of Full cohort (N=13,590,387) and Below-WHO guidelines cohort (N=9,669,469) for area-level variables from 2000 to 2016, in seven southeastern U.S states.

**Table S2.** Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of  $10 \,\mu\text{g/m}^3$  in PM<sub>2.5</sub> Concentration or 10 ppb in O<sub>3</sub> Concentration in the Full Cohort (N = 13,590,387).

**Table S3.** Hazard Ratios of Mortality (95% CI) associated with an Increase of 10 ppb in  $NO_2$  Concentration by Study Subgroups in Full Cohort (N = 13,590,387).

**Table S4.** Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 10 ppb in NO<sub>2</sub> Concentration at different levels of confounding adjustment.

**Table S5.** The Hazard Ratio of Mortality (95% CI) associated with an Increase of 10 ppb in NO<sub>2</sub> Concentration by state.

**Table S6.** Descriptive characteristics of NO<sub>2</sub> and mortality cohort studies published from 2006-2021.

**Table S7.** Standard Errors Estimated before and after accounting for Spatial Dependence in both cohorts.

Figure S1. The map of major roadways in the southeastern US.

**Figure S2.** The spatial distribution of 17-year mean concentrations of annual NO<sub>2</sub> (ppb) at 1-km<sup>2</sup> grids in the southeastern US (2000-2016).

Figure S3. The standard deviations of  $1 \text{-km}^2 \text{NO}_2$  concentrations (ppb) within ZIP code areas in the southeastern US in 2010.

Figure S4. The temporal trend of NO<sub>2</sub> concentrations in the southeastern US from 2000-2016.

**Figure S5.** The relationship between long-term exposure to NO2 and all-cause mortality, derived from single pollutant models with adjustment of age at entry (5-year categories), gender (female, male), race (White, Black, and other), Medicaid eligibility, calendar-year, summer and winter mean temperature, median home value, median household income, population density, the proportion of owner-occupied housing units, the percentage of Black and Hispanic populations, education level, population below poverty level, body mass index, and the proportion of those who were ever smokers. The descriptive statistics for these variables were provided in Table 1 and Table S1. Shaded areas indicate the 95% confidence bands.

Table S1. Summary statistics<sup>a</sup> of Full cohort (N=13,590,387) and Below-WHO guidelines cohort (N=9,669,469) for area-level variables from 2000 to 2016, in seven southeastern U.S states <sup>b</sup>

|                                                  | Full cohort     | Below WHO guideline<br>cohort <sup>c</sup> |
|--------------------------------------------------|-----------------|--------------------------------------------|
| NO <sub>2</sub> , ppb                            | 13.7 (5.9)      | 11.0 (3.7)                                 |
| $PM_{2.5}, \mu g/m^3$                            | 9.7 (2.6)       | 9.6 (2.5)                                  |
| Ozone, ppb                                       | 40.3 (6.20      | 40.5 (5.6)                                 |
| Percent Hispanic, %                              | 9.4 (15.1)      | 8.0 (12.4)                                 |
| Percent Black, %                                 | 18.4 (20.3)     | 17.7 (18.9)                                |
| Smoking rate, %                                  | 47.6 (7.1)      | 45.6 (7.1)                                 |
| Below poverty Level, %                           | 10.8 (6.8)      | 10.8 (6.4)                                 |
| Not graduated from high school, %                | 26.8 (15.1)     | 27.1 (15.0)                                |
| Owner-occupied housing units, %                  | 70.4 (13.4)     | 72.7 (11.4)                                |
| Population density, people per mile <sup>2</sup> | 1516.4 (2170.2) | 857.9 (1396.9)                             |
| Body-mass index, kg/m <sup>2</sup>               | 27.5 (1.0)      | 27.7 (1.0)                                 |
| Median house value, US\$1000                     | 149.2 (85.9)    | 142.1 (83.5)                               |
| Median household income, US\$1000                | 46.0 (15.8)     | 45.2 (15.0)                                |
| Winter mean temperature, Celsius                 | 26.6 (1.7)      | 26.5 (1.6)                                 |
| Summer mean temperature, Celsius                 | 11.1 (5.9)      | 10.4 (5.5)                                 |

Note: WHO, World Health Organization <sup>a</sup> Presented as mean (standard deviation) <sup>b</sup> The seven states include Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee <sup>c</sup> The cohort was restricted to populations who were always exposed to annual mean NO<sub>2</sub> levels below the current WHO guidelines, i.e. 40 μg/m<sup>3</sup>.

Table S2. Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 10  $\mu$ g/m<sup>3</sup> in PM<sub>2.5</sub> Concentration or 10 ppb in O<sub>3</sub> Concentration in the Full Cohort (N = 13,590,387).

|                                                           | PM2.5                | O3                   |
|-----------------------------------------------------------|----------------------|----------------------|
| Models                                                    | HR (95% CI)          | HR (95% CI)          |
| Single-pollutant <sup><i>a</i></sup>                      | 1.078 (1.054, 1.103) | 1.014 (1.002, 1.026) |
| Bi-pollutant (adjusted for NO <sub>2</sub> ) <sup>b</sup> | 1.040 (1.016, 1.065) | 0.995 (0.983, 1.007) |
| Tri-pollutant <sup>c</sup>                                | 1.059 (1.032, 1.086) | 0.985 (0.971, 0.998) |

Note: CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; PM<sub>2.5</sub>, particulate matter < 2.5 µm in aerodynamic diameter; O<sub>3</sub>, ozone

<sup>*a*</sup> Single-pollutant model: stratified by age at entry (5-year categories), gender (female, male), race (White, Black, and other), Medicaid eligibility, and adjusted for calendar-year, summer and winter mean temperature, median home value, median household income, population density, the proportion of owner-occupied housing units, the percentage of Black and Hispanic populations, education level, population below poverty level, body mass index, and the proportion of those who were ever smokers. The descriptive statistics for these variables were provided in Table 1 and Table S1

<sup>b</sup> Bi-pollutant (+NO<sub>2</sub>): Single-pollutant model further adjusted for annual mean of NO<sub>2</sub>

<sup>c</sup> Tri-pollutant: For estimates of  $PM_{2.5}$ , the Single-pollutant model further adjusted for annual mean of  $NO_2$  and annual warm-season average of  $O_3$ ; For estimates of  $O_3$ , the Single-pollutant model further adjusted for annual mean of  $NO_2$  and annual warm-season average of  $PM_{2.5}$ 

|                         | Subgroups    | HR (95% CI)          | P-value <sup><i>a</i></sup> |
|-------------------------|--------------|----------------------|-----------------------------|
| Sex                     | Female       | 1.077 (1.062, 1.091) | Reference                   |
|                         | Male         | 1.009 (0.997, 1.021) | <0.001                      |
| Age                     | <80          | 1.055 (1.034, 1.076) | Reference                   |
|                         | $\geq 80$    | 1.029 (1.012, 1.046) | 0.056                       |
| Race                    | White        | 1.060 (1.050, 1.071) | Reference                   |
|                         | Black        | 1.002 (0.984, 1.019) | <0.001                      |
|                         | Other        | 0.979 (0.937, 1.022) | <0.001                      |
| Medicaid Eligibility    | Dual         | 1.029 (1.009, 1.049) | Reference                   |
|                         | Non-dual     | 1.054 (1.038, 1.070) | 0.054                       |
| Poverty                 | High Poverty | 1.049 (1.041, 1.056) | Reference                   |
|                         | Low Poverty  | 1.046 (1.035, 1.056) | 0.629                       |
| Urbanicity <sup>b</sup> | Density Q1   | 1.010 (0.990, 1.030) | Reference                   |
|                         | Density Q2   | 1.036 (1.021, 1.051) | 0.040                       |
|                         | Density Q3   | 1.032 (1.015, 1.048) | 0.091                       |
|                         | Density Q4   | 1.057 (1.038, 1.076) | <0.001                      |

Table S3 Hazard Ratios of Mortality (95% CI) associated with an Increase of 10 ppb in NO<sub>2</sub> Concentration by Study Subgroups in Full Cohort (N = 13,590,387)

Note: CI, confidence interval; HR, hazard ratio; NO<sub>2</sub>, nitrogen dioxide

<sup>*a*</sup> P-values were evaluated by Wald test (Kaufman and MacLehose 2013) <sup>*b*</sup> Density Q1-Q4 stand for low population density, low-medium population density, medium-high population density, and high population density, respectively

#### Reference:

Kaufman JS, MacLehose RF. 2013. Which of these things is not like the others? Cancer 119:4216-4222.

Table S4. Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 10 ppb in NO<sub>2</sub> Concentration at different levels of confounding adjustment

|                                                                                                          | Full cohort<br>(N = 13,590,387) | Below WHO<br>guideline cohort <sup><i>a</i></sup><br>(N = 9,669,469) |
|----------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|
| Main Analysis <sup>b</sup>                                                                               | 1.047 (1.044, 1.049)            | 1.047 (1.045, 1.049)                                                 |
| Excluding co-pollutants <sup>c</sup>                                                                     | 1.042 (1.039, 1.044)            | 1.042 (1.040, 1.045)                                                 |
| Excluding time trends <sup>d</sup>                                                                       | 1.250 (1.248, 1.253)            | 1.251 (1.248, 1.254)                                                 |
| Excluding meteorological variables <sup>e</sup>                                                          | 1.043 (1.040, 1.045)            | 1.043 (1.041, 1.045)                                                 |
| Excluding BRFSS variables <sup>f</sup>                                                                   | 1.046 (1.044, 1.049)            | 1.047 (1.044, 1.049)                                                 |
| Excluding US Census variables <sup>g</sup>                                                               | 1.065 (1.063, 1.067)            | 1.065 (1.063, 1.067)                                                 |
| Excluding baseline hazard stratification <sup>h</sup>                                                    | 1.021 (1.019, 1.023)            | 1.021 (1.019, 1.024)                                                 |
| Adjusting for space at state level <sup><i>i</i></sup>                                                   | 1.047 (1.044, 1.049)            | 1.047 (1.044, 1.049)                                                 |
| Adjusting for space using spatial smoother<br>(with 5 d.f. for both latitude and longitude) <sup>j</sup> | 1.045 (1.042, 1.047)            | 1.045 (1.043, 1.048)                                                 |

Note: Estimates are based on 10 ppb increments for NO<sub>2</sub>. WHO, World Health Organization; CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide;  $PM_{2.5}$ , particulate matter < 2.5  $\mu$ m in aerodynamic diameter; O<sub>3</sub>, ozone; BRFSS, Behavioral Risk Factor Surveillance System

<sup>a</sup> The cohort was restricted to populations who were always exposed to annual mean NO<sub>2</sub> levels below the current WHO guideline, i.e. 40 µg/m<sup>3</sup>.

<sup>*b*</sup> Main Analysis: stratified by age at entry (5-year categories), gender (female, male), race (White, Black, and other), Medicaid eligibility, and adjusted for annual mean of  $PM_{2.5}$  and annual warmseason average of O<sub>3</sub>, calendar-year, summer and winter mean temperature, median home value, median household income, population density, the proportion of owner-occupied housing units, the percentage of Black and Hispanic populations, education level, population below poverty level, body mass index, and the proportion of those who were ever smokers. The descriptive statistics for these variables were provided in Table 1 and Table S1

<sup>c</sup> Adjusted covariates in Main Analysis except for PM<sub>2.5</sub> and O<sub>3</sub><sup>d</sup> Adjusted covariates in Main Analysis except for calendar year

<sup>e</sup> Adjusted covariates in Main Analysis except for summer and winter mean temperature<sup>f</sup> Adjusted covariates in Main Analysis except for body mass index and proportion of those who were ever smokers

<sup>*g*</sup> Adjusted covariates in Main Analysis except for median home value, percentage of owner-occupied housing units, median household income, population density, percentage of Black population, percentage of Hispanic population, percentage of low education-level (i.e., with less than a high school degree), and the percentage of below the poverty level

<sup>h</sup> Adjusted covariates in Main Analysis except for age at entry (5-year categories), gender (female, male), race (White, Black, and other), and Medicaid eligibility<sup>i</sup> Main Analysis further adjusted for states

<sup>*j*</sup> Main Analysis further adjusted for a spatial smoother with 5 degrees of freedom for both latitude and longitude

Table S5. The Hazard Ratio of Mortality (95% CI) associated with an Increase of 10 ppb in NO<sub>2</sub> Concentration by state

|                | Full cohort<br>(N = 13,590,387) | Below WHO guideline<br>cohort <sup><i>a</i></sup><br>(N = 9,669,469) |
|----------------|---------------------------------|----------------------------------------------------------------------|
| Tennessee      | 1.006 (1.000, 1.013)            | 1.007 (1.001, 1.014)                                                 |
| Alabama        | 1.050 (1.038, 1.063)            | 1.050 (1.038, 1.063)                                                 |
| Florida        | 1.039 (1.034, 1.044)            | 1.039 (1.034, 1.044)                                                 |
| Georgia        | 1.018 (1.011, 1.025)            | 1.018 (1.011, 1.025)                                                 |
| Mississippi    | 1.049 (1.032, 1.067)            | 1.049 (1.032, 1.067)                                                 |
| North Carolina | 1.067 (1.060, 1.074)            | 1.067 (1.060, 1.074)                                                 |
| South Carolina | 1.031 (1.020, 1.043)            | 1.031 (1.020, 1.043)                                                 |

Note: CI, confidence interval; NO<sub>2</sub>, nitrogen dioxide; WHO, World Health Organization <sup>*a*</sup> The cohort was restricted to populations who were always exposed to annual mean NO<sub>2</sub> levels below the current WHO guideline, i.e.  $40 \ \mu g/m^3$ .

# Table S6 Descriptive characteristics of NO2 and mortality cohort studies published from 2006-2021

| Study                 | Study<br>period | Total<br>population | Mean age<br>(SD <sup>a</sup> ) or<br>range in<br>years | Exposure<br>assessment           | Exposure<br>window | Mean annual<br>exposure (SD <sup>a</sup> )<br>or range | Study population                                                           | Hazard Ratio<br>(95% CI) per 10<br>ppb increase | Co-pollutant<br>adjusted in the<br>model                             |
|-----------------------|-----------------|---------------------|--------------------------------------------------------|----------------------------------|--------------------|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|
| USA                   |                 | -                   |                                                        | 1                                |                    |                                                        | 1                                                                          | 1                                               | 1                                                                    |
| Ritz et al. (2006)    | 1989-2000       | 55,818              | 0-1                                                    | Air monitoring<br>stations       | 2-month average    | 3.84 (1.51)<br>pphm                                    | South Coast Air<br>Basin (SoCAB)                                           | 1.08 (1.04, 1.11)                               | -                                                                    |
| Lipfert et al. (2006) | 1997-2001       | 26,843              | 51 (12)                                                | Air monitoring sites             | Annual average     | 21.5 (6.1) ppb                                         | Infants                                                                    | 1.02 (0.98, 1.06)                               | -                                                                    |
| Hart et al. (2011)    | 1985-2000       | 53,814              | 42.1 (9.9)                                             | Spatial smoothing exposure model | Annual average     | 14.2 (7.1) ppb                                         | US Trucking Industry<br>cohort                                             | 1.10 (1.06, 1.15)                               | Either PM <sub>10</sub> or<br>PM <sub>2.5</sub> with SO <sub>2</sub> |
| Lipsett et al. (2011) | 1997-2005       | 12,366              | ≥20                                                    | Air monitoring<br>stations       | Monthly average    | 33.59 (9.63) ppb                                       | California Teachers<br>Study (CTS)                                         | 0.97 (0.91, 1.03)                               | -                                                                    |
| Hart et al. (2013)    | 1990-2008       | 84,562              | 30-55                                                  | Generalized additive models      | 2-year average     | 13.9 ppb <sup>b</sup>                                  | Nurses' Health Study<br>(NHS)                                              | 1.34 (0.43, 4.16)                               | -                                                                    |
| Jerrett et al. (2013) | 1982-2000       | 73,711              | ≥30                                                    | Land use regression              | Annual average     | 12.27 (2.92) ppb                                       | American Cancer<br>Society's Cancer<br>Prevention Study II<br>(ACS CPS-II) | 1.15 (1.04, 1.28)                               | -                                                                    |
| Eckel et al. (2016)   | 1988-2009       | 352,053             | 69.3 (11.0)                                            | Air monitoring<br>stations       | Monthly average    | 21.9 (10.2) ppb                                        | Lung cancer patients                                                       | 1.13 (1.12, 1.14)                               | -                                                                    |
| Turner et al. (2016)  | 1982-2004       | 669,046             | ≥ 30                                                   | Land use regression              | Annual average     | 11.6 (5.1) ppb                                         | American Cancer<br>Society's Cancer<br>Prevention Study II<br>(ACS CPS-II) | 1.04 (1.03, 1.05)                               | PM <sub>2.5</sub> , O <sub>3</sub>                                   |
| Eum et al. (2019)     | 2000-2008       | 14.1million         | 65-120                                                 | Air monitoring stations          | Annual average     | 14.2 ppb <sup>b</sup>                                  | U.S. Medicare cohort                                                       | 1.04 (1.04, 1.05)                               | PM <sub>2.5</sub>                                                    |
| Canada                |                 |                     |                                                        |                                  |                    |                                                        |                                                                            |                                                 |                                                                      |
| Jerrett et al. (2009) | 1992-2002       | 2,360               | 60 <sup>b</sup>                                        | Land use regression              | 2-year average     | 22.9 ppb                                               | Toronto respiratory<br>cohort                                              | 1.48 (1.02 2.14)                                | -                                                                    |

| Crouse et al. (2015)      | 1991-2006 | 2,521,525  | 25-89       | Land use regression                    | Annual average  | 11.6 (6.7) ppb                     | Canadian Census<br>Health and<br>Environment Cohort<br>(Can CHEC)      | 1.06 (1.06, 1.07) | PM <sub>2.5</sub> , O <sub>3</sub> |
|---------------------------|-----------|------------|-------------|----------------------------------------|-----------------|------------------------------------|------------------------------------------------------------------------|-------------------|------------------------------------|
| Crouse et al. (2015)      | 1991-2006 | 735,590    | 25-89       | Land use regression                    | Annual average  | 25.2 (2.5) ppb                     | Canadian Census<br>Health and<br>Environment Cohort<br>(Can CHEC)      | 1.10 (1.06, 1.15) | -                                  |
| Paul et al. (2020)        | 2001-2015 | 4,774,984  | 53.0 (13.0) | Land use regression                    | Annual average  | 16.0 ppb                           | The Ontario<br>Population Health<br>and Environment<br>Cohort (ONPHEC) | 1.03 (1.03, 1.05) | -                                  |
| Zhang et al. (2021)       | 2009-2017 | 88,615     | 52.1 (12.1) | Land use regression                    | Annual average  | 10.9 ppb                           | The Ontario Health<br>Study                                            | 1.40 (1.31, 1.49) | PM <sub>2.5</sub>                  |
| Germany                   |           |            |             |                                        |                 |                                    |                                                                        |                   |                                    |
| Gehring et al.<br>(2006)  | 1985-2003 | 4,752      | 50-59       | Air monitoring<br>stations             | 5-year average  | 39 μg/m <sup>3</sup>               | German cohort                                                          | 1.23 (1.02, 1.47) | -                                  |
| Heinrich et al.<br>(2013) | 1985-2008 | 4,752      | 50-59       | Air monitoring sites                   | Annual average  | 39 µg/m <sup>3</sup>               | German Women's<br>Health cohort                                        | 1.22 (1.08, 1.36) | -                                  |
| Netherlands               |           |            |             |                                        |                 |                                    |                                                                        |                   |                                    |
| Beelen et al. (2008)      | 1987-1996 | 120,852    | 58-67       | Interpolation,<br>regressions, and GIS | 10-year average | 36.9 (8.2) µg/m <sup>3</sup>       | The Netherlands<br>Cohort Study on Diet<br>and Cancer (NLCS)           | 1.05 (1.00, 1.10) | -                                  |
| Fischer et al. (2015)     | 2004-2011 | 7,218,363  | ≥ 30        | Land use regression                    | Annual average  | 31 µg/m <sup>3 b</sup>             | The Dutch<br>Environmental<br>Longitudinal Study<br>(DUELS)            | 1.06 (1.04, 1.08) | PM <sub>10</sub>                   |
| Klompmaker et al. (2020)  | 2013-2017 | 244,814    | ≥ 30        | Land use regression                    | Annual average  | 23.08 (7.54)<br>μg/m <sup>3b</sup> | A national health<br>survey (Public Health<br>Monitor, PHM)            | 0.98 (0.93, 1.02) | -                                  |
| Klompmaker et al. (2021)  | 2008-2012 | 10,532,360 | >29         | Dispersion model                       | Annual average  | 23.9 (6.8) µg/m <sup>3</sup>       | Dutch national cohort                                                  | 1.03 (1.01, 1.05) | -                                  |
| UK                        |           |            |             |                                        |                 |                                    |                                                                        |                   |                                    |
| Maheswaran et al. (2010)  | 1995-2006 | 3,320      | 70.3 (14.6) | Air monitoring sites                   | Annual average  | 41 (3.3) μg/m <sup>3</sup>         | South London Stroke cohort                                             | 1.91 (1.28, 2.85) | -                                  |

| Carey et al. (2013)             | 2003-2007 | 830,429         | 40-89           | Air dispersion model                                                        | Annual average | 22.5 (7.4) µg/m <sup>3</sup>      | Clinical Practice<br>Research Datalink                       | 1.13 (1.07, 1.18) | -                                                         |
|---------------------------------|-----------|-----------------|-----------------|-----------------------------------------------------------------------------|----------------|-----------------------------------|--------------------------------------------------------------|-------------------|-----------------------------------------------------------|
| Tonne et al. (2013)             | 2004-2010 | 154,204         | 68 (13)         | Gaussian dispersion model                                                   | Annual average | 18.8 μg/m <sup>3</sup>            | Myocardial<br>Ischaemia National<br>Audit Project<br>(MINAP) | 1.02 (0.96, 1.08) | NO <sub>x</sub> , PM <sub>2.5</sub> ,<br>PM <sub>10</sub> |
| Halonen et al. (2015)           | 2003-2010 | >8,000,000      | ≥25             | KCL urban dispersion model                                                  | Annual average | 38.9 (6.21)<br>μg/m <sup>3</sup>  | London cohort                                                | 0.95 (0.87, 1.05) | -                                                         |
| Italy                           |           |                 |                 |                                                                             |                |                                   |                                                              |                   |                                                           |
| Cesaroni et al.<br>(2012)       | 2001-2006 | 684,204         | 45-80           | Land use regression                                                         | Annual average | 45.7 (5.9) μg/m <sup>3</sup>      | Rome Longitudinal<br>Study (RoLS)                            | 1.12 (1.08, 1.16) | -                                                         |
| Cesaroni et al.<br>(2013)       | 2001-2010 | 1,265,058       | ≥ 30            | Land use regression                                                         | Annual average | 43.6 (8.4) μg/m <sup>3</sup>      | Rome Longitudinal<br>Study (RoLS)                            | 1.06 (1.04, 1.08) | -                                                         |
| Denmark                         |           |                 |                 |                                                                             |                |                                   | · · · · · · · · · · · · · · · · · · ·                        |                   | <u>'</u>                                                  |
| Hvidtfeldt et al. (2019)        | 1993-2015 | 49,564          | 50-64           | THOR/AirGIS<br>dispersion model                                             | Annual average | 25.0 μg/m <sup>3 b</sup>          | The Diet, Cancer and<br>Health cohort                        | 1.10 (1.02, 1.18) | -                                                         |
| So et al. (2020)                | 1993-2013 | 24,541          | 53.2 (8.0)      | Danish air pollution<br>dispersion modeling<br>system (DEHM/UBM<br>/AirGIS) | Annual average | 13.4 (8.0) µg/m <sup>3</sup>      | Danish Nurse Cohort                                          | 0.83 (0.76, 0.92) | PM <sub>2.5</sub>                                         |
| France                          |           |                 |                 |                                                                             | 1              |                                   | 1                                                            | 1                 |                                                           |
| Bentayeb et al. (2015)          | 1989-2013 | 20,327          | 43.7 (3.5)      | CHIMERE<br>chemistry- transport<br>model                                    | Annual average | 23 (12.1) µg/m <sup>3</sup>       | Gazel cohort                                                 | 1.09 (0.89, 1.34) | -                                                         |
| Sanyal et al. (2018)            | 1999-2012 | 13,239          | ≥15             | CHIMERE<br>chemistry- transport<br>model                                    | Annual average | 4.55-46.96<br>μg/m <sup>3</sup>   | French cohort                                                | 1.01 (1.00, 1.01) | PM <sub>2.5</sub> , O <sub>3</sub>                        |
| Spain                           |           |                 |                 | ·                                                                           |                |                                   | ,                                                            |                   | <u>'</u>                                                  |
| de Keijzer et al.<br>(2017)     | 2009-2013 | 44,561,414      | NA <sup>c</sup> | CALIOPE air quality forecasting system                                      | Annual average | 9.48 μg/m <sup>3</sup>            | Spain cohort                                                 | 1.00 (1.00, 1.01) | -                                                         |
| Nieuwenhuijsen et<br>al. (2018) | 2010-2014 | 792,649         | 50.9 (18.3)     | Land use regression                                                         | Annual average | 53.42 µg/m <sup>3</sup>           | SIDIAP cohort <sup>d</sup>                                   | 1.04 (1.00, 1.08) | -                                                         |
| Greece                          |           |                 |                 |                                                                             |                |                                   |                                                              |                   |                                                           |
| Kasdagli et al. (2021)          | 2011      | NA <sup>c</sup> | NA <sup>c</sup> | Hybrid land use regression                                                  | Annual average | 13.26 (7.84)<br>μg/m <sup>3</sup> | Census data                                                  | 1.14 (1.14, 1.18) | -                                                         |
| Europe                          |           |                 |                 |                                                                             |                |                                   |                                                              |                   |                                                           |

| Beelen et al. (2014)       | 1985-2007 <sup>e</sup> | 367,251 | All ages         | Land use regression                         | Annual average | 5.2-59.8 μg/m <sup>3</sup>         | European Study of<br>Cohorts for Air<br>Pollution Effects<br>(ESCAPE)            | 1.02 (0.98, 1.06) | -                                                                                  |
|----------------------------|------------------------|---------|------------------|---------------------------------------------|----------------|------------------------------------|----------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------|
| Samoli et al. (2021)       | 1992-2005              | 325,367 | 49 (13)          | Land use regression                         | Annual average | 25 (8) μg/m <sup>3</sup>           | European Study of<br>Cohorts for Air<br>Pollution Effects<br>(ESCAPE)            | 1.08 (1.02, 1.14) | -                                                                                  |
| Japan                      |                        |         |                  |                                             |                |                                    |                                                                                  |                   |                                                                                    |
| Yorifuji et al.<br>(2010)  | 1999-2006              | 13,444  | 74 (5.5)         | Land use regression                         | Annual average | 35.75 (11.28)<br>μg/m <sup>3</sup> | The Shizuoka elderly cohort                                                      | 1.04 (1.93, 1.16) | -                                                                                  |
| Yorifuji et al.<br>(2013)  | 1999-2009              | 13,412  | 74 (5.4)         | Land use regression                         | Annual average | 22 (15) µg/m <sup>3</sup>          | The Shizuoka elderly cohort                                                      | 1.24 (0.45, 3.43) | -                                                                                  |
| Yorifuji et al.<br>(2020)  | 2006-2016              | 73,970  | >40              | Land use regression                         | Annual average | 31.4 (4.7) µg/m <sup>3</sup>       | Health checkups in<br>Okayama City, Japan                                        | 1.12 (1.04, 1.22) | -                                                                                  |
| China                      |                        |         |                  |                                             |                |                                    |                                                                                  |                   |                                                                                    |
| Chen et al. (2016)         | 1998-2009              | 39,054  | 44.29<br>(13.95) | Air monitoring stations                     | Annual average | 40.66 µg/m <sup>3</sup>            | Four Northern<br>Chinese city                                                    | 0.96 (0.95, 0.97) | PM <sub>10</sub> or SO <sub>2</sub>                                                |
| Yang et al. (2018)         | 1998-2011              | 66,820  | 70.2 (5.5)       | Land use regression                         | Annual average | 104 (25.6)<br>μg/m <sup>3</sup>    | Hong Kong Elderly<br>Health Service<br>Cohort                                    | 1.00 (0.90, 1.11) | BC, PM <sub>2.5</sub>                                                              |
| South Korea                |                        | 1       | 1                |                                             | 1              |                                    |                                                                                  |                   |                                                                                    |
| Kim et al. (2017)          | 2007-2013              | 136,094 | 42.05<br>(14.83) | Air monitoring<br>stations                  | Annual average | 34.45 (12.92)<br>ppb               | National Health<br>Insurance Service-<br>National Sample<br>(NHIS-NSC) Cohort    | 1.48 (1.41, 1.55) | PM <sub>2.5</sub> , PM <sub>2.5-10</sub> ,<br>CO, SO <sub>2</sub> , O <sub>3</sub> |
| Jung et al. (2020)         | 2008-2015              | 5,041   | 60.48<br>(13.52) | Air monitoring stations                     | Annual average | 28.13 (6.89) ppb                   | Clinical Research<br>Center for End-Stage<br>Renal Disease (CRC-<br>ESRD) cohort | 1.34 (1.07, 1.68) | -                                                                                  |
| Australia                  |                        |         |                  |                                             |                |                                    |                                                                                  |                   |                                                                                    |
| Dirgawati et al.<br>(2019) | 1996-2012              | 11,627  | 72.1 (4.4)       | Land use regression                         | Annual average | 13.4 (4.1) µg/m <sup>3</sup>       | Health in Men Study<br>(HIMS)                                                    | 1.12 (1.00, 1.25) | -                                                                                  |
| Hanigan et al.<br>(2019)   | 2007-2015              | 75,145  | 45-79            | Satellite-based spatial<br>Regression model | Annual average | 17.75 (4.80)<br>μg/m <sup>3</sup>  | "45 and up study"<br>Cohort                                                      | 1.12 (0.93, 1.35) | -                                                                                  |

Note: CI, confidence interval; WHO, World Health Organization; HR, hazard ratio; NO<sub>2</sub>, nitrogen dioxide; PM<sub>2.5</sub>, particulate matter  $< 2.5 \mu m$  in aerodynamic diameter; PM<sub>10</sub>, particulate matter  $< 10 \mu m$  in aerodynamic diameter; NO<sub>x</sub>, nitrogen oxide; O<sub>3</sub>, ozone; CO, carbon oxide; SO<sub>2</sub>, sulfur dioxide; BC, black carbon <sup>*a*</sup> SD = standard deviation

<sup>b</sup> median

<sup>c</sup> NA indicates Not Applicable <sup>d</sup> SIDIAP = Sistema d'Informació pel Desenvolupament de la Investigació en Atenció Primària

<sup>*e*</sup> baseline study period

|                     | Model                                                        | Before bootstrapping | After bootstrapping |
|---------------------|--------------------------------------------------------------|----------------------|---------------------|
| Full                | Single pollutant                                             | 0.0001138            | 0.0001142           |
| cohort              | <b>Bi-pollutant</b><br>(NO <sub>2</sub> +PM <sub>2.5</sub> ) | 0.0001145            | 0.0001150           |
|                     | Bi-pollutant<br>(NO <sub>2</sub> +O <sub>3</sub> )           | 0.0001163            | 0.0001165           |
|                     | Tri-pollutant                                                | 0.0001164            | 0.0001168           |
| Below WHO guideline | Single pollutant                                             | 0.0001139            | 0.0001142           |
| cohort <sup>a</sup> | Bi-pollutant<br>(NO <sub>2</sub> +PM <sub>2.5</sub> )        | 0.0001146            | 0.0001151           |
|                     | Bi-pollutant<br>(NO <sub>2</sub> +O <sub>3</sub> )           | 0.0001164            | 0.0001166           |
|                     | Tri-pollutant                                                | 0.0001165            | 0.0001168           |

## Table S7. Standard Errors Estimated before and after accounting for Spatial Dependence in both cohorts.

Note: WHO, World Health Organization; NO<sub>2</sub>, nitrogen dioxide; PM<sub>2.5</sub>, particulate matter  $< 2.5 \mu m$  in aerodynamic diameter; O<sub>3</sub>, ozone <sup>*a*</sup> The cohort was restricted to populations who were always exposed to annual mean NO<sub>2</sub> levels below the current WHO guideline, i.e. 40  $\mu g/m^3$ .

Figure S1

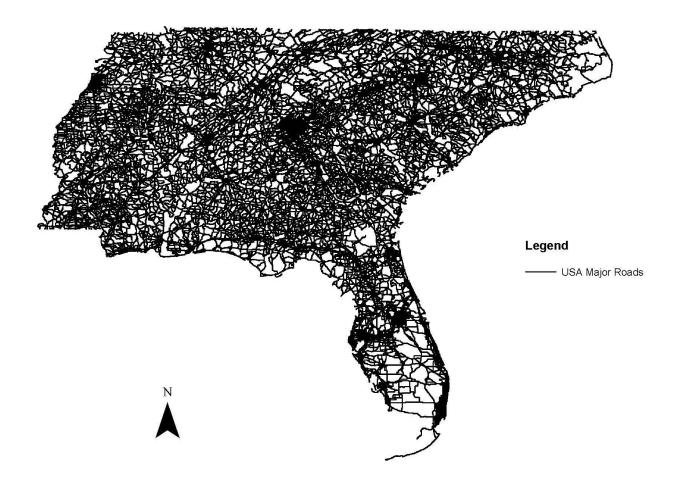
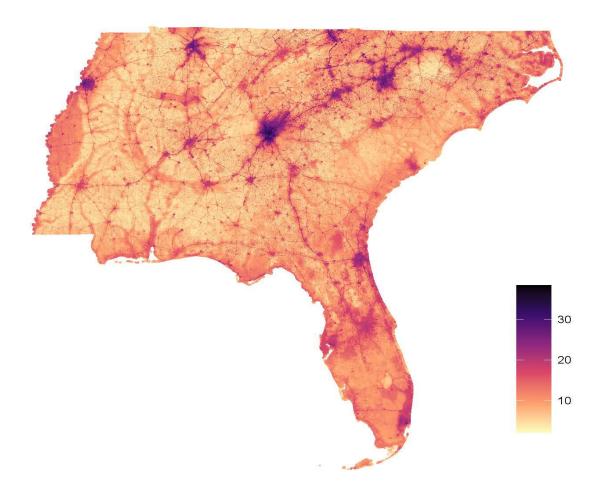




Figure S1. The map of major roadways in the southeastern US





**Figure S2.** The spatial distribution of 17-year mean concentrations of annual NO<sub>2</sub> (ppb) at 1-km<sup>2</sup> grids in the southeastern US (2000-2016)



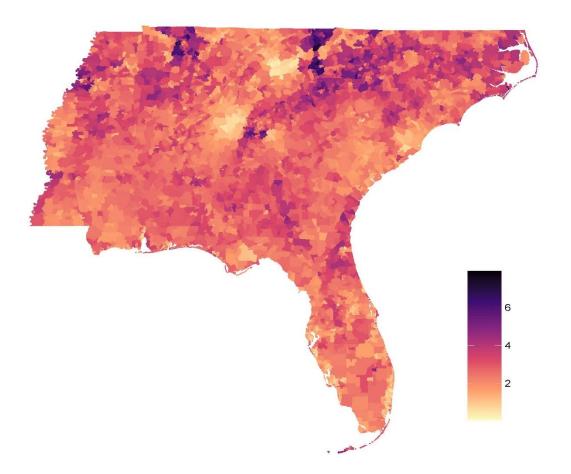



Figure S3. The standard deviations of 1-km<sup>2</sup> NO<sub>2</sub> concentrations (ppb) within ZIP code areas in the southeastern US in 2010



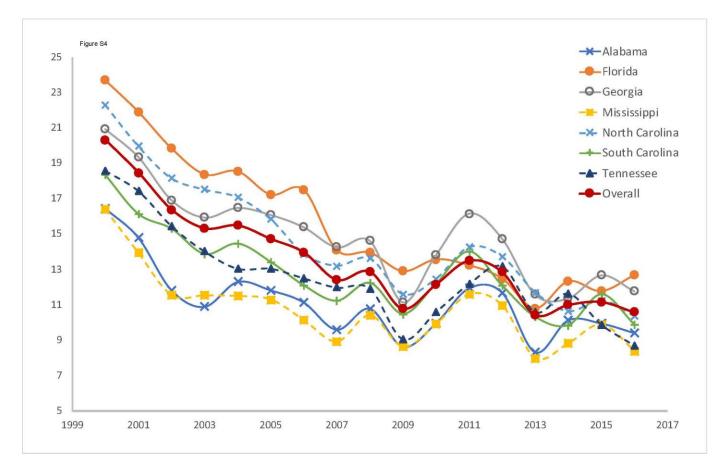
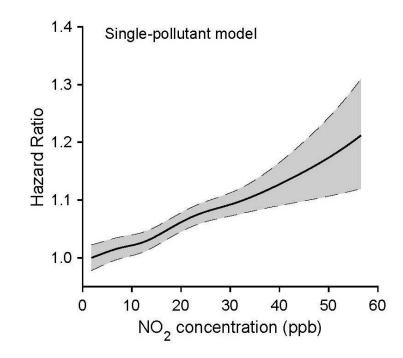




Figure S4. The temporal trend of NO<sub>2</sub> concentrations in the southeastern US from 2000-2016





**Figure S5.** The relationship between long-term exposure to NO2 and all-cause mortality, derived from single pollutant models with adjustment of age at entry (5-year categories), gender (female, male), race (White, Black, and other), Medicaid eligibility, calendar-year, summer and winter mean temperature, median home value, median household income, population density, the proportion of owner-occupied housing units, the percentage of Black and Hispanic populations, education level, population below poverty level, body mass index, and the proportion of those who were ever smokers. The descriptive statistics for these variables were provided in Table 1 and Table S1. Shaded areas indicate the 95% confidence bands.