
Supplementary materials: Cell-type-specific neuromodulation
guides synaptic credit assignment in a spiking neural network

Yuhan Helena Liu1,2,3,*, Stephen Smith2,4, Stefan Mihalas1,2,3, Eric Shea-Brown1,2,3, and
Uygar Sümbül2,*

1Department of Applied Mathematics, University of Washington, Seattle, WA, USA
2Allen Institute, 615 Westlake Ave N, Seattle WA, USA

3Computational Neuroscience Center, University of Washington, Seattle, WA, USA
4Department of Molecular and Cellular Physiology, Stanford University, Stanford CA,

USA
*Correspondence: hyliu24@uw.edu, uygars@alleninstitute.org

Supplementary Note 1 – Online modulatory signaling for leaky out-
put

As mentioned in Methods, we allow leaky outputs

yk,t = κ yk,t−1 +
∑
j

wOUT
kj zj,t + bOUT

k ,

where the output at the current step depends on the previous time step through the leak constant κ.

Based on this leaky output and loss E =
∑
k,t(y

∗
k,t − yk,t)2, we have the following partial derivative

that appears in the naive implementation of modulatory emission (Eq. 24):

∂E

∂zj,t
=
∑
k

wOUTkj

∑
t′≥t

(y∗t′,k − yt′,k)κt
′−t, (1)

which is dependent on future errors (and problematic for online learning).

Consider the two additive components of our learning rule in Eq. 20. The first term, dE
dwpq

∣∣∣
e−prop

=

Lp,tepq,t, is implementable online following a simple change of summation order [1] (derivation can be

generalized to the classification task with a simple replacement of (y∗k,t − yk,t) by (π∗k,t − πk,t)):

dE

dwpq

∣∣∣∣
e−prop

=
∑
t′

∂E

∂zp,t′
et
′

pq

1

=
∑
k,t′

wOUTkj

∑
t≥t′

(y∗k,t − yk,t)κt−t
′
et
′

pq

=
∑
k,t

wOUTkj (y∗k,t − yk,t)
∑
t′≤t κ

t−t′et
′

pq︸ ︷︷ ︸
Fκ(etpq)

, (2)

where the order of summations was changed in the last line, and operator Fκ denotes low-pass filtering

with Fκ(xt) = κFκ(xt−1) + xt. In our actual implementation, we used an exponential smoothing with

Fκ(xt) = κFκ(xt−1) + (1− κ)xt, but dropped the factor (1− κ) in writing for readability.

We again apply the change of summation order trick to the second term of our learning rule (Eq. 20),

Γpq,t, and assume that activity of neuron j is not correlated with the eligibility trace of synapse pq:

∑
t′

Γpq,t′ =
∑
t′,j 6=p

∂E

∂zj,t′
hj,t′wαβe

t′−1
pq

=
∑

k,t′,j 6=p

wOUTkj

∑
t≥t′

(y∗k,t − yk,t)κt−t
′
hj,t′wαβe

t′−1
pq

(a)
=
∑
t

∑
j 6=p

∑
k

(y∗k,t − yk,t)wOUTkj wαβ
∑
t′≤t κ

t−t′hj,t′e
t′−1
pq︸ ︷︷ ︸

≈(t−t′+1)Et′≤t
[
κt−t

′
hj,te

t−1
pq

]
(b)
≈
∑
t

∑
j 6=p

∑
k

(y∗k,t − yk,t)wOUTkj wαβEt′≤t [hj,t] (t− t′ + 1)Et′≤t
[
κt−t

′
et−1
pq

]
︸ ︷︷ ︸

=Fκ(et−1
pq)

=
∑
t

∑
j 6=p

∑
k

(y∗k,t − yk,t)wOUTkj wαβEt′≤t [hj,t]︸ ︷︷ ︸
≈Fκ(hj,t)

Fκ(et−1
pq)

(c)
≈
∑
t

∑
j 6=p

∑
k

(y∗k,t − yk,t)wOUTkj wαβFκ(hj,t)Fκ(et−1
pq)

=
∑
t

∑
j 6=p

[∑
k(y∗k,t − yk,t)wOUTkj Fκ(hj,t)

]
︸ ︷︷ ︸

:=āj,t

wαβFκ(et−1
pq)

(d)
=
∑
t

Fκ(et−1
pq)

∑
α∈C

wαβ
∑
j∈α

āj,t, (3)

where (a) changes the summation order; (b) assumes uncorrelatedness between activity hj,t and κt−t
′
et−1
pq

such that Et′≤t
[
κt−t

′
hj,te

t−1
pq

]
≈ Et′≤t [hj,t]Et′≤t

[
κt−t

′
et−1
pq

]
; (c) approximates the temporal average of

hj,t using an exponential filter Et′≤t [hj,t] ≈ Fκ(hj,t); (d) is a simple change of summation order. We test

the validity of the above approximation in Figure 4 and observe no significant performance degradation

due to this approximation.

2

Supplementary Note 2 – Detailed Breakdown of MDGL’s Compo-
nents

In the main text, we stated that our MDGL learning rule combines the eligibility trace with both top-

down learning signals and cell-type-specific weighted summation of secreted, diffuse modulators. We so

far only expressed these components as derivatives (see Methods). With the derivation of the online

implementation for MDGL in Eq. 3, we are now ready to provide the detailed expressions for each of

these components. Combining Eq. 3 with Eq. 20 and rearranging the summation order gives the following

component breakdown for our online approximation to MDGL:

d̂E

dwpq
≈

∑
k

(y∗t−1,k − yt−1,k)

w
OUT
kp +

∑
α∈C

wαβ
∑
j∈α

wOUTkj Fκ(hj,t−1)︸ ︷︷ ︸
Addition due to local modulatory signals

Fκ(epq,t−1).

(4)

The non-neuron-specific error signal (y∗t,k−yt,k) is passed to cells through neuron-specific feedback weights

wOUTkj , thereby forming neuron-specific learning signal at the receiving end Lj,t =
∑
k w

OUT
kj (y∗t,k − yt,k).

Here, we took top-down learning signals to be cell-specific rather than global, which is justified in part by

recent reports that dopamine signals [2] and error-related neural firing [3] can be specific to a population

of neurons [1]. On the other hand, loosening this neuron-specificity of learning signal can be achieved

through approximations to the feedback weights, such as cell-type-specific approximations as in Eq. 23.

Upon receipt, neuron j multiplies Lj,t with Fκ(hj,t), its low-pass filtered activity, and sends the packaged

signal aj,t = Lj,tFκ(hj,t). In updating wpq, our addition allows postsynaptic cell p to collect information

regarding the activities and learning signals of other cells through cell-type-specific gain wαβ , and combine

the received modulatory input with its low-pass filtered eligibility trace.

3

Supplementary Note 3 – Analysis and Simulation Details

Throughout this study, we used alignment angle to quantify the similarity between two vectors. The

alignment angle θ between two vectors, a and b, was computed by θ = acos(
∥∥aT b∥∥ / ‖a‖ ‖b‖). The

alignment between two 2D matrices was computed by flattening the matrices into vectors. For spectral

analysis, we first performed root mean square normalization on the signal and then computed the power

spectral density using Welch’s method [4].

For the pattern generation task in Figure 3a, our network consisted of 400 LIF neurons. All neurons

had a membrane time constant of τm = 30ms, a baseline threshold of vth = 0.01 and a refractory period

of 2ms. Input to this network was provided by 100 Poisson spiking neurons with a rate of 10Hz. The

fixed target signal had a duration of 2000ms and given by the sum of five sinusoids, with fixed frequencies

of 0.5Hz, 1Hz, 2Hz, 3Hz and 4Hz. For learning, we used mean squared loss function and for visualization,

we used normalized mean squared error NMSE =
∑
k,t(y

∗
k,t−yk,t)

2∑
k,t(y

∗
k,t)

2 for zero-mean target output y∗k,t. All

weight updates were implemented using Adam with default parameters [5] and a learning rate of 1× 10−3.

In addition, we applied firing rate regularization with creg = 10 and f target = 10Hz.

For the delayed match to sample task in Figure 3b, our implementation of the task began with a brief

fixation period (no cues) followed by two sequential cues, each lasting 0.15s and separated by a 0.75s delay

(Figure 3b). A cue of value 1 was represented by 40Hz Poisson spiking input, whereas a cue of value 0 was

represented by the absence of input spiking. The network was trained to output 1 (resp. 0) when the two

cues have matching (resp. non-matching) values. Our network consisted of 50 LIF neurons and 50 ALIF

neurons (100 LIF neurons and 80 ALIF neurons for the alternative setup in Figure 5). All neurons had a

membrane time constant of τm = 20ms, a baseline threshold of vth = 0.01 and a refractory period of 5ms.

The time constant of threshold adaptation was set to τb = 1400ms, and its impact on the threshold was

set to β = 1.8. Input to this network was provided by three populations, as illustrated in Figure 3B. The

first (resp. second) population consisted of 20 units and produced Poisson spike trains with a rate of 40Hz

4

when the first (resp. second) cue takes a value of 1, otherwise it stays quiescent. The last input population

of 10 units produced Poisson spike trans of 10Hz throughout the trial in order to prevent the network

from being quiescent during the delay. For the alternative setup in Figure 5, the first (resp. second)

input population produced Poisson spike trains with a rate of 40Hz when cue 1 (resp. cue 2) is presented,

otherwise it fires at 10Hz. For learning, we used cross-entropy loss function and the target corresponding

to the correct output was given at the end of the trial. As done in the evidence accumulation task, a

weight update was applied once every 64 trials and the gradients were accumulated during those trials

additively. All weight updates were implemented using Adam with default parameters [5] and a learning

rate of 2.5× 10−3. In addition, we applied firing rate regularization with creg = 0.1 and f target = 10Hz.

For the evidence accumulation task in Figure 3c, our network consisted of 50 LIF neurons and 50 ALIF

neurons. All neurons had a membrane time constant of τm = 20ms, a baseline threshold of vth = 0.01 and

a refractory period of 5ms. The time constant of threshold adaptation was set to τb = 2000ms, and its

impact on the threshold was set to β = 1.8. Input to this network was provided by four populations of

10 neurons each, as illustrated in Figure 3c. Each cue is represented by 40 Hz Poisson spiking input for

100ms and cues are separated by 50ms. The first (resp. the second) population produced Poisson spike

trains with a rate of 40Hz when a cue was presented on the left (resp. right) side of the track. The third

input population spiked randomly through the decision period with a firing rate of 40Hz and was silent

otherwise. The last input population produced Poisson spike trains with a rate of 10Hz throughout the

trial in order to prevent the network from being quiescent during the delay. For learning, we used the

cross-entropy loss function and the target corresponding to the correct output was given at the end of

the trial. A weight update was applied once every 64 trials and the gradients were accumulated during

those trials additively. All weight updates were implemented using Adam with default parameters [5]

and a learning rate of 2.5× 10−3. In addition, we applied firing rate regularization with creg = 0.1 and

f target = 10Hz. In the main text, all simulated tasks are constrained at 10% sparsity. This connection

sparsity is maintained by fixing inactive synapses with zero weights. Cells have synapses that are sign

5

constrained with 80% of the population being excitatory and the rest inhibitory. For a proof of concept,

we implement MDGL with modulatory types mapped to the two main cell classes, thus obtaining four

cell-type-specific gain values (Cell-type-specific receptor affinities, Methods). The same learning rate is

used for all methods within a given task. We also compared the methods at their best learning rate within

{1e− 3, 2e− 3, 5e− 3, 1e− 2, 2e− 2, 5e− 2} and the trend still holds: BPTT learns the fastest, whereas

MDGL leads to faster loss reduction over training iterations than e-prop. For all simulations, we used a

time step of 1ms. We also assumed a synaptic delay of 1ms for all synapses.

Lastly, we note that while input, recurrent and output weights are all being trained, biologically

plausible learning rules (i.e. e-prop and MDGL) only apply to input and recurrent weights. All approaches

update the output weights using backpropagation, as output weights do not suffer the aforementioned

nonlocality issue. (For updating the weights of a single output layer, random feedback alignment [6] has

also been shown to be an effective and biologically plausible solution.)

– References — supplementary materials

[1] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,

and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.

Nature Communications, 11(1):1–15, dec 2020.

[2] Ben Engelhard, Joel Finkelstein, Julia Cox, Weston Fleming, Hee Jae Jang, Sharon Ornelas, Sue Ann

Koay, Stephan Y. Thiberge, Nathaniel D. Daw, David W. Tank, and Ilana B. Witten. Specialized

coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature, 570(7762):509–513,

jun 2019.

[3] Amirsaman Sajad, David C. Godlove, and Jeffrey D. Schall. Cortical microcircuitry of performance

monitoring. Nature Neuroscience, 22(2):265–274, feb 2019.

6

[4] Peter D. Welch. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method

Based on Time Averaging Over Short, Modified Periodograms. IEEE Transactions on Audio and

Electroacoustics, 15(2):70–73, 1967.

[5] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR.

International Conference on Learning Representations, ICLR, dec 2015.

[6] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic

feedback weights support error backpropagation for deep learning. Nature communications, 7(1):1–10,

2016.

[7] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training

very sparse deep networks. In International Conference on Learning Representations, 2018.

[8] Rebecca Elliott and Raymond J Dolan. Differential neural responses during performance of matching

and nonmatching to sample tasks at two delay intervals. Journal of Neuroscience, 19(12):5066–5073,

1999.

7

– Supplementary Figures

b

c

a

Figure 1: Checking e-prop implementation – recovering ignored terms recovers the performance of BPTT.
As a sanity check, learning curves are plotted for e-prop plus all the truncated terms (see Eq. 17) to verify that the resulting
learning rule recovers the performance of BPTT. The check is applied to a) pattern generation, b) delayed match to sample
and c) evidence accumulation tasks. Solid lines show the mean averaged across five runs and shaded regions show the
standard deviation. For all tasks, the learning curves do not differ significantly, suggesting the e-prop implementation is
accurate.

8

ci

biai

cii

biiaii

Figure 2: Alignment angle comparison shows that gradients approximated by MDGL are more similar
(than e-prop) to the exact gradients. We quantify the similarity between approximated and exact gradients via the
alignment angle, which describes the similarity in the direction of the two update vectors (Supplementary Note 3) for a)
pattern generation, b) delayed match to sample and c) evidence accumulation tasks. In all top-panels (ai, bi, ci), the
alignment angles between MDGL variants and BPTT are all less than 90◦, which indicate that the approximated gradients
are aligned with the exact gradient, despite the high-dimensionality of the update vectors. All bottom panel plots (aii, bii,
cii) suggest that MDGL variants achieve smaller alignment angle (hence better alignment) with BPTT than e-prop does. To
ensure a fair comparison, we examine the statistics of pairwise difference, so that the point on the loss landscape - where
the comparison is done - is matched. This is achieved by training the network using BPTT across five different runs and
sampling the approximated gradient once every 50 training iterations. Alignment analysis illustrated here is for recurrent
weight gradients, and similar trends are observed for the input weights as well.

9

Figure 3: Network dynamics across multiple tasks investigated in Figure 3. a) Dynamics of the input, output
and recurrent units are shown after 1, 100 and 500 iterations of training for the pattern generation task in Figure 3a using
the MDGL method. Raster plots are shown for 50 selected sample cells, and E cells and I cells are color coded using black
and red, respectively. All recurrent units have fixed thresholds for this task. Recurrent unit spikes are irregular throughout
training. Network output approaches the target as training progresses. b) Network dynamics of an example trial after 100
and 2000 iterations of training for the delayed match to sample task in Figure 3b using MDGL. To emphasize the change in
dynamics over training iterations, we used the same cue pattern for the illustrations. Again, E cells and I cells are color
coded using black and red, respectively. For this task, both recurrent units with adaptive threshold (labeled as A) and
without (labeled as R) are involved [1]. Threshold dynamics of sample neurons are illustrated. The network makes the
correct prediction with greater confidence as training progresses. c) Network dynamics (Input spikes, recurrent unit spikes
and readout) of an example trial after 100 and 2000 iterations of training for the evidence accumulation task in Figure 3c
using MDGL. The network makes the correct prediction with greater confidence as training progresses. For all methods,
results were obtained without using stochastic rewiring, which would allow for random formation of new synapses in each
experience (Deep R) [7].

10

b

c

a

Figure 4: No significant degradation in performance observed for the online approximation of MDGL in
Eq. 3. The naive implementation of activity dependent modulatory emission (Eq. 24 in Figures 3–4 depends on future
errors, as explained in Supplementary Note 1 when the readout is leaky (depends on past output value). Therefore, we
introduce an approximation in Eq. 3 for online implementation of MDGL. To check if this approximation leads to significant
degradation in performance, learning curves are plotted for a) pattern generation, b) delayed match to sample and c) evidence
accumulation tasks. For all tasks, there is no significant deviation in learning curves between MDGL and our proposed
online approximation (On-MDGL).

11

Figure 5: Similar observations for alternative task parameters in the task of Figure 3b. The delayed match
to sample task in Figure 3b is repeated here, but with nonzero firing rates for the second cue alternative. As before, two
input populations take on two different firing statistics to represent the two cue alternatives, and the agent is tasked with
determining if the cue presented before and after the delay period correspond to the same cue alternative. The rates of these
two populations are provided in Supplementary Note 3. The plotting conventions are the same as those of Figure 3 and
Figure 3, except that a larger network is used (Supplementary Note 3), and 50 units are selected for the raster plots. The
same conclusions as Figure 3b and 3b are observed here: comparing the performance of e-prop with the MDGL method
suggests that the addition of cell-type-specific modulatory signals improves learning outcomes; the network makes the correct
prediction with greater confidence as training progresses.

12

ba

Figure 6: Threshold adaptation analysis for the evidence accumulation task in Figure 3c. a) Both threshold
adaptation and recurrence are needed for successful completion of the task. MDGL trained on a network without ALIF cells
(red) or with recurrent connections removed (blue) shows little decrease in loss over training iterations. b) Simulating with
70 LIF to 30 ALIF cells (R70A30) as well as 30 LIF to 70 ALIF cells (R30A70) led to similar ordering of performance for
different learning methods as the default (50 LIF to 50 ALIF cells).

13

b

c

a

Figure 7: Comparing the learning curves for default MDGL versus MDGL with random fixed cell-type-
specific receptor effcacies. As explained in Methods (Eq. 23), cell-type-specific receptor affinities were taken to be
average connection weights. To explore the sensitivity of the learning performance to imprecise receptor affinities, here, the
magnitude of each receptor affinity wαβ (for α ∈ {I, E}, β ∈ {I, E}) is taken as the absolute value of a Gaussian random
variable with zero mean and variance of 1√

N
(N is the number of neurons), while the sign is kept as the neuron sign of type

β; wαβ is randomized upon each initialization and fixed throughout the training. We observe a relatively mild degradation
in performance for the pattern generation task and delayed match to sample task using this fixed random wαβ (labeled
as MDGL_fixWab in each panel). For the evidence accumulation task, we did not observe any degradation even when
the randomly generated wαβ was multiplied by a factor of 10 (labeled as MDGL_fixWab10x). A factor of 100 (labeled
as MDGL_fixWab100x) pushes the network outside of an efficient operating range for the evidence accumulation task,
suggesting that different tasks exhibit different degrees of tolerance to deviations in receptor affinities. This comparison is
done for a) pattern generation, b) delayed match to sample and c) evidence accumulation tasks.

14

b

c

a

Figure 8: Advantage of MDGL disappears when the readout projection is dense. Through the paper, we
instantiate the network with sparse connectivity to resemble neuronal circuits. Here, we repeat the tasks using networks
with a dense connection to the readout (while keeping connections sparse within the recurrent network), and we find the
competitive advantage of MDGL goes away. However, neurons are rarely fully connected to the readout in biological neural
circuits. When the readout layer is sparse, not all neurons receive top-down learning signals in the e-prop formulation, and
MDGL allows these neurons to receive learning signals as well.

15

b

c

a

Figure 9: Effectiveness of minimal cell-type discretization. MDGL-bcta: MDGL before cell type approximation.
In Methods, we defined the cell-type-specific receptor affinities to be average connection weights between cell types, i.e.
wαβ =< wjp >j∈α,p∈β (Eq. 23); we considered a minimal implementation of modulatory types mapped to the two main
cell classes (α, β ∈ {E, I}). We compare its learning performance to MDGL before cell type approximation as in Figure 5
(MDGL-bcta), which does not involve cell-type approximation, i.e. wαβ = wjp (each cell is its own type). A cartoon
illustration of MDGL-bcta can be found in Figure 5c. This comparison is applied to a) pattern generation, b) delayed match
to sample and c) evidence accumulation tasks. The proximity of learning curves for MDGL-bcta and MDGL illustrates the
effectiveness of such cell-type discretization.

16

biii

bii

bia

Figure 10: Slowness in modulatory signaling for the online approximation of MDGL. As explained in Figure 4,
we proposed and tested an online implementation of activity-dependent modulatory release in Eq. 3. a) We repeat the spectral
analysis in Figure 4a-c for this online implementation, i.e. replace aj,t in Mod.inputp (Eq. 21) with online activity-dependent
modulatory release āj,t defined in Eq. 3. The observations here match those of Figure 4, where modulatory input is
significantly slower than synaptic input. We note that the analysis here is done on the pattern generation task only, because
for the other two tasks, the error signal is not available until the end of the trial, making the modulatory input too short (see
Eq. 3) for any meaningful spectral analysis. Phenomenologically, the “slowness” of modulatory signaling can be explained by
the modulatory input being a weighted summation of slow changing leaky outputs and low-pass filtered activity (Eq. 3).
Raw synaptic and modulatory input (across time steps and cells) used for the frequency analysis are included beneath the
frequency analysis plot. b) Raw synaptic and modulatory input traces for the frequency analysis in Figure 4a-c for i) pattern
generation, ii) delayed match to sample and iii) evidence accumulation tasks.

17

cb

ai aii

Figure 11: Cell-type-specific modulatory signaling level decreases over training iterations. Box plots for
absolute cell-type-specific modulatory input distribution across cells show that modulatory signalling level drops over training
iterations for ai) pattern generation, b) delayed match to sample and c) evidence accumulation tasks. aii) The target for the
pattern generation task was changed after 5000 iterations, which resulted in a rapid increase in modulatory input immediately
after the change, and a progressive decrease as training continued. This agrees with the prediction of our learning rule
(Eq. 20, 24 and Supplementary Note 2) that cell-type-specific signaling carries information pertaining to top-down learning
signals so that their levels can reflect the learning progress. To capture the magnitude of the signaling level, the absolute
modulatory input for each cell p is defined similar to Syn.inputp in Eq. 21, but with the absolute value of each factor;∑
α∈C |wαβ |

∑
j∈α,p→j |āj,t| (āj,t defined in Eq. 3).

18

b

c

a

Figure 12: Average connection weight between types drifts slowly over training. Four average synaptic connection
weight values (E to E, E to I, I to E and I to I) are illustrated in solid lines for the three tasks investigated. Several sample
individual weights with large changes are illustrated in faint dashed lines, which can deviate significantly from the type
averages. As explained earlier in Methods (Eq. 23) as well as Figure 9, these four average connection weights are used as our
minimal implementation of cell-type-specific receptor affinities, wαβ with α, β ∈ {E, I} (see Eq. 23 and Eq. 20). How tightly
the individual synaptic weights and cell-type-specific receptor affinities co-adapt may be explored in future work. Figure 7
suggests that the effect of imprecise GPCR affinities on the performance is task-dependent.

19

ba Delay=1750ms Delay=2750ms

Figure 13: The performance of MGDL degrades when the delay period length is increased beyond a certain
point. Here, the delay period is parametrically modulated for the delayed match to sample task. In a), the delay period
is increased by 1000ms to 1750ms, and the network can still learn via MDGL. In b), the delay period is increased by
2000ms to 2750ms, and the network struggles to learn with MDGL while it still learns via BPTT. All other parameters
(notably threshold adaptation time constant) are fixed in these simulations. It is interesting to note that worsened learning
performance with increased delay period has previously been observed in animal experiments [8].

20

	Online modulatory signaling for leaky output
	Detailed Breakdown of MDGL's Components
	Analysis and Simulation Details

