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Supporting Information Text15

1. Performance under a correlated bivariate normal16

locCSN and oCSN return networks (CSNs) in which each edge is the value of a test statistic that can be used to reject the null17

of independence between two genes. These networks can be used for two-sample testing, and their average gives the fraction of18

cells for which the test is rejected, which may be used as an aggregate indicator of nonlinear co-expression.19

Fig. S2a shows the results of oCSN (1) and locCSN on data simulated from a correlated bivariate normal distribution,(
X
Y

)
∼ N(

(
0
0

)
,

(
1 ρ
ρ 1

)
)

where ρ = 0.4. For this example, the relationship between X and Y is the same for all cells, and thus the ideal test would20

reject the null of independent X and Y for all cells.21

We find that oCSN rejects the independence hypothesis for only 16% percent of the data points, while locCSN shows greater22

power, rejecting 55%. The lower power of oCSN in this example can be attributed to the choice of a fixed quantile range for23

the window used to estimate the marginal and joint densities. In particular, in areas of high density, where oCSN’s power is24

lowest, the window becomes extremely small (Fig. S2b). As a result, oCSN has good power to detect co-expression only for25

extreme points, while locCSN has good power over a greater range of expression values. Similar patterns can be found in Fig.26

S2c, which shows that locCSN chooses a constant window size for correlated Gaussian data, and in Fig. S2d, which shows27

p-values computed by oCSN and locCSN for correlated normal data with ρ ranging between 0.1 and 0.9.28

Fig. S1. (a) Adapted from Dai et al.(1, Figure 1A). Scatterplots of gene expression levels for gene pairs (x, y) and (w, z), showing regions of high and low density (red and
blue) compared to the product of the marginal densities, with corresponding CSN edges or non-edges for these gene pairs highlighted for two cells i and j. The connection
between gene pairs are different across cells. (b) Standard deviation derived window size for one cell. The first scatter plot shows the quantile derived window for gene y,
wy = 2dy . With this window size, we calculate the standard deviation of gene x expression, using cells within this window size. We take the obtained standard deviation for
gene x as the window size for gene x, wx = 2s.d.(x). Second scatter plot shows the same thing as the first one with swapped x and y. Finally, we use the window size
derived from standard deviation for further calculation, that is wx = 2s.d.(x) and wy = 2s.d.(y).
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Fig. S2. CSN window size analysis. (a) Scatter plot of dataset simulated from normal distribution with ρ = 0.4. The left panel is colored by the test statistics calculated from
oCSN while the right panel is colored by the test statistics calculated from locCSN. (b) Scatter plot of the same dataset simulated from normal distribution. The left panel shows
the 10% quantile window bands for a data point in the center. Dark gray shows points selected by gene x band or gene y band. Black shows points selected by both gene x
and gene y bands. Light gray indicates points that are not selected by either bands. The right panel shows the scatter plot of the same dataset, window bands are derived from
standard deviations. (c) Plots of Window sizes derived from quantile and standard deviation for normal distribution with different correlation ρ. The x-axis is the data point
position and the y-axis is the window size. Different color shows window sizes derived from quantile or standard deviation under different correlations. (d) p-values of test
statistic found using quantile or standard devatiation window sizes, under different correlations.
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2. Simulations study of CSN parameters29

The choice of parameters influence the CSN performance. Using different connection strength and expression levels between30

genes, we study how different window size and threshold affect CSN performance. We simulated datasets from ESCO (2) with31

two different settings: 1. True counts without technical noise; 2. Counts with technical noise.32

True counts without technical noise. Simulation results are generated from ESCO with a single cell group. There are 200 cells33

and 100 genes. The code to reproduce this simulation is here: code. The gene-gene correlation matrix exhibits block structure34

of the form (Fig. S3a), or equivalently has off-diagonal entries for the 6 blocks given by the matrix35


0.9 0.7 0.5 0.3 0.1 0
0.7 0.9 0.7 0.5 0.3 0
0.5 0.7 0.9 0.7 0.5 0
0.3 0.5 0.7 0.9 0.7 0
0.1 0.3 0.5 0.7 0.9 0
0 0 0 0 0 0

 ,36

where the first 5 blocks have 15 genes each, and the 6’th block has 25 genes that are independent from all others.37

CSN are performed on log-transformed CPM with ESCO simulated read counts data. Fig. S3c and d shows histograms of38

the CSN test statistic for gene pairs as a function of their correlation and the choice of window size, which was either a fixed39

quantile range (as suggested by (1)) of width 5%, 10%, 15%, or 20%; or else initialized to a fixed quantile range and then40

adapted using locCSN (resulting in “standard deviation window sizes”). We see that the test statistic is shifted for gene pairs41

that are highly correlated.42

Fig. S3. ESCO simulated single cell expressions without technical noise. (a) Heatmap of block structure in gene-gene correlation matrix used for ESCO simulation. (b) Gene
pairs used for task of classifying pairs with correlation ρ ≥ 0.5 vs ρ = 0. (c and d) Histogram of CSN test statistics. We exclude genes that are not expressed for all cells. The
x-axis shows the CSN test statistics and y -axis is the counts of test statistics. We separate different correlations ρ with rows and different window sizes are shown in columns.
(c) Histogram for quantile window sizes, 5%, 10%, 15% and 20%. (d) Histogram for standard deviation (SD) with starting window size at 5%, 10%, 15% and 20%.

For the same choice of window sizes, Fig. S4a-c show ROC and AOC for the task of discriminating gene pairs that are43

uncorrelated from those whose correlation is ≥ 0.5. 2100 genes pairs were randomly selected for this task, balanced between44

the two categories. The curves show that for this task, the standard deviation-based window sizes used by locCSN perform45

better than the fixed quantile range windows proposed by (1). Fig. S4g and h shows that the average CSN heatmaps using the46

standard deviation-based window size resemble the original connection matrix (Fig. S3a) more strongly that do those using47

the quantile-based window sizes.48
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Fig. S4. Evaluation of CSN test statistics from simulated dataset. (a-c) Evaluations of quantile window sizes. (a) ROC curve; (b) Accuracy (ACC) curve; (c) ACC curve with
threshold Z(1−α). The x-axis is 1 − α. (d-f) Evaluations of quantile window sizes. (d) ROC curve; (e) ACC curve; (f) ACC curve with threshold Z(1−α). The x-axis is 1 − α.
(g-h) Heatmaps of averaged CSN. Each panel shows averaged CSN for a specific window size. The threshold for having edges is α = 0.05. (g) Heatmaps of averaged CSN
for quantile windows; (h) Heatmaps of averaged CSN for standard deviation windows.

Counts with technical noise. To better represent single-cell dataset, which are extremely sparse, we use the down-sampling49

feature in ESCO to produce realistic simulated data. Increasing sparsity weakens the strength of connection in the observed50

datasets, so we use correlation matrices with stronger values to produce meaningful results. Simulation is again performed by51

ESCO with 200 cells and 100 genes. We study 2 scenarios:52

1. Strong connection: there are 4 blocks of genes, 25 genes each. Within each block, genes are highly correlated with53

ρ = 0.95. Genes from different blocks are independent (Fig. S5a);54

2. With weaker connection: same as above, but blocks 3 and 4 are not independent, and instead have a weaker correlation55

ρ = 0.5 (Fig. S6a).56

The parameters for ESCO simulation with down-sampling are set at lib.loc = 7 and alpha_mean = 0.7. lib.loc indicates the57

overall expression level of the datasets and alpha_mean controls the strength of down-sampling. 40%-50% of the simulated58

expression are zeros, which approximately corresponds to single-cell RNA-sequencing data with high depth for a particular59

cell-type. The code to reproduce two simulation scenarios is here: code.60

Fig. S5c-e and S6c-e show ROC curves and ACC for the task of discriminating gene pairs that are uncorrelated from those61

with positive correlation. Results show better performance when using locCSN compared to using fixed quantile window sizes.62
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We also show the heatmap of the average CSN (Fig. S5f and S6f), thresholded at α = 0.01 for strong connection scenario and63

at α = 0.05 for the weaker connection scenario.64

The two scenarios both support that standard deviation windows work better than quantile windows in terms of false65

discovery and accuracy. The simulation also suggests that the choice of threshold also depends on how true connections are66

defined. If we only consider strong connections (correlation > 0.9) as connected, we can use larger threshold. On the other67

hand, if we want to include medium strength connections (correlation ≥ 0.5) as connected, we can use the smaller threshold.68

Fig. S5. Evaluation of ESCO simulated dataset with strong connections and technical noise. (a) Heatmap of true correlation matrix; (b) Gene pairs used for classification task;
(c-e) Evaluation curves for quantile and standard deviation window sizes. (c) ROC curve; (d) ACC curve; (e) ACC curve with threshold Z(1−α). The x-axis is 1 − α. (f)
Heatmaps of averaged CSN with threshold at α = 0.01. Two panels indicate quantile window and standard deviation window.

Fig. S6. Evaluation of ESCO simulated dataset with weaker connections and technical noise. (a) Heatmap of true correlation matrix; (b) Gene pairs used for classification task;
(c-e) Evaluation curves for quantile and standard deviation window sizes. (c) ROC curve; (d) ACC curve; (e) ACC curve with threshold Z(1−α). The x-axis is 1 − α. (f)
Heatmaps of averaged CSN with threshold at α = 0.05. Two panels indicate quantile window and standard deviation window.

Comparison between Pearson’s correlation and CSNs. Using the same simulation with technical noise as above, we compare69

the empirical Pearson’s correlation matrix and the averaged CSNs to the true block-structured correlation matrix. CSNs are70

calculated using standard deviation window size and averaged CSNs are thresholded at α = 0.01 and α = 0.05. Fig. S7 shows71

the heatmaps of true and estimated matrices for two scenarios. In both scenarios, averaged CSN identifies the block structure72

of the true correlation matrix (A), as does the empirical Pearson’s correlation matrix.73

Surprisingly, in this example the averaged CSN not only identifies the simulated block structure, as would be expected74

of a useful measure of co-expression, but also estimates the true correlation more accurately than the empirical Pearson’s75

correlation in L1 norm, as can be seen in Table S1. While the average CSN is not designed to be an estimator of Pearson’s76
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correlation, apparently in this particular simulation the robustness of the averaged CSN to technical noise outweighs its bias in77

estimating this quantity.78

To give an intuitive example where such a phenomenon might possibly occur, consider a simple model where X and Y are79

random variables with identical marginal distributions (after centering and rescaling), where Y = X with probability p and is80

generated independently of X otherwise. In this case, it can be seen that the Pearson correlation of X and Y is equal to p, the81

fraction of data points for which X and Y are not independent – i.e., the fraction that should reject a local independence test82

analogous to locCSN or oCSN. In such a case, it might be possible that estimating the fraction p of non-independent points83

could be more accurate than generically estimating the Pearson correlation, particularly if the data has high noise.84

Table S1. Distances between true connection matrix and estimated matrices, measured by L1 norm.

Strong Connection With Weaker Connection
Average CSN (α = 0.05) 30.73 46.73
Average CSN (α = 0.01) 27.67 46.95

Pearson’s Correlation 37.66 50.42

Fig. S7. True correlations and estimates using either empirical correlation or average CSN. The first panel shows true correlations and the following 3 panels shows the
estimates. The second panel shows empirical Pearson’s correlation. The next two panels are the averaged CSN with threshold α = 0.01 and α = 0.05. (a) Strong
connections; (b) Weaker connections.
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Compare CSN with BigSCale correlation. Next we simulate data from ESCO, with 10000 genes and 2500 cells. We focus on85

125 housekeeping genes that are not correlated with each other. After down-sampling the read counts to weaken the signal,86

we compare BigSCale (3) and locCSN using metacells. With no correlation between genes, we should not detect connections87

between genes. From 2500 cells, we constructed 158 metacells and on average, there are 15 cells per metacell. The heatmaps of88

Pearson’s correlation of down-sampled and true read counts are shown in the first panel of Fig. S8f. The BigSCale correlation89

shows false positives between genes when there are no connection between genes. By contrast, average CSN with metacells90

shows no connection between genes.91

Fig. S8. Network estimation for two simulated cell-types. (a) UMAP from ESCO simulated gene expression. (b) Heatmap of Pearson’s correlations of genes, calculated ignoring
cell-types. (c) Heatmaps of Pearson’s correlations of genes, calculated independently for each cell-type. (d-e) Heatmaps of averaged CSN within cell-type, thresholded by
α = 0.95 quantile of standard normal distribution. (d) oCSN calculated ignoring cell-types. (e) locCSN calculated independently for each cell-type. (f) For a dataset simulated
using ESCO with no correlation between any genes, heatmaps of Pearson’s correlation, estimated BigSCale network and averaged locCSN.

8 of 25 Xuran Wang, David Choi and Kathryn Roeder



Fig. S9. Heatmap of averaged CSN calculated from Chu et al. dataset. (a) Heatmap of averaged CSN calculated from oCSN for DEC and NPC cell-type. The cut-off is
α = 0.05. (b-c) Heatmap of averaged CSN calculated from locCSN for DEC and NPC cell-type with different parameters. The column of panels shows different window sizes
= 0.05, 0.1 and 0.2 while the row of panels shows different cut-off α = 0.01, 0.05 and 0.1. (b) DEC cell-type. (c) NPC cell-type.
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3. CSN trajectory analysis of Developing Cortex Atlas dataset: data processing92

For the human brain cortex atlas data, we focus on 10 cell types from 4 samples for analysis, specifically the 6 neuron cell93

types: ExDp1, ExDp2, ExM, ExM-U, ExN and IP, plus 4 radial glia and progenitors (P) cell-types: vRG, oRG, PgS and94

PgG2M. Metacells are constructed sample by sample and within a subtype. Based on Fig. 3, ExDp1 and ExDp2 cell-types are95

combined as ExDp and the 4 radial glia and progenitors cell-types as P for further analysis (ExDp are subsequently partitioned96

at a later stage of analysis). Table S2 shows the number of cells and metacells for 7 major cell-types: P, IP, ExN, ExM, ExM-U97

and ExDp.98

Prior to CSN construction along the curve, we generate metacell bins based on pseudotime of the curve within each cell-type.99

Each bin contains around 800 metacells, which are relatively homogeneous; however, for each cell-type, some metacells are100

deemed outliers based on their pseudotime scores. We retain metacells whose pseudotime are within 2 standard deviations of101

the mean within the bin. These are the cells that will be utilized for CSN construction. The number of bins used for each102

cell-type, and number of metacells (before and after outlier screening) are listed in Table S3. Since there are only 58 metacells103

for ExM-U in the leftmost curve, we ignore this cell-type for the D-Curve analysis. This cell-type properly belongs in the104

U-curve analysis. Table S3 shows the overlapping of metacells for the two curves. P metacells are shared across both curves.105

IP and ExN metacells are largely shared between the two curves. The split in trajectories occurs during development of the106

ExM cell-type, which show considerably less overlap of metacells between the two curves.107

Table S2. Number of cells and metacells in cell-types.

Cell-type P IP ExN ExM ExM-U ExDp
Number of cells 4204 2150 9995 9822 1756 2205

Number of metacells 720 574 2759 2415 424 271

Table S3. Number of metacells in two curves for 6 cell-types. Before and after removal of pseudotime outliers. The overlap between two
curves

Curves D-Curve U-Curve
Cell type P IP ExN ExM ExM-U ExDp P IP ExN ExM ExM-U
Number of metacells 720 574 2451 1604 58 265 720 569 1913 1189 335
Remaining metacells 720 559 2373 1488 0 262 720 531 1804 1097 324
Overlapped metacells 720 521 1779 422 0 0 720 521 1779 422 0
Number of bins 1 1 3 2 0 1 1 1 3 2 1

D-Curve
cluster 1 cluster 2 cluster 3 cluster 4 Total

U-Curve

cluster 1 52∗ 0 5 0 70
cluster 2 2 73∗ 9 30 160
cluster 3 0 9 86∗ 13 127
Total 59 103 111 47

Table S4. Number of genes in gene communities of D-curves and U-curve. The rows indicate 3 gene clusters from U-curve and the columns
show 4 gene clusters from D-curve. The “total” row and column show the total number of genes in each gene cluster. The intersect between
U-curve gene clusters and D-curve gene clusters are shown in each row and clusters. The sum of number of overlapped genes does not sum
to the total number of genes because some genes are not clustered in both trajectories. ∗ indicates two clusters in D-Curve and U-Curve
have a strong overlap with each other.
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Figure S10(a)(b) shows average CSN networks as heatmaps for bins ExN_pt2 and ExN_pt3 in D-curve and U-curve, along108

with flows showing the movement of genes between the communities as taken from the Sankey plots in Fig. 3. Community 1 can109

be seen to have greater density of connections; this is also shown in Figure S10(c)(d), which shows the density of connections110

for all 8 bins comprising the trajectory, also reveals differences in connection density for communities 2, 3, and 4, which may111

not be visible in the heatmaps shown in S10(a)(b).112

Fig. S10. (a and b) Sankey plots of gene flows from ExN_pt2 to ExN_pt3, with heatmaps showing average CSNs for both stages (a) D-Curve. (b) U-Curve. (c and d) Heatmaps
showing average connections within and between each cluster throughout entire developmental trajectory. (c) D-curve. (d) U-curve. Color scales were chosen to show contrast
between non-dense clusters 2, 3, and 4.

Figure S11 shows boxplots of averaged metacell gene expression. Clusters 2, 3, and 4, which were separated into clusters113

based on their differing levels of co-expression as shown in Fig. S10, have lower levels of expression compared to cluster 1.114

Fig. S11. Boxplots of averaged metacell gene expression for 8 pseudotime bins in the final 4 and 3 clusters for the D-curve (a) and U-curves (b), respectively. The x-axis shows
pseudotime bins and y-axis shows the averaged expression.

Fig. S12 shows that the WGCNA algorithm fails to detect gene modules in either the ExDp or ExM-U cell-types, when115

Pearson’s correlation matrices for gene expression is used as input to WGCNA. There are 441 genes and 262 metacells for116

ExDp and 440 genes for 324 metacells for ExM-U. This result contrasts with the module structure discovered using CSN data117

as input to PisCES (Fig. S10).118
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Fig. S12. Gene modules generated from Pearson’s correlations using WGCNA. (a) ExDp from D-curve; (b) ExM-U from U-curve. (c) power selection plots for ExDp from
D-curve: power = 2. (d) Power selection plots for ExM-U from U-curve: power = 4.

Fig. S13. Revigo treemap GO terms for gene clusters in D-curve and U-curve. (a) D-curve cluster1 (dense cluster); (b) U-curve cluster1 (dense cluster); (c) D-curve cluster2;
(d) U-curve cluster2; (e) D-curve cluster4.
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4. Gene Ontology (GO) term treemap119

The Gene Ontology (GO)(4) describes our knowledge of the biological domain with respect to three aspects: Molecular function.120

Cellular component and Biological process. In this paper, we focus on biological process. The p-values for GO terms indicate121

enrichment of the selected gene list in a GO category. Using all ASD genes as the gene universe, an FDR adjusted p < 0.01122

was considered to be statistically significant. GO treemaps are created by REVIGO with default setting (5) and the areas in123

GO treemaps indicate the absolute log10 p-value of GO terms.124
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5. CSN analysis of ASD Brain dataset: data processing125

The ASD brain dataset (6) consists of single-nuclei RNA-seq measured from 41 samples (22 ASD and 19 controls) from126

human brains. The authors classify the ASD brain dataset to 17 cell-types: fibrous astrocytes (AST-FB), protoplasmic127

astrocytes (AST-PP), endothelial (End), parvalbumin interneurons (IN-PV), somatostatin interneurons (IN-SST), SV2C128

expressing interneurons (IN-SV2C), VIP expressing interneurons (IN-VIP), upper-layer excitatory neurons (L2/3), layer129

4 excitatory neurons (L4), deep layer cortico-subcortical excitatory projection neurons (L5/6), Deep-layer cortico-cortical130

excitatory projection neurons (L5/6-CC), microglia (Mic), immature neurons (Neu-mat), neurogranin expressing neurons I131

(Neu-NRGN-I), neurogranin expressing neurons II (Neu-NRGN-II), oligodendrocytes (Oligo) and oligodendrocyte precursor132

cells (OPC) (6). For our analysis, we merge some cell subtypes together depending on whether the cell-types are distinct in the133

tSNE plot (Fig. S14a and S15). For instance, the AST* cell-types are merged into one cell-type, while the L* cell clusters are134

distinct and analyzed individually (Fig. S14b).135

To circumvent challenges due to sparse counts, which are especially prevalent in single-nuclei RNA-seq data, we cluster136

similar cells and form metacells (7). To avoid batch effects, metacells are created within a sample and cell-type (Table S7). We137

merged AST-*, IN-*, L* and Neu* together as broad cell-type for the summary of the number of metacells (Table S6). The138

number of metacells in each cell-type are shown in Table S7. Within a cell-type, some metacells exhibited heterogeneity that139

was poorly delineated into clusters. For each metacell within a cell-type, we constructed CSNs using the nearby 100 metacells140

from UMAP plot of the combined ASD and control cells (Fig. S16).141

For broad cell-type AST, In, L and Neu, more than one original cell-type is included within the broad cell-types. We then142

determine, based on heterogeneity of cells, whether to analyze the cells within a broad cell-type or within a more refined143

cell-type. Numbers of metacells in each original cell-type are presented in Table S7. From the UMAP and tSNE plot, we144

decide to analyze AST as a broad cell-type without division. We divide IN broad cell-type into 2 major cell types (IN-SV2C +145

IN-VIP) and (IN-SST+IN-PV), the L broad cell type is divided into 4 cell-types: L2/3, L4, L5/6, and L5/6-CC and Neu into 2146

cell-types Neu-mat and (Neu-NRGN-I + Neu-NRGN-II) (Fig. S15). Cell-types can be analyzed at different levels depending147

on heterogeneity of the cells and available sample sizes. The original data were partitioned into 17 original cell-types, which148

spanned 8 broad cell-types. Based on separation of clusters, we performed our analysis on a compromise partition resulting in149

13 cell groups, which we refer to as cell-types hereafter. The relationship between the various partitions of cell clusters is shown150

in Table S5. Metacells for cell-types are shown in Table S7.151

Table S5. Relation between 17 original cell-types, 8 broad cell-types and the 13 cell-types we feature in our analysis.

Broad cell-type AST End IN Oligo Mic
Cell-type AST End IN-PV,SST IN-VIP,SV2C Oligo Mic

Original cell-type AST-FB AST-PP End IN-PV IN-SST IN-SV2C IN-VIP Oligo Mic
Broad cell-type Neu L OPC

Cell-type Neu-mat Neu-NRGN L2/3 L4 L5/6 L5/6-CC OPC
Original cell-type Neu-mat Neu-NRGN-I Neu-NRGN-II L2/3 L4 L5/6 L5/6-CC OPC

Table S6. The number of metacells for samples and broad cell-types. ∗ indicates the ASD sample while others are the control samples.

sampleID 1 2 3 4∗ 5∗ 6∗ 7 8 9∗ 10∗ 11∗ 12∗ 13 14 15∗ 16 17∗ 18∗ 19∗ 20 21 22∗

AST 4 18 13 17 18 24 5 13 12 31 8 15 21 10 21 15 11 17 33 29 16 23
End 1 10 9 3 5 4 4 4 4 3 2 7 23 8 1 2 1 5 5 1 11 5
IN 13 36 30 33 26 23 29 11 15 27 14 22 60 19 7 19 17 16 34 27 27 38
L 9 58 69 49 50 22 15 22 30 55 25 39 148 61 14 36 40 15 45 44 48 65
Mic 2 2 6 2 1 11 2 5 2 9 9 8 9 0 2 10 3 4 7 5 9 2
Neu 13 43 34 69 65 8 26 50 25 14 29 33 100 24 5 29 15 13 28 19 133 33
Oligo 11 28 54 40 7 24 1 66 19 5 28 22 21 18 5 16 27 3 7 51 17 8
Opc 7 18 20 15 17 11 9 9 6 22 10 10 39 8 13 18 17 8 17 14 11 19
sampleID 23∗ 24 25∗ 26∗ 27 28 29 30 31∗ 32∗ 33∗ 34 35 36 37∗ 38∗ 39 40∗ 41∗ Ctl ASD
AST 18 29 32 17 14 14 14 25 17 28 26 6 6 5 16 5 21 17 19 AST 278 425
End 3 4 8 1 4 11 3 1 3 4 3 1 2 1 4 2 2 1 1 End 102 75
In 27 21 40 21 16 31 19 18 18 32 18 26 25 17 33 11 27 6 13 In 471 491
L 47 58 84 46 30 42 44 22 24 85 49 36 48 19 30 20 33 39 63 L 842 936
Mic 3 9 15 2 13 8 9 9 0 3 7 3 2 0 2 0 2 1 1 Mic 105 94
Neu 29 62 75 28 13 40 20 17 21 27 10 28 22 18 19 8 13 16 27 Neu 704 597
Oligo 7 50 49 5 16 8 72 14 1 8 23 45 13 1 3 7 2 9 3 Oligo 504 310
Opc 14 12 26 9 10 8 12 14 11 12 13 16 9 8 16 9 19 14 11 Opc 261 300
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Table S7. Number of metacells for 13 cell-types.

#metacell AST End IN-VIP,SV2C IN-PV,SST L2/3 L4 L5/6 L5/6-CC Mic Neu-mat Neu-NRGN Oligo OPC
Control 278 102 238 253 414 238 107 177 105 244 353 504 261

ASD 425 75 265 206 358 211 109 164 94 235 469 310 300
Total 703 177 503 459 772 449 216 341 199 479 822 814 561

Table S8. Number of DN genes that are ASD genes, markers genes and housekeeping genes (HKG).

Leverage genes L2/3 L4 L5/6 L5/6-CC DN L2/3 L4 L5/6 L5/6-CC
Total 92 94 106 89 Total 31 31 29 31
ASD 60 89 102 87 ASD 19 31 28 31

Marker 10 4 3 2 Marker 4 0 1 0
HKG 22 1 1 0 HKG 8 0 0 0

Table S9. p-values from sLED-CSN, sLED-Pearson and DISTp for all 13 cell-types. ∗ indicates significant difference (p-value < 0.0038) after
adjusted for multiple testing. The leverage genes are the non-zero entries of the sparse leading eigenvector. We only provide DN genes for
significant cell-types, corresponding to genes that explain 90% of the variability among the leverage genes.

P-values AST End IN-VIP,SV2C IN-PV,SST Mic Oligogo OPC
sLED-CSN 0.001∗ 0.474 0.001∗ 0.001∗ 0.125 0.001∗ 0.001∗

sLED-Pearson 0.024 0.243 0.376 0.654 0.680 0.315 0.030
DISTp 0.023 0.815 0.002 0.010 0.294 0.051 0.001∗

leverage genes 122 103 95 69 83 80 76
DN genes 26 NA 26 26 NA 28 27
P-values L2/3 L4 L5/6 L5/6-CC Neu-mat Neu-NRGN

sLED-CSN 0.001∗ 0.001∗ 0.001∗ 0.001∗ 0.022 0.002∗

sLED-Pearson 0.089 0.861 0.564 0.348 0.341 0.174
DISTp 0.001 0.039 0.001∗ 0.001∗ 0.256 0.002∗

leverage genes 79 112 89 87 146 110
DN genes 27 26 24 27 NA 26

Table S10. p-values from sLED-CSN after removing DN genes. The removal is for the 10 cell-types with significant signal in the original
analysis (Table S9). ∗ indicates significant difference (p-value < 0.005) after adjustment for multiple testing.

Cell-type AST IN-PV,SST IN-VIP,SV2C Neu-NRGN Oligo OPC L2/3 L4 L5/6 L5/6-CC
DN 26 26 26 26 28 27 27 26 24 27

P-value 0.074 0.023 0.006 0.474 0.109 0.001∗ 0.001∗ 0.050 0.012 0.040

Table S11. Numbers of ASD differentially expressed (DE) genes and DN genes

cell-type AST IN-VIP,SV2C IN-PV,SST Oligogo OPC
SFARI DE genes 12 18 11 0 1

DN genes 26 26 26 28 27
cell-type L2/3 L4 L5/6 L5/6-CC Neu-NRGN

SFARI DE genes 16 17 1 2 5
DN genes 27 26 24 27 26
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Fig. S14. Dimension reduction of brain cells. (a) tSNE plot of all brain cells colored by cell-types. (b) UMAP plot of Neuron Layers(L) cells colored by 4 cell-types.

Fig. S15. Dimension reduction of 4 broad cell-types, colored by the author defined cell-type labels. (a) astrocytes(AST); (b) interneurons(IN); (c) neuron layers(L); and (d)
neurons(Neu);

Fig. S16. UMAP of metacell expressions for 13 cell-types.
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Fig. S17. Heatmaps of average CSNs and difference of average CSN between Control and ASD samples. The heatmaps display sLED-CSN DN genes and an additional 30
randomly selected genes from 942 ASD genes. Genes are ordered for each cell-type for display. The DN genes are outlined in black. The green heatmaps show the averaged
CSN for control and ASD groups and the red/blue heatmaps show the difference between averaged CSN between control and ASD groups (ASD group minus Control group).
(a) L2/3; (b) L4; (c) L5/6; (d) L5/6-CC; (e) AST; (f) IN-PV,SST; (g) IN-VIP,SV2C; (h) Neu-NRGN; (i) Oligodendrocytes; (j) OPC.
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Fig. S18. Gene networks for DN genes in the excitatory neuron layers. The networks are generated from averaged CSN of control and ASD groups: (a) L2/3; (b) L4; (c) L5/6
;and (d) L5/6-CC.
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In general, DN genes tend to have relatively large variance and DE genes have relatively large mean; and for some cell-types152

ASD samples are significantly more variable than control samples.153

Fig. S19. Variance and mean of gene expression of the 942 SFARI (Simons Foundation Autism Research Initiative) genes in the 10 cell-types with significant sLED-CSN signal.
(a-b) Scatter plots of the variance and mean of gene expression, with x-axis showing the log-transformed values from control group and y-axis from ASD group. The genes are
displayed using red and blue to indicate differential network (DN) genes and differential expressed (DE) genes, respectively. (c) Boxplots of the variance of gene expression for
942 genes, with red and blue denoting control and ASD, respectively. (d) shows the same information for DN genes only.

Fig. S20. Revigo treemap GO terms for DN genes from 4 Neuron Layers. (a) DN genes selected from ASD genes generated CSNs; (b) DN genes selected from ASD and
negative control genes (marker genes and housekeeping genes (HKG)).
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6. Two sample testing154

Given i.i.d. samples of expression levels, the computed CSNs for a set of cells are exchangeable, and hence permutation testing155

can be used to test for differences in CSN distribution. For this purpose, we suggest two types of tests: first, an omnibus test156

for generic differences, and second, a targeted test, aimed at identifying high leverage genes that drive the difference.157

DISTp: Test CSN differences between groups. Each cell’s adjacency matrix can be represented as a vector by converting
matrices into vectors, resulting in N1 sample vectors from class 1 and N2 sample vectors from class 2. Let V (1)

1 , . . . , V
(1)

N1
denote

the vectorized adjacency matrices from class 1 and V (2)
1 , . . . , V

(2)
N2

denote the same from class 2. The test statistic Q is a scaled
q-norm divergence measurement, with q ∈ (0, 2) recommended(8), and is given by

Q(V(1),V(2);α) = 2
N1 +N2

N1∑
i=1

N2∑
j=1

|V (1)
i −V (2)

j |q

− N1N2

N1 +N2

(
N1
2

)−1 ∑
1≤i<i′≤N1

|V (1)
i −V (1)

i′ |
q

− N1N2

N1 +N2

(
N2
2

)−1 ∑
1≤j<j′≤N2

|V (2)
j −V (2)

j′ |
q,

with p-value calculated by permutation test.158

sLED: Identify differential network genes. The sLED test relies on the same principles as Sparse Principal Component Analysis159

(SPCA), and was originally proposed for the difference in the Pearson’s correlation matrices of the two classes (sLED-Pearson).160

Here we instead propose using the difference in the average CSN as the test input (sLED-CSN). Given N1 CSN adjacency161

matrices from class 1 and N2 from class 2, denoted by A(1)
1 , . . . , A

(1)
N1

and A(2)
1 , . . . , A

(2)
N2

, let D denote the difference between the162

average CSN for each class, so that D = Ā(1) − Ā(2). Then D can be used as the input to sLED, in which case the test statistic163

is computed from the spectrum of D. Additionally, the test also identifies a small cluster of leverage genes corresponding to164

the non-zero entries of the sparse leading eigenvector. The differential network genes are the ones that explain 90% of the165

variability among the leverage genes. These are candidate genes that have altered co-expression structure between the two166

groups. As with DISTp, the p-value of the test statistic is determined by permuting samples among cell classes.167
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Table S12. Notations and Definitions

Variable Definition
N , N1 and N2 number of cells (total, class 1 and class 2).
i, j index of cell: cell i and cell j.
G number of genes.
x, y index of gene: gene x and gene y.
wx, wy width of window for gene x and y.
Xjx gene expression of cell j and gene x.

B
(j)
x , B(j)

y , B(j)
xy one-dimensional bins for gene x at the expression level for cell j, with window wx; for gene y at expression level for cell j with

window wy ; B(j)
xy is the joint window.

n
(j)
x , n(j)

y and n(j)
xy number of cells in bins B(j)

x , B(j)
y and B(j)

xy .

ρ
(j)
xy local test statistics for independence of genes x and y.

σ
(j)
xy

2
asymptotic standard deviation.

t iteration in standard deviation window size calculation.

z
(j)
xy = ρ

(j)
xy /σ

(j)
xy normalized test statistics.for gene pair (x, y) and cell j.

Aj , A(1)
j Estimated adjacency matrix for cell j and for cell j in class 1.

a
(j)
xy Entry of Aj , gene pair (x, y) and cell j. a(j)

xy = 0 or 1.
α Standard normal tail quantile.
Z(1−α) reverse CDF (cumulative distribution function) of standard normal at 1 − α.

V (1), V (1)
i vectorized adjacency matrix for class 1 and for cell i in class 1.

q q-norm for DIST-p distance.
D the differences between average CSN for each class, D = Ā(1) − Ā(2).

Xuran Wang, David Choi and Kathryn Roeder 21 of 25



7. CSN analysis of liver dataset168

The dataset is from Ghazanfar et al. (9), which contains 447 cells that have been classified based on 3 developmental branches:169

Cholangiocyte (Cc), Hepatoblast(Hb) and Hepatocyte (Hc). Specifically, as Hb cells mature, the trajectory splits into two170

mature types: Hc and Cc. For analysis, we selected marker genes using Seurat (140 for Cc, 113 for Hb and 119 for Hc), the171

highly variable genes(HVG) provided by the scHOT analysis (9), and highly expressed genes (HEG). In addition to those genes,172

we included genes that are known for molecular regulation of hepatic architecture (10). The number of genes of each category173

are shown in Table S13.174

Table S13. Number of genes for analysis from Liver dataset.

Marker genes HVG HEG Regulatory genes Total
# genes 372 67 90 124 620

The expression of marker genes for cells from the 3 branches indicates that Cc has well defined marker genes that are quite175

different from the other two branches, whereas the markers for Hb and Hc show a smooth evolution in expression across cells,176

which were ordered by pseudo time (Figure S21). These results suggests that we should construct CSNs for Cc as a set, but177

for Hb and Hc we should pool the cells together and then compute CSN for each cell within this population of cells. Finally178

we wish to test if the gene networks for Cc, Hb and Hc differ. We use sLED to perform this test. With sLED-CSN all three179

pairwise comparisons are highly significant. With sLED-Pearson the comparisons are marginally significant, but the p-values180

are each smaller and the comparison between Cc and Hb does not survive the multiple testing correlation indicating CSN181

yields a more powerful test than Pearson’s (Table S14). Notably there is no intersect between regulatory genes and sLED-CSN182

selected leverage genes.183

Fig. S21. Heatmap of gene expression of 3 branches from Liver data. Rows correspond to genes: marker genes for Cc (black), Hb (red), Hc (green), HVG (navy), HEG (cyan)
and Regulation genes (magenta); and columns for branches, Cs (black), Hb (red) and Hc (green).

Table S14. Table for sLED analysis p-values.

sLED-CSN Cc Hb sLED-Pearson Cc Hb
Hb 0.001 . Hb 0.042 .
Hc 0.001 0.001 Hc 0.004 0.016

Table S15. Table of number of leverage genes and DN genes.

Leverage genes Cc-Hb Cc-Hc Hb-Hc DN genes Cc-Hb Cc-Hc Hb-Hc
Marker genes 54 51 82 Marker genes 18 17 15

HVG 2 1 0 HVG 0 0 0
HEG 11 11 9 HEG 3 3 0

Regulatory genes 0 0 0 Regulatory genes 0 0 0
Total 59 58 86 Total 18 18 15
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8. Runtime of locCSN184

The runtime of locCSN are provided below. Three different settings are simulated by ESCO (2) with different sizes of expression185

matrices (Table S16). For a large set of genes, for example Setting 3 with 1000 genes, parallel computing is recommended to186

speed up the process of generating CSNs. We also speed up our algorithm by an approximate CSN calculation, which partitions187

the outcome space for each pair of genes into a grid. Cells that fall into the same grid yield the same test statistic (called188

fuzzy). With these approximations CSN can be readily applied to large datasets with good accuracy Fig. S22.189

Table S16. Runtime of locCSN. Python 3.7.6 [MSC v.1916 32 bit (Intel)]

Setting 1 Setting 2 Setting 3 Setting 4
Number of genes 100 100 1000 10
Number of cells 200 500 200 10000
Number of expressed entries 13114 31065 39572 42978
Runtime 322.59s 1020.744s NA 1653.764 s
Speed-up 186.96s (fuzzy) 691.62s (fuzzy) 2260.15s (parallel) 234.230s (fuzzy)

Fig. S22. Comparison of test statistics from locCSN and its grid based (fuzzy) approximation. With the same simulation setting in Fig. S2a, we simulate bivariate normal
distribution with ρ = 0.4. The left panel is colored by test statistics calculated from locCSN while the right panel is colored by test statistics from locCSN fuzzy approximate.

Here we include the runtime for the real analysis. In our package locCSN: https://github.com/xuranw/locCSN, we also include190

Matlab version and the real data analysis are performed with Matlab R2016a (9.0.0.341360) 64-bit (glnxa64). Except for191

Chu et al. dataset, other dataset are calculated with parallel computing. On average, the converged pairs of genes will reach192

convergence after 8.5 iterations (95%:[5, 13] iterations).193

Table S17. Runtime of locCSN for real data analysis.

Datasets Chu et al. dataset Brain Cortex Atlas ASD Brain
# genes 51 444 942

# cells or metacells 138 (DEC), 173 (NPC) Table S3 Table S7
Runtime 27.39s (DEC), 13.08s (NPC) 55136.87s (D-curve), 40387.26 (U-curve) 6950.674s (average)

Speed-up No Parallel Parallel

9. Data summary194

Chu et al. dataset. Chu et al.(11) includes 1018 cells and seven cell-types. This dataset contained the cells of human embryonic195

stem cell-derived lineage-specific progenitors. The cell-types including H1 embryonic stem cells, H9 embryonic stem cells,196

human foreskin fibroblasts (HFF), neuronal progenitor cells (NPC), definitive endoderm cells (DEC), endothelial cells (EC)197

and trophoblast-like cells (TB) were identified by fluorescence-activated cell sorting (FACS) with their respective markers. 9600198

genes are obtained per cell on average.199

Developing Cortex Atlas dataset. Polioudakis et al.(12) includes cells from mid-gestational human cortex (17-18 gestational200

weeks). These data are derived from 33,986 cells from germinal zones (ventricular zone [VZ], subventricular zone [SVZ]),201

developing cortex (subplate [SP] and cortical plate [CP]) separated before single cell isolation. Using Drop-seq technology the202

average reads per cell was 52,000. Expression for 1049 genes was detected per cell.203

Autism Spectrum Disorder (ASD) Brain dataset. Velmeshev et al.(6) includes snRNA-seq data from an ASD study, which204

collected 105 thousand nuclei from cortical samples taken from 22 ASD and 19 control samples from subjects between 4 and 22205

years old. Samples were matched for age, sex, RNA integrity number, and postmortem interval.206
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Table S18. Data summary of single cell data for analysis. ∗ The code to reproduce this dataset is here: code.

Datasets ESCO Synthetic Chu et al. Brain Cortex Atlas ASD Brain
References Tian et al.(2020) (2) Chu et al.(2016) (11) Polioudakis et al.(2019) (12) Velmeshev et al.(2019) (6)
Tissue NA Human Embryonic Stem Cells Human fetal Brain Cortex Human brain
# cell 2000 1018 25,013 104,559
# cell-types 2 7 16 18
# genes 100 16,619 35,543 41,202
# genes for analysis 30 markers 51 developmental markers 444 expressed SFARI ASD

genes
942 expressed SFARI ASD
genes

Data Availability Github∗ GSE75748 Website PRJNA434002

10. Data Pre-processing Discussion207

Log2 transformed CPM datasets are preferred for locCSN analysis and are used for all simulations and real data analysis in208

this paper. As mentioned in the Discussion section, we found that CSN performed better when applied to metacells, which209

reduces the number of cells by at least an order of magnitude. It is often natural to reduce the genes under investigation by210

CSN to a meaningful subset, such as genes previously implicated in genetic risk, genes mapped to critical pathways, or highly211

variable genes. Restricting the investigation to a subset of genes greatly reduces the computational complexity of CSN analysis,212

but more importantly, it can reveal more scientifically interpretable results. For example, we focus on 51 developmental genes213

that are suggested by Chu et al.(11). The choice of cell type is also important for locCSN analysis. For mature cells, it is214

natural to cluster them by cell types. It is only for developing cells that a trajectory is the better choice. For instance, fetal215

brain cell types do not plot in distinct clusters in UMAP and they are more naturally ordered by pseudotime. A user would216

need to make this decision, but it is not a difficult one for a scientist to make in context of their study. To avoid batch effect,217

we create metacells for each subject, which reduced the effects from first moment shifts of the data. But when comparing cases218

and controls, we suggest aggregating all metacells/cells to perform locCSN to avoid confounding by phenotype.219
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SI Dataset S1 (Supplementary_Developing_Cortex_Atlas.xlsx)220

Developing Cortex Atlas data results. Tab1: Genes in 4 clusters of D-curves; Tab2: Genes in 3 clusters of U-curves; Tab3:221

List of expressed ASD genes; Tab4: GO terms for D-curve cluster 1; Tab5: GO terms for D-curves cluster 2; Tab6: GO terms222

for D-curve cluster 4; Tab7: GO terms for U-curve cluster 1; Tab8: GO terms for U-curve cluster 2; Tab9: Membership of223

genes in D-curve; Tab10: Membership of genes in U-curve; Tab11: Differences of membership between two curves.224

SI Dataset S2 (Supplementary_ASD_Brain.xlsx)225

ASD Brain data results. Tab1: Differential network (DN) genes in 10 significant cell-types; Tab2: Leverage genes in 10226

significant cell-types; Tab3: DN genes with marker genes and housekeeping genes for 4 neuron layers; Tab4: Leverage genes227

with with marker genes and housekeeping genes for 4 neuron layers.228
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