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SUPPLEMENTARY INFORMATION TEXT 
 
Evaluation of immune cell proportions using cellular deconvolution 
To analyze immune cell proportions in the whole blood samples, formatted data with gene 
symbols were uploaded to the CIBERSORTx web portal (https://cibersortx.stanford.edu/) and 
LM22 gene signature was utilized (1). LM22 is a signature matrix file consisting of 547 genes 
that accurately distinguish 22 mature human hematopoietic populations isolated from peripheral 
blood (1). Bulk RNA-seq data was deconvoluted using the signature matrix with bulk mode 
batch correction to remove variances between different platforms. Two-way ANOVA test was 
used to analyze differences in the abundances of different cell types before and after 
meditation. The p-values were corrected for multiple testing using the Benjamini-Hochberg 
method. P < 0.05 was considered statistically significant. 
 
Differential gene expression analyses 
Raw data was log transformed and checked for outliers. Across samples, Pearson correlation 
and clustering based on variance were used as quality-control measures. One sample from T1 
was not included in any analysis due to low read counts. Variance stabilizing transformation 
normalization method from DESeq2 package was utilized. Normalized data was processed with 
‘RemoveBatchEffect’ function from ‘limma’ package for batch and cell type composition 
correction. Next, a linear model was fitted across the dataset, contrasts of interest were 
extracted, and differentially expressed genes for each contrast were selected using an empirical 
Bayes test statistic (2). Differential expression analyses on cell type composition corrected or 
non-corrected data revealed 98% overlap in the number of genes differentially expressed. 
Hence, we utilized batch and cell type composition corrected data for all downstream analyses.  
 
Construction of co-expression networks  
A weighted signed gene co-expression network was constructed using the normalized dataset 
to identify groups of genes (modules) associated with meditation following a previously 
described algorithm (3, 4). Briefly, we first computed the Pearson correlation between each pair 
of selected genes yielding a similarity (correlation) matrix. Next, the adjacency matrix was 
calculated by raising the absolute values of the correlation matrix to a power (β) as described 
previously (3). The parameter β was chosen by using the scale-free topology criterion (3), such 
that the resulting network connectivity distribution best approximated scale-free topology. The 
adjacency matrix was then used to define a measure of node dissimilarity, based on the 
topological overlap matrix, a biologically meaningful measure of node similarity (3). Next, the 
genes were hierarchically clustered using the distance measure and modules were determined 
by choosing a height cutoff for the resulting dendrogram by using a dynamic tree-cutting 
algorithm (3). Utilizing this network analysis, we identified modules (groups of genes) 
differentially expressed across different time points before and after meditation and calculated 
the first principal component of gene expression in each module (module eigengene). Next, we 
correlated the module eigengenes with time points before and after meditation to select 
modules for functional validation.  
 
Transcriptional regulatory network analyses 
We applied the network-based integrative NetBID (5) algorithm to identify critical drivers 
associated with meditation using batch and cell type composition corrected gene expression 
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profiles. We first reverse-engineered a meditation-specific regulatory network by using the 
SJARACNe algorithm (6) from 388 RNA-Seq profiles of individuals before and after meditation. 
We then applied the activity inference algorithm in NetBID to identify drivers whose network 
activity are significantly different between T3 versus other time points. In short, meditation-
specific network was inferred based on the gene expression profiles based on mutual 
information dependency. Transcription factors and signaling factors with a high number of 
differentially expressed targets in the network were regarded as potential drivers. Gene set 
enrichment analysis (GSEA) and curated gene sets from MSigDB (7) were used to identify 
potential biological functions of the drivers and targets. The activity of the potential driver is 
calculated from the expression of its targets, and differential activities were inferred using 
NetBID. The drivers whose activities are significantly correlated with the timepoint T3 were 
utilized for enrichment analyses. We performed gene set enrichment analysis with default 
parameters using pathways derived from gene sets from Molecular Signatures Database (7). All 
network plots were constructed using the Cytoscape software (8). 
 
Transcription factor binding site enrichment analyses 
Transcription factor binding site (TFBS) enrichment analysis was performed using the 
‘TFBSenrich’ function from ‘RegFacEnc’ package (https://tfenrichment.semel.ucla.edu/). TFBS 
enrichment analysis was performed by scanning the canonical promoter region (1000bp 
upstream of the transcription start site) for the top 200 genes (based on kME) present in the 
meditation-associated co-expression modules. Next, we utilized TFBS position weight matrices 
(PWMs) from JASPAR (746 motifs) and HOCOMOCO (769 motifs) databases (9, 10) to 
examine the enrichment for corresponding TFBS within each module. For TFBS enrichment all 
the modules were scanned with each PWMs using Clover algorithm (11). To compute the 
enrichment analysis, we utilized three different background datasets (1000 bp sequences 
upstream of all human genes, human CpG islands and human chromosome 20 sequence). 
When a TFBS is over-represented (based on the P-values obtained relative to all the three 
corresponding background datasets) we considered it to be significant, which increases our 
confidence in these predictions. 
 
Protein-Protein Interaction (PPI) Network Analyses  
We constructed an experimentally validated protein–protein interaction (PPI) network using both 
turquoise and brown meditation-associated co-expression gene network modules. We created 
all possible combinations of gene pairs present in these co-expression networks and identified 
all experimentally verified interaction data (in humans dataset) for their corresponding proteins 
in the STRING database (integration of the following databases: BIND, DIP, GRID, HPRD, 
IntAct, MINT, and PID) (12), constructing the protein network by force-directed layout organized 
by significantly enriched functional pathways (Fig. 3C). Nodes correspond to genes and edges 
to PPI. The size of each node in the PPI network correspond to differential expression (Z-score). 
Node color represents upregulation (red) or downregulation (blue). Nodes with highlighted 
border (green) correspond to enriched or driver TFs. 
 
Gene Ontology, Pathway enrichment and PubMed Analyses 
Gene ontology and pathway enrichment analysis was performed using the Fisher's Exact Test 
with ‘funcEnrich.Fisher’ function from ‘NetBID’ package (https://github.com/jyyulab/NetBID). A 
list of differentially regulated transcripts for a given modules were utilized for enrichment 
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analyses. We performed gene set enrichment analysis with default parameters using pathways 
derived from gene sets from Molecular Signatures Database (7). For PubMed analyses we 
determined the association with the following key-words: “interferon signaling” and “interferon 
pathway” in the PubMed database for every gene using R (http://cran.r-project.org/). 
 
Quantitative real-time PCR 
qRT-PCR was performed using a Bio-Rad CFX96 real-time PCR system according to the 
manufacturer’s instructions. Briefly, RNA was harvested from human whole blood samples and 
cDNA was produced using SuperScript VILO IV master mix (cat #11756050). iTaq Universal 
SYBR Green Supermix was used to quantify amplification of cDNA. Primers we designed using 
Primer-BLAST (13) and was verified to amplify one product by verifying one peak present on the 
dissociation curves, and standard curves were performed to show that this assay is sensitive to 
changes in each gene. The following primer sequences were utilized: STAT1_F: 
CAGCTTGACTCAAAATTCCTGGA, STAT1_R: TGAAGATTACGCTTGCTTTTCCT, STAT2_F: 
CCAGCTTTACTCGCACAGC, STAT2_R: AGCCTTGGAATCATCACTCCC, TRIM22_F: 
CTGTCCTGTGTGTCAGACCAG, TRIM22_R: TGTGGGCTCATCTTGACCTCT. Ten biological 
replicates (individuals) were used for each timepoints, and three technical replicates were 
performed for each sample. The relative expression of genes was calculated using the 2−ΔΔCT 
method. 
 
Comparison of transcriptional profiles with publicly available datasets  
Gene expression data sets were downloaded from the Gene Expression Omnibus (GEO), read 
into R, preprocessed and normalized using variance stabilizing transformation normalization 
method from DESeq2 package. We then calculated the correlation of gene expression between 
samples, and outliers with mean sample correlations more than two to three standard deviations 
below average were omitted until no outliers remained. Using the ‘limma’ package, a linear 
model was fitted across the dataset, contrasts of interest were extracted, and differentially 
expressed genes for each contrast were analyzed using an empirical Bayes test statistic (2). We 
analyzed several publicly available different datasets and compared it with meditation dataset 
generated and analyzed in this study. We analyzed: dataset generated from leukocyte samples 
from hospitalized patients with or without COVID-19 (GSE157103), dataset from whole blood of 
MS patients and controls (GSE41850), and exercise training datasets (GSE111554, 
GSE111553). 
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SUPPLEMENTARY FIGURES 
 

 
 
Supplementary Fig. S1. The quantity of 22 different immune cell types estimation in the 
meditation gene expression data using CIBERSORT-Relative deconvolution. (A) The box 
plot visualizing the relative abundance of 22 immune cell subsets. CIBERSORT-derived 
immune cell relative scores were used to determine the abundance of immune cells in all the 
samples derived from four-time pre-and post-meditation (T1-T4). Significantly higher abundance 
of neutrophils and significantly lower abundance of CD8+ T-cells and naïve CD4+ T-cell was 
observed at T3 compared to T1. Comparisons were performed by employing two-way ANOVA 
test. *P < 0.05. 
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Supplementary Fig. S2. Comparison of meditation and diet-associated specific 
transcriptional gene networks.  (A) Heatmap depicting the expression of the top 25 genes 
(rows) from the meditation specific network (turquoise module) across samples (columns) for 
the timepoint comparisons, T3 (after meditation) versus T2 (before meditation), showing 
significant changes across samples. (B) Heatmap depicting the expression of the top 25 
vegetarian diet-specific genes (rows) in samples before and after meditation (columns) for the 
timepoint comparisons, T3 (after meditation) versus T2 (before meditation), showing no 
significant changes across samples. For both heatmaps, the red color corresponds to gene 
upregulation and blue to downregulation. Mean gene expression levels are shown as a bar-plot 
on top of each heatmap. (C) The density plots showing the distribution of log2 fold change for 
both gene lists (top meditation and diet-associated genes) and the significance of the variability 
in the expression levels between the two groups are calculated by a two-sample t-test. 
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Supplementary Fig. S3. Comparison of circadian rhythm and housekeeping specific 
transcriptional gene expression levels.  (A) Heatmap depicting the expression of the 30 
circadian rhythm genes (rows) (KEGG pathway: hsa04710) across samples (columns) for the 
timepoint comparisons, T3 (after meditation) versus T2 (before meditation), showing no 
significant changes across samples. (B) Heatmap depicting the expression of the random 30 
housekeeping genes (rows) in samples before and after meditation (columns) for the timepoint 
comparisons, T3 (after meditation) versus T2 (before meditation), showing no significant 
changes across samples. For both heatmaps, the red color corresponds to gene upregulation 
and blue to downregulation. Mean gene expression levels are shown as a bar-plot on top of 
each heatmap. (C) The density plots showing the distribution of log2 fold change for both gene 
lists (top circadian rhythm and house keeping genes) and the significance of the variability in the 
expression levels between the two groups are calculated by a two-sample t-test. 
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Supplementary Fig. S4. Comparison of meditation and COVID-19 transcriptional profiles 
showing viral and bacterial marker genes. Heatmaps are depicting the expression of the 
three bona fide viral markers (top), bacterial markers (middle), and control genes (bottom) 
across meditation (left - T3 (after meditation) versus T2) and COVID-19 (right - non-ICU COVID-
19 patients versus non-ICU non-COVID-19 patients) samples (columns). These marker genes 
are usually elicited by viral or bacterial infection. For all heatmaps, the red color corresponds to 
gene upregulation and blue to downregulation. Mean gene expression levels are shown as a 
bar-plot on top of each heatmap. All the heatmaps are supplemented with density plots showing 
the distribution of log2 fold change, and the significance of the variability in the expression levels 
between the two groups are calculated by a two-sample t-test. 
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Supplementary Fig. S5. Comparison of meditation, exercise, and multiple sclerosis 
specific transcriptional profiles in terms of interferon and inflammatory response. (A) 
Heatmaps are depicting the expression of the 23 inflammatory response genes (rows) across 
meditation samples (columns) for two different timepoint comparisons, T2 (before meditation) 
versus T1 (baseline) and T3 (after meditation) versus T2, showing no significant changes. (B) 
Heatmaps are comparing the expression of the 24 meditation-specific IFN driver genes across 
meditation samples (left) and in samples obtained after exercise training (right) for two different 
comparisons; after meditation (T3) versus before meditation (T2) and after exercise training 
versus before exercise training. (C) Heatmaps comparing the expression of the 23 inflammatory 
response genes in samples before and after meditation and exercise training for two different 
comparisons as described in B. (D) Heatmaps are comparing the expression of the 24 
meditation-specific IFN driver genes across meditation samples (left) and in samples obtained 
from multiple sclerosis patients (right) for two different comparisons; after meditation versus 
before meditation and MS patients versus controls. For all heatmaps, the red color corresponds 
to gene upregulation and blue to downregulation. Mean gene expression levels are shown as a 
bar-plot on top of each heatmap. All the heatmaps are supplemented with density plots showing 
the distribution of log2 fold change, and the significance of the variability in the expression levels 
between the two groups are calculated by a two-sample t-test. 
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SUPPLEMENTARY DATASET LEGENDS 

(Datasets provided as individual .xlsx data files) 

 
Dataset S1. Differentially expressed genes before and after the meditation retreat at four-time 
points. Genes with a significant differential expression in batch and cell type composition 
corrected data in all four timepoints (T1, T2, T3, T4) by pair-wise comparison of all six 
permutation combinations are provided. 
 
Dataset S2. Gene-module membership association based on WGCNA co-expression networks. 
Nine robust modules identified from datasets generated at four time points before and after 
meditation are denoted along with genes in these modules, the gene significance (GS) values 
(correlation of a gene expression profile with a sample trait) with T3, and the module 
membership (MM) values (Intramodular connectivity). 
 
Dataset S3. Gene ontology enrichment analysis of meditation associated modules. For gene 
set enrichment analysis for GO terms, we considered GO terms with Fisher's Exact Test P-
values less than 0.05. Enriched GO terms are provided for each module in separate tabs. 
Description of column headers: #Name (Name of the enriched gene set), Total_item 
(Background size), Num_item (Number of genes in the gene set (filtered by the background 
list)), Num_list (Number of input genes for testing (filtered by the background list)), 
Num_list_item (Number of input genes annotated by the gene set (filtered by the background 
list)), P value (Original P-value from Fisher's Exact Test), Odds_Ratio (Odds ratio from the 2*2 
matrix used for Fisher's Exact Test), Intersected_items (A vector of the intersected genes, 
collapsed by ';'. Number is equal to Num_list_item). 
 
Dataset S4. NetBID analysis identifies meditation-associated drivers. Ninety drivers with 
significant differential activity in comparing T3 versus other time points are provided in this 
dataset, along with the differential gene expression values. The dataset provides TF 
(transcription factor) information, Sig (signaling factor) information, all the DE (differential 
expression analysis) and DA (differential activity analysis) from multiple comparisons with Z-
statistics. It also shows each driver's target gene size and other additional information (e.g. 
gene biotype, chromosome name, position etc.). 
 
Dataset S5. Gene set enrichment analysis of meditation-associated drivers. Gene set 
enrichment analysis against the collection of annotated gene sets from MSigDB was utilized to 
elucidate the functional relevance of ninety meditation-associated drivers. We considered gene 
sets with Fisher's Exact Test P-values less than 0.05 as enriched. Enriched gene sets terms are 
provided for up and down drivers in separate tabs. Description of column headers: #Name 
(Name of the enriched gene set), Total_item (Background size), Num_item (Number of genes in 
the gene set (filtered by the background list)), Num_list (Number of input genes for testing 
(filtered by the background list)), Num_list_item (Number of input genes annotated by the gene 
set (filtered by the background list)), P value (Original P-value from Fisher's Exact Test), 
Odds_Ratio (Odds ratio from the 2*2 matrix used for Fisher's Exact Test), Intersected_items (A 
vector of the intersected genes, collapsed by ';'. Number is equal to Num_list_item). 
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Dataset S6. Analysis of transcription-factor binding-sites (TFBS) enrichment in the meditation 
specific co-expression modules. For estimation of TFBSs enrichment in the identified 
corresponding module-genelist (top 200 genes based on connectivity) promoter sequences 
(1000bp upstream from transcription start site), P-values were obtained relative to three 
background datasets: 1000‐bp of sequence upstream of all human gene, human CpG islands 
and human chromosome 20 (see methods). Enriched TFBS position weight matrices from both 
JASPAR and HOCOMOCO databases are provided in this dataset. Enriched TFBSs are 
provided for each module in separate tabs. 
 
Dataset S7. Literature annotation of enriched transcription factors associated with interferon 
signaling. Dataset providing enriched transcription factor associated with interferon signaling 
based on the published literature by testing association with the key-words: ‘interferon signaling’ 
and ‘interferon pathway’ in the PubMed database for every gene. The total number of hits 
(publications) for each gene is represented. 
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