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Supplementary Information 
To illustrate the effect of variable mantle iron content on the elemental content of a putative 

planet, we used a similar accretionary model to that described previously in (1, 2).  Planets 

were presumed to possess chondritic ratios of the involatile elements, with accretion occurring 

in 1% intervals.  Metal-silicate equilibration occurred at a fixed fraction of the depth to the core-

mantle boundary, with peak pressures of 20GPa reached at the tail-end of accretion, and 

equilibration temperature determined by the peridotite liquidus(3). Equilibration pressures 

imply that the planet’s mass (MP) is greater than that of Mars (MM) but less than Earth’s (ME).  

i.e. ME > MP > MM. The FeO contents of the accreting bodies were fixed throughout accretion, 

and each increment of arriving metal was equilibrated with the bulk mantle before being 

sequestered in the core. Elements were partitioned between the accreting metal and the bulk 

mantle at each step,  using metal-silicate partition coefficients (𝐷! =
[𝑖]"#$%&

[𝑖]'!&!(%$#& ) from 

the sources detailed in (2). All planet’s cores were presumed to contain a terrestrial-like S 

content of 2%(4), with metal phase compositions determined using the epsilon formalism of 

(5). Metal interactions were taken from (6, 7), and all metals except the major solutes (S, Si, 

O and Ni) were assumed to be at infinite dilution. For full details of the modelling approach 

and partition coefficients please see (2). 

The modelled surface seawater compositions presented in figure 2 were generated using the 

PHREEQC modelling package, with putative Fe concentrations taken from (8, 9) and seawater 

compositions from (10-12).  Many aspects of the ancient seawater composition are not 

precisely constrained, although there is a broad consensus on the general trends of many of 

the key parameters. Spatial and temporal variability in composition and redox level was surely 

present in the Archean (13) but is insignificant compared to the major changes that occur with 

rising oxygen levels moving forward in time.  References for composition data are given in the 

figure 2 caption. With respect to changes in pH, we followed the approach of (14) and assumed 

pH  increased from a low of 6.3 in the Archaean, to 7 in the interval between the GOE and the 

~550Ma to the present value. The prevailing oxygen fugacity was set by assuming the initial 

atmosphere was in broad equilibrium with the mantle (log10 fO2 8+/-2). The atmospheric 

oxygenation at the GOE boundary appears variable(15) , but post GOE is well established 

and relatively well constrained (GOE to pre-~550Ma log10 fO2 2.7+/-0.3)(16). There is 

continued debate about the details of O2 evolution between the GOE and the start of the 

Phanerozoic(17) but for the purposes presented here we simply use a single step at the 

Phanerozoic boundary to the present day value (log10 fO2 -0.7+/-0.3). 
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