
 
 

1 
 

 
 
 
 
 
 
Supplementary Information for 
 
Specific hypomethylation programs underpin B cell activation in 
early multiple sclerosis 
 
 
Qin Ma1*, Stacy J. Caillier1, Shaun Muzic1, University of California San Francisco MS-EPIC 
Team1, Michael R. Wilson1, Roland G. Henry1, Bruce A.C. Cree1, Stephen L. Hauser1, 
Alessandro Didonna1, Jorge R. Oksenberg1* 

 

1Weill Institute for Neurosciences, Department of Neurology, University of California San 
Francisco, San Francisco, CA 94158, USA 
 
*Corresponding Author: Qin Ma, Jorge R. Oksenberg 
*Email: qin.ma@ucsf.edu, jorge.oksenberg@ucsf.edu 

 
This PDF file includes: 
 

SI Material and Methods 
SI References  
Figures S1 to S8  
Legends for Datasets S1 to S14 
Members of the University of California San Francisco MS-EPIC Team 

 
Other supplementary materials for this manuscript include the following:  
 

Datasets S1 to S14 
  



 
 

2 
 

SI Materials and Methods 

Subjects 

Peripheral blood was sampled by venipuncture from 29 multiple sclerosis (MS) patients and 24 
healthy controls recruited at the University of California San Francisco (UCSF) MS Center as part 
of the UCSF multiple sclerosis EPIC and ORIGINS studies. All patients were treatment naive (i.e., 
no glucocorticoids or disease-modifying MS therapy at any time prior to blood draw) and met 
clinical and radiographic diagnostic criteria for relapsing-remitting MS (RRMS). Individuals 
selected were all of white-western European ancestry, female, with no history of smoking 
(Dataset S3). Mean age at sample collection was 38 (range from 21 to 56), mean disease 
duration was 1.76 +/- 2.8 years and mean Expanded Disability Status Scale (EDSS) was 2.15 +/- 
0.74. Healthy controls were of white-western European ancestry, sex and age matched (mean 
age: 37, range: 22-58), with no history of autoimmune disease or smoking. The individuals are 
further divided into two datasets, the first cohort (17 MS patients and 12 healthy controls) was 
used for the analysis of CD4+, CD8+, CD14+ and CD19+ cells, whereas the second dataset was 
only used for the analysis of CD19+ cells. There was no significant difference in age between MS 
and control samples, and between two datasets (Wilcoxon test, P>0.1). There was no significant 
difference in EDSS at time of sample collection between two datasets (Wilcoxon test, P=0.77). 
On the other hand, 23.53% of patients in the discovery cohort displayed more than 20 brain 
lesions detected by the baseline MRI, whereas only 9.09% of patients in the second cohort had 
more than 20 brain lesions (SI Appendix, Fig. S2A). All studies were approved by the UCSF 
Institutional Review Board, and informed consent was obtained from all subjects. 

Sample preparation  

Peripheral blood mononuclear cells (PBMCs) were isolated immediately after blood collection 
using a standard Ficoll (GE Healthcare) gradient procedure and cells were frozen down in 
freezing media made of fetal bovine serum (FBS) and 10% DMSO. PBMC aliquots were stored in 
liquid nitrogen (LN2, gas phase) for further use. At time of experimentation, PBMCs were 
removed from LN2 and thawed in a 37ºC water bath. Four MS patients and four healthy controls 
were processed at each time. Cells were washed and incubated in warm media (RPMI/10%FBS) 
with benzonase for 5 minutes then washed with media and rested in 37C/5% CO2 incubator for 1 
hour. Cells were then washed with warm phosphate buffered saline (PBS), blocked with FcR 
Block (Miltenyi Biotec), and incubated in the dark on ice for 30 minutes with the following 
antibodies: CD3 APC (UCHT1, Beckman Coulter), CD4 Brilliant Violet 421(OKT4, BioLegend), 
CD8 APC AlexaFluor750 (B9.11, Beckman Coulter), CD19 PerCP Cy5.5 (J3-119, Beckman 
Coulter), CD14 PE (61D3, eBioscience). Cells were washed and resuspended in PBS containing 
1% FBS and then CD4+ and CD8+ T cells, CD14+ monocytes, and CD19+ B cells were sorted on 
a MoFlo Astrios (Beckman Coulter). Cell subsets were then pelleted, flash frozen on dry ice and 
stored at -80ºC for DNA or RNA extraction. 

Genomic DNA extraction and BS-seq library preparation  

Genomic DNA from 100,000-500,000 cells was extracted using the Quick DNA kit (Zymo 
Research) and processed for BS-seq library preparations as described (1). For library 
preparations, we processed each time 16-22 samples from one cell type across cases and 
controls following the same protocol. Briefly, genomic DNA was fragmented, end-repaired, A-
tailed, and ligated to methylated adaptors. Ligated fragments were then bisulfite converted using 
the EZ DNA Methylation Gold kit (Zymo Research) at 64℃ for 2.5 hours and amplified using the 
KAPA HiFi HotStart Uracil+ ReadyMix PCR Kit. Libraries were sequenced on a NovaSeq platform 
(Illumina). The sequencing reads were analyzed following an established bioinformatics pipeline 
(1, 2). Briefly, after filtering out low quality reads, the remaining paired reads were uniquely 
mapped to the reference genome (hg38, UCSC) using the Bismark software (3). The bisulfite 
conversion rates were calculated using the lambda DNA. Subsequently, the 5mC level at each 
CpG site was computed as described (1). The number of “C” bases from the sequencing reads 
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were counted as methylated (denoted as NC) and the number of “T” bases as unmodified 
(denoted as NT). The methylation levels were then estimated as NC/ (NC + NT). 

BS-seq data analysis 

First, the metilene package (version 0.2-8) was used to call the differentially methylated regions 
(DMRs), including only CpGs with at least 3× in coverage (4). DMRs were defined to have a 10% 
minimum absolute mean methylation difference, as recommended by multiple DMR detection 
tools (4-6), with a maximum distance of 1000 nt between CpGs within a DMR and a minimum of 3 
CpGs per DMR (parameter –M 1000 –m 3 –d 0.1). DMRs were first calculated in CD4+ and 
CD8+T cells (n=29), CD14+ monocytes (n=22) and CD19+ B cells (n=29) respectively, between 
RRMS and HC individuals. Subsequently, the DMR analysis in B cells were extended to 29 
RRMS and 23 HC individuals. After each DMR calling, the regions with false discovery rate (FDR) 
of 0.05 or less were considered as final DMRs. For heatmap visualization, the mean methylation 
levels for the different DMRs were calculated and plotted using the heatmap function of the R 
package ComplexHeatmap (7). The rainfall track and genomic density track for the hypo-DMRs 
and hyper-DMRs were plotted using the circlize R package (8). PCA analysis of DMRs was 
performed using the ggfortify package in R and Bioconductor. The P values for the enrichments in 
hypo-DMR and hyper-DMRs at different genomic loci were calculated using the HOMER 
annotatePeaks.pl function. The Genomic Regions Enrichment of Annotations Tool (GREAT) was 
employed to predict the DMR functional significance (9).  

RNA extraction and mRNA-seq 

Transcriptomic analysis was performed on the B cell fractions from 23 MS patients and 14 
healthy controls selected within our study cohort. Total RNA was extracted using Quick-RNA 
Microprep Kit (Zymo Research). The poly(A) selected paired-end sequencing libraries were 
constructed using the mRNA Hyper Prep Kit (KAPA), following the manufacturer’s instructions. 
The sequencing was performed on HiSeq X Ten platform (Illumina), generating ~30 million pair-
end 150 bp reads per sample. For the analysis, low-quality and adapter sequences were trimmed 
using the Trimmomatic tool (10). Sequencing reads were then aligned to the human reference 
(hg38) using hisat2 (11). The htseq-count tool and human gtf file from Ensembl were used to 
count aligned reads for each gene (12). Differentially expressed genes (DEGs) between RRMS 
and HC individuals were identified using the edgeR package (13). Genes were considered 
significant differentially expressed with an absolute fold change of 1.5 or more and FDR of 0.05 or 
less. 

Publicly available B cell datasets 

The B cell subset-specific datasets obtained by reduced-representation bisulfite sequencing 
(RRBS) (accession number: GSE118255) and RNA-seq (accession number: GSE118254) were 
downloaded from the GEO repository (14). The count matrix of methylated and unmethylated 
reads for each CpG covered by the RRBS data was used to calculate the mean methylation level 
for each DMR in each cell sample and then averaged across each cell type. The methylation 
differences between cell types were assessed by two-tailed Student’s t-test. For the DEGs 
identified in our data, the kilobase per million reads (RPKM) values were searched in the RNA-
seq data and then averaged across each cell type. The log2 normalized RPKM values for DEGs 
in each cell type were used to generate the heatmap and assess the expression differences 
between cell types by two-tailed Student’s t-test. The B cell line (GM12878) transcription factor 
ChIP-seq dataset was downloaded from the ENCODE Consortium. The BEDTools intersectBed 
function was used to get the overlap between transcription factor binding peaks and hypo-DMRs. 
To test the statistical significance, the peaks were randomly permuted 10,000 times among 
human genome by BEDTools shuffleBed function, while retaining the length of each peak to 
assess the distribution of background overlap. 
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Overlap with MS susceptibility genes 

The recently reported MS susceptibility protein coding genes were used to test the overlap 
between DMRs and MS-associated loci (15). A DMR was assigned to the nearest coding gene 
when the DMR was located within 100-kb flanking region of the transcriptional start site (TSS). 
Subsequently, based on the distance between the DMR and TSS, DMRs were assigned to the 
following categories: TSS-proximal (3 kb upstream and downstream of the TSS), TSS-distal 10 
kb (10 kb upstream and downstream of the TSS), and TSS-distal 100 kb (100 kb upstream and 
downstream of the TSS). The statistical significance of the overlap between DMR-coupled coding 
genes in each category and MS susceptibility genes was assessed by Fisher’s exact test using 
the GeneOverlap package (URL: http://shenlab-sinai.github.io/shenlab-sinai/). The DMRs were 
further divided into 10 groups according to the distance and the statistical significance in each 
group was tested. A linear regression model was built to find association between the distance to 
TSS and the overlap significance. 

Cell lines 

The HeLa cell line was obtained from ATCC biobank. The cells were cultured in Dulbecco's 
Modified Eagle's Medium (GIBCO) supplemented with 10% v/v fetal bovine serum (GIBCO) and 
maintained at 37°C in a humidified atmosphere with 5% CO2. 

Plasmids 

The CpG-free firefly luciferase reporter vectors pCpGL-basic and pCpGL-CMV were provided by 
Dr. Michael Rehli (University Hospital, Regensburg, Germany). The Renilla luciferase reporter 
vector pRL-TK was purchased from Promega. To study the effects of methylation on 
transcription, the promoter regions (1 kb upstream the TSS) of the genes DCAF12, PRDM1, 
SEM4A, TNFRSF17, and ZWINT were amplified from genomic DNA with Phusion High-Fidelity 
DNA Polymerase (New England Biolabs), using the primers listed in Dataset S14. The PCR 
products were then double-digested with the restriction enzymes SpeI and NcoI (New England 
Biolabs) and cloned into the pCpGL-basic vector, previously digested with the same pair of 
enzymes. Individual clones were confirmed by Sanger sequencing. In preparation for luciferase 
assays, the different pCpGL constructs were methylated in vitro using the DNA methyltransferase 
SssI (New England Biolabs). In each reaction, 6 µg of plasmid was incubated with 12 U of 
enzyme in the presence of 320 μM S-Adenosylmethionine (SAM; New England Biolabs) for 4 
hours at 37°C, with additional 320 μM SAM supplemented after the first two hours of incubation. 
Mock reactions without the methyltransferases were carried out in parallel for the non-methylated 
vectors. All the plasmids were finally precipitated overnight with ethanol and resuspended in 
sterile water. 

Luciferase assays 

HeLa cells were grown in 12-well plates and co-transfected at 90% confluency with 700 ng of the 
different pCpGL constructs, either methylated or non-methylated, and 70 ng of pRL-TK vector 
using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. After 24 
hours, cells washed once with PBS and were lysed in 250 mL of Passive Lysis Buffer (Promega), 
for 15 minutes at room temperature with agitation. Twenty mL of each cell lysate were 
subsequently loaded in duplicate in black 96-well plates and the activities of both firefly and 
Renilla luciferases were quantified by means of Dual-Luciferase Reporter Assay System 
(Promega), using a Veritas Microplate Luminometer (Turner BioSystems). The firefly luciferase 
activity of each construct was first normalized against Renilla luciferase activity, and then the 
normalized signals of the methylated constructs were expressed as fold-changes of the 
corresponding non-methylated vectors. Data from 3 biologically independent experiments were 
expressed as mean ± SEM. Differences between methylated and non-methylated vectors were 
assessed with two-tailed Student’s t test, and P values equal to 0.05 or less were considered 
significant. 
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Enzyme-linked immunosorbent assays  

Serum samples were processed immediately after phlebotomy and stored at −80°C. 
Commercially available enzyme-linked immunosorbent assay (ELISA) kits used for measuring 
IgM, IgG and cytokines levels in the serum were as follows: IgM ELISA kit from Invitrogen 
(catalog: 88-50620-22); IgG ELISA kit from Invitrogen (catalog: 88-50550-88); BAFF ELISA kit 
from R&D Systems (catalog: DY124-05), TRAIL ELISA kit from R&D Systems (catalog: DTRL00), 
IL6 ELISA kit from Invitrogen (catalog: BMS213HS); IL10 ELISA kit from Invitrogen (catalog: 
BMS215HS). A total of 46 samples (18 HC and 28 MS) were tested. Serum IgM and IgG levels 
were assessed in triplicates. Serum TRAIL, BAFF, IL6 and IL10 levels were assessed in 
duplicates. Differences between MS and HC were assessed with Mann–Whitney U test, and P 
values equal to 0.05 or less were considered significant. To assess the associations between 
DNA methylation level and IgM level, the patients were divided in three groups according to IgM 
levels. The statistical significance of methylation differences between groups was calculated by 
the two-tailed Student’s t-test. 

Lymphocyte immunophenotyping  

The antibody mix consisted of CD19 (PerCPCy5.5, Beckman Coulter), CD27 (PE, BD 
Biosciences), IgD (FITC, Beckman Coulter), CD38 (Pacific Blue, Beckman Coulter), CD40 (APC, 
BD Biosciences), CD80 (PECy7, BD Biosciences), and CD86 (PE-CF594, BD Biosciences) for all 
samples. B cell subtypes were defined with the following surface markers: Naïve B cells 
(CD19+CD27-IgD+), unswitched (CD19+CD27+IgD+) and switched memory B cells 
(CD19+CD27+IgD-), double-negative B cells (CD19+CD27-IgD-) and plasma cells (CD19+IgD-
CD27hiCD38hi). Within the CD19+ B cell population, cell activation was assessed by measuring 
the surface expression of the activation markers CD40, CD80 and CD86 by flow cytometry. 
Surface expression was analyzed using a LSRFortessa instrument equipped with FACSDiva 
software (BD Biosciences). 

Bioinformatics analyses 

The DMRs and every 500-bp window in ±2 kb flanking DMRs were used to search for the 
enrichment of known motifs using the HOMER tool (16). The default parameters with a fragment 
size for motif searching of 200 bp were used. To look at the association between DNA 
methylation changes and gene expression changes, DMRs were annotated to the nearest TSS 
using in-house Perl script and Ensembl gtf file. The statistical significance of the overlap between 
hypo-DMR or hyper-DMR coupled coding genes and up- or down-regulated DEGs was assessed 
by Fisher’s exact test using the GeneOverlap package, respectively. The differences on 
cytokines, IgM and IgG, cell surface expression levels between two groups were assessed with 
the Mann–Whitney U test. The differences on the proportion of each B cell subset between two 
groups were assessed with the Mann–Whitney U test. Gene ontology (GO) analysis was 
performed using Metascape, providing gene annotation and enrichment analysis including GO 
processes and KEGG pathways (17). The known protein-protein interaction (PPI) networks were 
retrieved from the STRING database using Cytoscape v3.7.2 and stringApp v1.5.1 (18-20).  
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Fig. S1. Sorting CD4+ and CD8+ T cells, CD14+ monocytes, and CD19+ B cells from MS patients 
and healthy controls by flow cytometry (FACS). Flow cytometry data for representative MS and 
HC subjects. Sample sizes for each cell type can be found in Dataset S1 and Dataset S2.
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Fig. S2. Methylation level is associated with the accrual of brain lesions. (A) Brain lesion numbers 
in the first and second cohort. (B) Box plot of methylation levels in patients with different brain 
lesion numbers. Significance was determined by two-tailed Student’s t-test. *P<0.05. 
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Fig. S3. Overlap between DMRs and MS risk genes. (A) Venn diagrams showing the overlap 
between DMR-coupled (left) or hypo-DMR-coupled (middle) or hyper-DMR-coupled (right) coding 
genes and MS risk genes. The statistical significance of the overlap was assessed by Fisher’s 
exact test using GeneOverlap package. (B) Hypo-DMRs were classified as TSS-proximal (3 kb 
upstream and downstream of the TSS) (left), TSS-distal 10 kb (10 kb upstream and downstream 
of the TSS) (middle), and TSS-distal 100 kb (100 kb upstream and downstream of the TSS) 
(right). Venn diagrams showing the overlap between hypo-DMR-coupled coding genes in each 
category and MS risk genes. The statistical significance of the overlap was assessed by Fisher’s 
exact test using GeneOverlap package. (C) Correlation between DMR distance to TSS and the 
overlap significance. The DMRs was divided in ten groups according to the distance, and the 
significance of the overlap in each group was assessed by Fisher’s exact test using the 
GeneOverlap package. Linear regression line with 95% confidence bands was presented. (D) 
Histograms showing the significant GO terms and KEGG pathways enriched for the 53 TSS-
proximal hypo-DMR-coupled risk genes in B. (E) Heatmap visualization of enriched terms across 
the overlapped genes shown in B. The pathways that are significant in all lists or specific 
enriched in TSS-proximal DMR-coupled risk genes are indicated on the right. 
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Fig. S4. GO enrichment of the differentially expressed genes (DEGs). (A) Bar charts of top 
significant enriched GO biological processes for the up regulated genes in MS. (B) Bar charts of 
top significant enriched GO biological processes for the down regulated genes in MS. The terms 
are associated into functional groups based on shared genes. Full lists of enriched categories are 
provided in Dataset S9 and Dataset S10. 
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Fig. S5. The overlap between DMRs and DEGs. (A) Scatter plots of the correlation between 
DMRs and DEGs. The y-axis corresponds to methylation difference between MS and HC in each 
DMR and the x-axis corresponds to the log2 fold change (FC) of the DMR-coupled gene. 95 
hypo-DMR-coupled gene are significant upregulated in MS. (B) Venn diagrams showing the 
overlap between promoter hypo-DMR-coupled genes and up- (left) or down-regulated (right) 
genes. Hypo-DMRs located within 3 kb up- and down-stream regions of the TSS were defined as 
promoter hypo-DMR. The statistical significance of the overlap was assessed by Fisher’s exact 
test using GeneOverlap package. (C) Venn diagrams showing the overlap between promoter 
hyper-DMR-coupled genes and up- or down-regulated genes. Hyper-DMRs located within 3 kb 
up- and down-stream regions of the TSS were defined as promoter hyper-DMR. (D) Largest 
connected component of the PPI network using the 31 overlapping genes in left panel of B as 
input. (E) Luciferase assay validation. Luciferase reporter vectors bearing the promoter regions of 
DCAF12, PRDM1, SEM4A, TNFRSF17, and ZWINT were methylated in vitro and their luciferase 
activity was compared to the same constructs but not methylated. A luciferase vector carrying the 
CpG-free CMV promoter and another without any promoter region were used as controls. 
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Fig. S6. Serum IgM levels are associated with accrual of brain lesions and global methylation 
levels. (A) The serum levels of IgM and IgG between MS patients and controls. (B) The serum 
levels of IgM and IgG between patients with different brain lesion numbers. Significance was 
determined by Mann–Whitney U test. *P<0.05.  
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Fig. S7. Identification of B cell subsets in MS patients and healthy controls by flow cytometry. (A)  
Flow cytometry gating strategy for identification of B cell subsets: Naïve B cells (CD19+CD27-
IgD+), unswitched memory (USM) B cells (CD19+CD27+IgD+), switched memory (SM) B cells 
(CD19+CD27+IgD-), double-negative (DN) B cells (CD19+CD27-IgD-) and plasma cells 
(CD19+IgD-CD27hiCD38hi). (B) Flow cytometry data for representative MS and HC subjects.  
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Fig. S8. The association between DNA hypomethylation and B cell differentiation and activation. 
(A) Box plots showing the percentage of each B cell subset in subjects with different methylation 
levels. The subjects were stratified into two equal groups according to methylation levels. 
Statistical tests were performed using the Mann–Whitney U test. USM, unswitched memory; DN, 
double-negative; SM, switched memory. (B) Box plots showing the mean fluorescence intensity 
(MFI) of CD86, CD40 and CD80 expression on CD19+ B cells in subjects with different 
methylation levels. The subjects were stratified into two equal groups according to methylation 
levels. Statistical tests were performed using the Mann–Whitney U test.   
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Dataset S1. Summary of BS-seq in four immune cell types from 29 subjects. 

Dataset S2. Summary of BS-seq in B cells from 53 subjects. 

Dataset S3. Demographic and clinical information for study participants. 

Dataset S4. Genes assigned with DMRs for four cell populations. 

Dataset S5. Statistical significance of overlap of hypo-DMRs and transcription factor 
binding peaks. 

Dataset S6. Transcriptional factor binding motif enriched in hyper-DMRs. 

Dataset S7. Hypo-DMR-coupled coding genes that are overlapped with MS risk genes. 

Dataset S8. Differentially expressed genes between MS patients and healthy controls. 

Dataset S9. List of GO terms and KEGG pathways associated with up-regulated genes. 

Dataset S10. List of GO terms and KEGG pathways associated with down-regulated genes. 

Dataset S11. Differentially expressed genes that are annotated as epigenetic factors. 

Dataset S12. List of GO terms and KEGG pathways associated with 95 up-regulated hypo-
DMR-associated genes. 

Dataset S13. Serum TRAIL, BAFF, IL6 and IL10 levels in patients and controls. 

Dataset S14. List of primers used in PCR experiments.  
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