## **Supporting Information Appendix**

## **Supplemental Methods**

#### Classification of Muscle Afferents

Muscle afferents that fired during the rising phase of a twitch contraction of the triceps surae muscle when the triceps surae nerves were electrically stimulated were designated group Ib, while those that paused were classified as spindle afferents (Ia, I<sub>un</sub>, II). Group II afferents are identified by a lack of 1-to-1 response to 80µm vibration at 100 Hz, and little to no history dependence when stretched by successive triplets of triangular stretches (3mm, 4mm/s). Both Ia and I<sub>un</sub> have 1-to-1 fidelity to vibration and have a significant history dependence. When presented with ramp-hold-release stretches (3mm at 20mm/s, 1 second hold), Ia muscle afferents respond with an initial burst of high-frequency firing (>100pps) at the onset of muscle stretch. Muscle afferents that did not have an initial burst were identified as I<sub>un</sub>.

## Classification of Cutaneous Afferents

Slowly adapting type I (SAI: Merkel corpuscles; Fig 4c) respond to constant stimuli with high coefficient of variance (CoV) inconsistent firing pattern throughout the entire hold phase while type II (SAII: Ruffini endings; Fig 4d) fire regularly (low CoV) throughout the hold phase. Rapidly adapting Meissner corpuscles (RA; Fig 4a) and Pacinian corpuscles (PC; Fig 4b) respond with brief firing at the onset of the stimuli lasting no more than 2 seconds and respond 1-to-1 to vibration. Meissner corpuscles are differentially identified by an additional short burst of firing during the release phase of the stimuli.

## **Supplemental Figures**

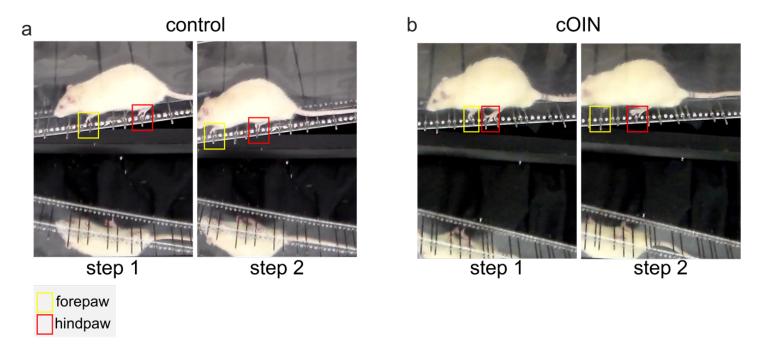
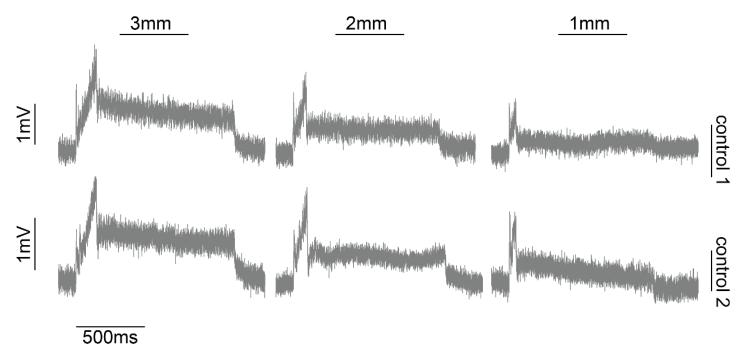




Figure S1. Grasp performance in skilled sensorimotor task altered by cancer treatment. Representative photographs show two fore- and hindpaw placements during skilled ladder rung walking with double image (simultaneous side and underneath views) of control (a) and cOIN (b). Fore- and hindpaw placements outlined in yellow and red respectively emphasize the fine motor skill (grasp) interaction between each paw and its associated rung. Note splayed paw strategy is adopted by cOIN rats in both the hind- and forepaws.



**Figure S2. Linear effects of reducing stretch amplitude.** Representative intracellular average synaptic potentials recorded in response to 3mm, 2mm, and 1mm stretch of the triceps surae muscle in two control rats.

# **Supplemental Tables**

| Functional Cluster | Definition                                                                                       |
|--------------------|--------------------------------------------------------------------------------------------------|
|                    | Sensitivity/Threshold Functional Cluster                                                         |
| Thr.L3             | Length at which 1st action potential is detected on the 3rd slow ramp (mm)                       |
| Thr.L              | Length at which 1st action potential is detected on the fast ramp (mm)                           |
| Thr.T1             | Time at which 1st action potential is detected on the 1st slow ramp (ms)                         |
| Thr.F3             | Muscle tendon force at which 1st action potential is detected on the 3rd slow ramp (dN)          |
| Thr.F1             | Muscle tendon force at which 1st action potential is detected on the 1st slow ramp (dN)          |
| Thr.T              | Time at which 1st action potential is detected on the fast ramp (ms)                             |
| Thr.F              | Muscle tendon force at which 1st action potential is detected on the fast ramp (dN)              |
| Thr.L1             | Length at which 1st action potential is detected on the 1st slow ramp (mm)                       |
| Thr.T3             | Time at which 1st action potential is detected on the 3rd slow ramp (ms)                         |
|                    | Dyamic Signaling Functional Cluster                                                              |
| Dyn.slp1           | Slope of instantenous firing rate during the 1st slow ramp                                       |
| Dyn.pfr1           | Peak firing rate achieved during the 1st slow ramp (Hz, pps)                                     |
| Dyn.spkNum         | Number of action potentials (spikes) during the fast ramp (#)                                    |
| Dyn.DI             | Difference between the peak dynamic firing rate and the static firing rate during half hold (Hz) |
| Dyn.spkNum3        | Number of action potentials (spikes) during the 3rd slow ramp (#)                                |
| Dyn.F              | Peak dynamic force                                                                               |
| Dyn.slp3           | Slope of instantenous firing rate during the 3rd slow ramp                                       |
| Dyn.spkNum1        | Number of action potentials (spikes) during the 1st slow ramp (#)                                |
| Dyn.IB             | Peak instantaneous high-frequency firing rate achieved immediately after stimulus (Hz)           |
| Dyn.slp            | Slope of instantenous firing rate during the fast ramp                                           |
| Dyn.IFRdrop        | Drop in instantaneous firing rate after the release on the slow ramps (Hz, pps)                  |
| Dyn.pfr3           | Peak firing rate achieved during the 3rd slow ramp (Hz, pps)                                     |
| Dyn.pfr            | Peak firing rate achieved during the fast ramp (Hz, pps)                                         |
|                    | Static Signaling Functional Cluster                                                              |
| Stat.mSfr          | Instantenous firing rate midway through the static hold (Hz, pps)                                |
| Stat.afr           | Average firing rate during the static hold (Hz, pps)                                             |
| Stat.HzSTD         | The standard deviation of instantaneous firing rate during the static hold                       |
| Stat.LSpkF         | The muscle force at which the last action potential occurs during the static hold (dN).          |
| Stat.slp           | Slope of instantenous firing rate during the static hold.                                        |
| Stat.LspkT         | The time at which the last action potential occurs during the static hold (ms).                  |
| Stat.HzEnd         | Instantenous firing rate during at the end of the static hold (Hz)                               |
| Stat.spkNum        | Number of action potentials (spikes) during the static hold (#)                                  |
|                    | History Dependence Functional Cluster                                                            |
| HxDep.RDR          | Difference between the number of action potentials (spikes) in the 1st and 3rd slow ramp         |

**Supplemental Table 1: List of Neuronal Encoding Parameters** Measured and derived parameters were computed offline. Letters in the left column indicate the specific parameters included in analyses for each functional feature cluster. Thr: threshold (9 parameters); Dyn: dynamic (13 parameters); Stat: static (8 parameters); HxDep: history-depen-dent (1 parameter).

|             | Group lun       |         |              |         | Group la |              |                     | Group ib |                  |          |               | Group II |                 |         |               |         |
|-------------|-----------------|---------|--------------|---------|----------|--------------|---------------------|----------|------------------|----------|---------------|----------|-----------------|---------|---------------|---------|
|             | Control(n = 19) |         | cOIN (n = 5) |         | Cont     | rol (n = 11) | = 11) cOIN (n = 10) |          | Control (n = 14) |          | cOIN (n = 14) |          | Control(n = 17) |         | cOIN (n = 14) |         |
| Variable    | mean            | sd      | mean         | sd      | meai     | sd           | mean                | sd       | mean             | sd       | mean          | sd       | mean            | sd      | mean          | sd      |
| Dyn.DI      | 106.721         | 34.664  | 84.375       | 31.222  | 120.2    | 8 42.871     | 108.851             | 37.617   | 68.414           | 26.731   | 26.990        | 31.755   | 61.284          | 19.312  | 38.342        | 21.432  |
| Dyn.F       | 248.809         | 94.763  | 143.334      | 26.355  | 185.5    | 7 85.920     | 150.635             | 25.126   | 286.545          | 51.476   | 265.065       | 89.830   | 156.710         | 75.989  | 186.481       | 59.955  |
| Dyn.IB      | 0.000           | 0.000   | 0.000        | 0.000   | 282.6    | 0 47.511     | 76.124              | 161.851  | 0.000            | 0.000    | 0.000         | 0.000    | 0.000           | 0.000   | 0.000         | 0.000   |
| Dyn.lFRdrop | 72.856          | 38.229  | 65.097       | 34.126  | 86.41    | 2 34.436     | 82.523              | 26.593   | 23.913           | 16.404   | 60.004        | 63.185   | 29.611          | 25.987  | 51.410        | 74.347  |
| Dyn.pfr     | 173.788         | 32.362  | 103.325      | 30.795  | 203.10   | 0 52.362     | 134.274             | 13.306   | 145.776          | 50.533   | 40.781        | 43.925   | 127.929         | 22.048  | 72.083        | 36.717  |
| Dyn.pfr1    | 131.930         | 19.846  | 73.429       | 29.210  | 150.5    | 7 39.368     | 107.618             | 24.640   | 149.606          | 43.729   | 53.725        | 35.024   | 102.294         | 33.539  | 64.590        | 24.136  |
| Dyn.pfr3    | 134.156         | 30.467  | 61.897       | 41.942  | 137.50   | 6 53.580     | 99.154              | 19.367   | 136.603          | 41.454   | 41.594        | 37.309   | 95.995          | 36.802  | 54.436        | 27.127  |
| Dyn.RDR     | 20.684          | 4.460   | 7.000        | 1.414   | 24.63    | 6 8.732      | 14.100              | 4.654    | 7.643            | 3.319    | 2.500         | 2.139    | 17.471          | 7.019   | 5.786         | 6.387   |
| Dyn.slp     | 1459.368        | 613.347 | 1641.300     | 800.827 | 929.9    | 9 454.994    | 1373.122            | 559.972  | 2144.717         | 1210.637 | 336.439       | 514.782  | 700.222         | 293.248 | 777.857       | 527.275 |
| Dyn.slp1    | 142.075         | 33.073  | 189.731      | 75.123  | 124.50   | 6 62.945     | 160.040             | 99.853   | 259.762          | 204.570  | 267.735       | 230.167  | 87.295          | 36.934  | 139.414       | 104.496 |
| Dyn.slp3    | 213.729         | 54.577  | 225.448      | 155.631 | 206.5    | 1 104.425    | 250.559             | 107.541  | 377.859          | 119.671  | 202.510       | 183.990  | 147.042         | 77.572  | 135.779       | 103.031 |
| Dyn.spkNum  | 13.118          | 2.634   | 4.650        | 1.167   | 18.76    | 5 4.681      | 9.900               | 2.846    | 7.982            | 3.148    | 2.000         | 1.724    | 11.544          | 2.210   | 5.232         | 2.773   |
| Dyn.spkNum1 | 60.632          | 13.022  | 15.600       | 6.269   | 72.72    | 7 25.710     | 35.600              | 11.928   | 33.929           | 15.051   | 7.214         | 6.963    | 48.176          | 16.775  | 17.429        | 11.407  |
| Dyn.spkNum3 | 39.421          | 11.544  | 8.600        | 6.542   | 48.09    | 1 18.075     | 21.500              | 7.920    | 26.286           | 13.708   | 4.786         | 5.177    | 30.941          | 12.372  | 11.643        | 6.464   |
| Statafr     | 73.845          | 17.293  | 46.481       | 14.018  | 93.98    | 3 22.025     | 67.595              | 15.430   | 87.788           | 30.889   | 42.302        | 32.968   | 73.186          | 19.631  | 38.537        | 21.341  |
| Stat.HzEnd  | 49.147          | 25.938  | 12.295       | 16.902  | 73.47    | 3 21.462     | 24.021              | 26.600   | 62.881           | 35.723   | 9.961         | 20.804   | 56.869          | 21.535  | 23.439        | 20.379  |
| Stat.HzSTD  | 27.233          | 9.689   | 31.255       | 12.774  | 29.84    | 8 10.449     | 35.689              | 11.719   | 26.674           | 9.147    | 14.277        | 13.833   | 19.033          | 5.649   | 14.778        | 7.737   |
| StatLSpkF   | 116.256         | 37.971  | 110.128      | 21.709  | 122.50   | 3 37.486     | 120.709             | 22.602   | 166.044          | 56.972   | 149.076       | 44.766   | 110.750         | 40.702  | 105.391       | 17.930  |
| StatLSpkT   | 985.249         | 25.929  | 497.852      | 287.828 | 991.4    | 7 20.820     | 723.291             | 365.624  | 990.376          | 15.271   | 316.842       | 424.390  | 994.735         | 4.863   | 906.598       | 255.568 |
| StatmSfr    | 65.265          | 22.808  | 19.925       | 17.720  | 82.92    | 9 20.830     | 34.777              | 23.414   | 75.542           | 31.507   | 13.056        | 24.453   | 66.645          | 19.956  | 32.913        | 20.899  |
| StatsIp     | -58.453         | 24.069  | -195.385     | 78.233  | -59.42   | 4 26.099     | -289.610            | 459.055  | -61.811          | 19.554   | -51.033       | 91.542   | -44.305         | 10.340  | -31.413       | 13.712  |
| StatspkNum  | 64.386          | 19.589  | 16.533       | 14.569  | 85.63    | 6 21.791     | 36.800              | 23.270   | 79.946           | 32.037   | 14.125        | 25.074   | 67.985          | 20.613  | 33.393        | 21.055  |
| Thr.F       | 17.587          | 6.942   | 41.439       | 22.570  | 9.85     | 3.541        | 20.620              | 12.152   | 47.862           | 38.890   | 96.394        | 73.011   | 11.025          | 3.446   | 31.605        | 30.085  |
| Thr.F1      | 11.957          | 9.782   | 49.010       | 15.315  | 7.14     | 5.971        | 21.709              | 18.454   | 66.416           | 37.164   | 121.697       | 77.400   | 8.150           | 5.635   | 41.641        | 40.607  |
| Thr.F3      | 31.059          | 11.770  | 78.010       | 41.566  | 19.44    | 2 10.939     | 37.722              | 14.722   | 83.461           | 34.873   | 126.476       | 92.659   | 17.647          | 12.343  | 47.445        | 37.408  |
| Thr.L       | 0.506           | 0.345   | 1.378        | 0.729   | 0.090    | 0.037        | 0.648               | 0.490    | 1.010            | 0.690    | 1.859         | 1.042    | 0.159           | 0.118   | 0.887         | 0.815   |
| Thr.L1      | 0.207           | 0.220   | 1.695        | 0.347   | 0.14     | 0.247        | 0.719               | 0.631    | 1.373            | 0.651    | 2.199         | 0.752    | 0.176           | 0.236   | 1.078         | 0.832   |
| Thr.L3      | 1.008           | 0.380   | 2.332        | 0.418   | 0.83     | 0.406        | 1.482               | 0.347    | 1.780            | 0.365    | 2.135         | 0.967    | 0.759           | 0.428   | 1.443         | 0.579   |
| Thr.T       | 25.018          | 16.882  | 112.062      | 112.570 | 6.184    | 4.503        | 33.012              | 24.487   | 50.712           | 34.332   | 96.963        | 53.453   | 8.841           | 5.585   | 45.318        | 39.988  |
| Thr.T1      | 53.346          | 64.728  | 419.770      | 87.570  | 29.88    | 5 40.007     | 192.746             | 183.736  | 324.183          | 184.894  | 562.462       | 133.715  | 43.638          | 58.879  | 267.062       | 205.853 |
| Thr.T3      | 271.172         | 80.483  | 585.552      | 105.378 | 217.5    | 6 101.107    | 393.542             | 116.038  | 457.515          | 90.747   | 605.407       | 140.057  | 200.447         | 100.272 | 367.204       | 142.586 |

**Supplemental Table 2. Neuronal encoding parameters in control and cOIN.** Parameters describing various aspects of sensory encoding (n=31) outlined along the vertical axis together with the cell-type specific quantification by experimental group distributed along the horizontal axis. Values are presented in mean±SD.