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Supplementary Information Text 

Assembly of data for use in learning the ComBind scoring function 

Curation of experimental protein–ligand complex structures 

In order to learn the ComBind scoring function, we curated a set of protein–ligand complex 

structures representing each of the major drug targets catalogued by Santos et al., 2017 

(Supplementary Table 2). This set of target proteins was chosen through a combination of 

manual curation and adaptation of the PDBbind refined set (1). For each target, we included up 

to 21 structures, each with a distinct ligand bound, selecting the structures with alphabetically 

lowest PDB code when more than 21 were available. Structures with duplicate ligands, mutant 

proteins, or no small molecule in the orthosteric site were excluded. 

Preparation of protein–ligand complex structures and ligands 

For all of the results presented in this study, we performed “cross-docking.” Specifically, for 

each target, we chose the structure with the alphabetically first PDB code as the input 3D 

structure of the protein and then docked other ligands to this reference structure. This simulates a 

real-world application where only one structure of the target protein is available, and the user 

wants to predict poses for ligands not present in that structure. 

To prepare protein structures for use in docking, we first prepared structures using the 

Schrodinger suite. All waters were removed, the tautomeric state of the ligand present in the 

experimentally determined structure was assigned using Epik at pH 7.0 +/– 2.0, hydrogen bonds 

were optimized, and energy minimization was performed with non-hydrogen atoms constrained 

to an RMSD of less than 0.3 Å from the initial structure. The ligand was then removed. 

For ligands to be docked, the tautomeric state was assigned using Epik tool at target pH 7.0 +/– 

2.0. The single most favorable state was considered for docking. Torsion angles were 

randomized before docking. 

Skilled chemists can often improve the overall success rate of docking through careful manual 

preparation of the protein structure—for example, by diligent placement of waters or 

consideration of side chain rotamers. Such a procedure is subjective and was thus not employed 

in our performance benchmarks. In our experience, however, careful manual preparation of 

target structures improves the results of ComBind and ComBindVS even more than those of per-

ligand docking methods, because such preparation increases the accuracy of the helper ligand 

poses and thus the value of the information gleaned from them. 

Generation of docked poses 

Here we use the commercial docking software package Glide (2, 3) to generate candidate poses 

and assign a per-ligand score to each. We selected Glide because it is widely used in the 

pharmaceutical industry and because it ranks among the most accurate docking packages in 

comparative studies (4, 5). We emphasize, however, that the ComBind approach can utilize any 

per-ligand scoring function and pose sampling strategy, including those implemented in any 

standard docking package. 

Ligands were docked using default Glide SP settings except that “Enhanced Sampling” was set 

to 4, quadrupling the number of ligand conformers considered. For each ligand, we produced up 

to the 100 most highly ranked poses (for some ligands fewer than 100 poses passed Glide’s 
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internal filters). We also considered using Glide XP but found that Glide XP produced a correct 

candidate pose substantially less often than Glide SP (Supplementary Table 1). Glide XP and 

SP performed similarly in terms of how frequently the top-ranked pose is correct. Additionally, 

we considered using Induced Fit Docking (IFD). While IFD produced at least one correct 

candidate pose more often than Glide SP, the performance in terms of how often the top-ranked 

pose is correct was worse. 

A variety of “flexible receptor docking” methods have been developed that allow deformation of 

the target protein when sampling ligand poses (5-7). These methods have proven highly valuable 

in cases where the user knows in advance that protein flexibility is important to binding of the 

query ligand. When used as fully automated pose prediction methods without such prior 

information, however, flexible receptor docking methods frequently underperform rigid docking 

methods such as Glide, as observed in our benchmarks of the popular Induced Fit Docking 

method (6) (Supplementary Table 1) and reported previously for other flexible receptor 

docking methods (7). Such methods are more likely to sample a correct pose but also more likely 

to sample incorrect poses that outscore correct poses, although recent work has shown substantial 

improvement (8). 

Determining the quality of docked poses 

The accuracy of each pose was quantified by the non-hydrogen-atom RMSD from the 

experimentally determined pose. To compute the RMSD, each complex was aligned to the 

structure used for docking based on non-hydrogen-atoms within 15 Å of the ligand, and the 

RMSD was then computed between the docked pose and the same ligand’s pose in the aligned 

complex. We denote poses at most 2.0 Å RMSD from their aligned experimentally determined 

pose as being “near-native” or “correct.” 

Quantifying the similarity of binding poses for distinct ligands 

Protein–ligand interaction similarity 

Three interaction types were considered: hydrogen bonds, salt bridges, and hydrophobic 

contacts. We designed quantitative measures to assess the presence of these interactions between 

the ligand and a given protein residue (Supplementary Table 5). The hydrogen bond and salt 

bridge interaction measures were designed to give a value of 1 for interactions meeting 

established criteria (9). A soft boundary was added to give borderline cases values between 0 and 

1, in order to prevent discontinuities. The hydrophobic contact measure approximates the 

hydrophobic surface contact area by considering the number of protein–ligand atom pairs in 

contact with each other. Again, a soft boundary (in this case, between an atom pair being or not 

being in contact) was used to prevent very similar poses from leading to very different values. 

We denote the interaction value for interaction type k, for pose ℓ𝑖  of ligand i, with protein 

residue r as 𝑋 𝑟
(𝑘)

(ℓ𝑖). 

Interaction similarities for a pair of poses (for two different ligands bound to the same target 

protein) were computed separately for each interaction type. The interactions made between the 

ligand and each residue of the target protein residue were tabulated and then the similarity 

between the resulting lists for each pose was measured by the Tanimoto coefficient (10). The 

Tanimoto coefficient was modified by the addition of pseudo counts, which serve to make the 

metric well defined if neither ligand forms a particular type of interaction and to reward poses 
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that share larger numbers of interactions in absolute terms. We define the interaction similarity, 

for interaction type k between a pair of poses ℓ𝑖, ℓ𝑗 (for ligands i and j, respectively), as 

𝑠(𝑘)(ℓ𝑖 , ℓ𝑗) =
1 + ∑ √𝑋 𝑟

(𝑘)
(ℓ𝑖)𝑋 𝑟

(𝑘)
(ℓ𝑗)𝑟 ∈ 𝑅

2 +  ∑ [𝑋 𝑟
(𝑘)(ℓ𝑖) + 𝑋𝑟

(𝑘)(ℓ𝑗)]𝑟 ∈ 𝑅 − ∑ √𝑋𝑟
(𝑘)

(ℓ𝑖)𝑋 𝑟
(𝑘)

(ℓ𝑗)𝑟 ∈ 𝑅

, 

where R is the set of all protein residues. 

When computing hydrogen bond similarity, a case where a given protein residue acts as a 

hydrogen bond donor for one ligand and a hydrogen bond acceptor for another ligand is not 

considered a shared interaction. 

Substructure similarity 

To compute the substructure similarity for a pair of candidate poses, the maximum common 

substructure of the two ligands is identified using Canvas (Schrodinger LLC) and then mapped 

onto each candidate pose. Finally, the RMSD between these two sets of atoms is computed and 

used as the measure of substructure similarity. We defined custom atom and bond types for 

computation of the common scaffold (Supplementary Table 6). Substructure similarity is not 

considered for pairs of ligands with a maximum common substructure of less than half the size 

of the smaller ligand. Hydrogen atoms were not included in the substructure nor when 

determining the total number of atoms in each ligand. 

Importance of similarity types 

Removing any of the similarity types from the ComBind potential reduced ComBind’s 

performance (Supplementary Fig. 5). In particular, both protein–ligand interaction similarity 

and substructure similarity contribute substantially to ComBind’s accuracy. Protein–ligand 

interaction similarity is the more important of the two, particularly when using a diverse set of 

helper ligands. 

Computation of similarity statistics 

Using the set of protein–ligand complex structures described above, we characterized the extent 

to which distinct ligands binding a common target adopt similar poses, as quantified by the 

interaction and substructure similarity metrics described above. (We note that the three ion 

channel targets were not included in these statistics because they were added after the rest of our 

study had been completed.) 

When computing these statistics, we docked the ligands using Glide and then identified poses 

that are near-native among the candidate poses ranked in the top 100 by Glide. We used these 

docked poses, as opposed to the experimentally determined pose, in order to ensure that the 

statistics will be applicable to the scoring of candidate poses generated by Glide. We computed 

the empirical distribution of each similarity type across all pairs of near-native poses using a 

Gaussian kernel density estimate with standard deviation of 0.03 for interaction similarities and 

0.18 for substructure similarities. To reduce bias near the boundaries, we applied reflected 

boundary conditions (11).  

We capped substructure similarities at 6 Å (that is, substructure similarities greater than 6 Å were 

set to 6 Å), as the sparsity of near-native pose pairs for higher values led to overly rough 
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distributions. We denote the similarity distribution over near-native poses for interaction type k 

as 𝑓𝑘(𝑥; Native). 

We computed equivalent similarity distributions using all pairs of candidate poses produced by 

Glide, regardless of whether they are near-native. We denote the resulting distributions as 

𝑓𝑘(𝑥; Reference). 

To combine the distributions for the four similarity types into a single joint distribution, we 

assume that the interaction types are conditionally independent and express the joint distribution 

as a product of the distributions for each interaction type. That is: 

𝑓(𝑠(ℓ𝑖, ℓ𝑗); Native) =  ∏ 𝑓𝑘(𝑠(𝑘)(ℓ𝑖, ℓ𝑗); Native)𝑘 , and 

𝑓(𝑠(ℓ𝑖, ℓ𝑗); Reference) =  ∏ 𝑓𝑘(𝑠(𝑘)(ℓ𝑖 , ℓ𝑗); Reference)𝑘 . 

where 𝑠(ℓ𝑖, ℓ𝑗) is the vector of 𝑠
(𝑘)(ℓ𝑖 , ℓ𝑗)’s for each similarity type k. 

Description of the ComBind method 

The ComBind score 

We describe a hypothesized set of binding poses of a set of n ligands as 𝐿 = ℓ1, ℓ2, … , ℓ𝑛, where 

ℓ𝑖  specifies the hypothesized pose for ligand i. 

Per-ligand scoring functions, which consider each ligand independently, would determine an 

optimal set of poses 𝐿̂ by choosing the binding pose with minimum docking score for each ligand 

or, equivalently, by minimizing 

𝐸dock(𝐿) =  ∑ 𝐸dock(ℓ𝑖)

𝑛

𝑖=1

 

where 𝐸dock(ℓ𝑖) is the output of a per-ligand scoring function (such as that reported by Glide) 

for pose ℓ𝑖 of ligand i. 

In our method, we add pairwise terms that tend to favor sets of similar poses: 

𝐸ComBind(𝐿) = 𝐶𝐸dock(𝐿) +
1

(𝑛 − 1)
∑ −log

𝑓(𝑠(ℓ𝑖 , ℓ𝑗); Native)

𝑓(𝑠(ℓ𝑖 , ℓ𝑗); Reference)
(𝑖,𝑗),𝑖 ≠𝑗

. 

Intuitively, these pairwise terms reward pose pairs with similarity values more often observed in 

near-native (correct) pose pairs than in reference pose pairs (i.e., pose pairs chosen at random 

from among all candidates). The idea of comparing the distribution of features in correct 

solutions to the distribution in all possible solutions has been used in statistical potentials for 

biomolecular structure prediction (12-14) and in the naïve Bayes machine learning model (15). 

We divide the pairwise scores by the number of ligands minus 1, in order to hold the relative 

contribution of singleton and pairwise terms constant for different numbers of helper ligands. 

Consistent with their reported units of kcal/mol, we find that Glide scores have the mathematical 

properties of an energy; namely, the negative log likelihood ratio of a pose being near-native is 

linear in its Glide score (Supplementary Fig. 3). By construction, the pairwise terms we 

introduce in this study also have this property. This congruence implies that these singleton and 
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pairwise terms can be additively combined (as this is the equivalent of multiplying likelihood 

ratios). 

The per-ligand docking scores are scaled by the constant factor 𝐶 in order to be consistent with 

the pairwise terms. For example, if the docking scores were on average 10 times the negative log 

likelihood ratio of a pose being near-native, they would need to be scaled by 1/10. This constant 

factor can be identified by performing logistic regression with the docking scores as features and 

whether each pose is near-native as the response. For Glide scores, the appropriate constant is 

close to 1 (0.9) (Supplementary Fig. 3), and we chose to set it to 1 for simplicity. 

Optimization procedure 

We use coordinate descent to compute a set of poses that minimizes the ComBind score. At first, 

𝐿 is randomly initialized. 𝐿 is then iteratively improved by iterating through the ligands, in a 

random order, and updating the selected ligand’s pose to the argument minimum of 

𝐸ComBind(𝐿) assuming that the other poses in 𝐿 are correct. This procedure is repeated until no 

more updates can be made. Each update can be computed efficiently because it depends only on 

the partial contribution of the selected ligand’s pose to the ComBind score: 

ℓ̂𝑞 =  argmin
ℓ𝑞

[𝐶𝐸dock(ℓ𝑞) +
1

(𝑛 − 1)
∑ −log

𝑓(𝑠(ℓ𝑞, ℓ𝑖); Native)

𝑓(𝑠(ℓ𝑞, ℓ𝑖); Reference)
 𝑖 ≠𝑞 

]. 

In order to account for the non-convex nature of the ComBind score, we repeat this algorithm 

from 500 initial configurations, explicitly including the initial configuration corresponding to the 

generic scoring function predictions at least once and return the best scoring configuration. 

Empirically this procedure converges to the same result over multiple runs. 

Benchmarking 

We evaluated the performance of ComBind on the 30 target proteins listed in Supplementary 

Table 2. We only considered ligands that have less than 50% scaffold overlap with the ligand 

that was originally present in the experimental structure used for docking. We found that ligands 

with higher scaffold overlap were substantially easier to dock, likely due to the binding pocket 

being well shaped to accommodate the similar ligand (Supplementary Table 1). Additionally, 

we only consider ligands for which there is at least one correct candidate pose, since only in 

these cases is it possible for either ComBind or Glide to make a correct prediction. Importantly, 

this subsetting was only done for the query ligands, not the helper ligands downloaded from 

ChEMBL described below. 

For each of the 245 unique ligands meeting these criteria, we identified other ligands known to 

bind the respective target protein from the ChEMBL database and then used ComBind to jointly 

predict their binding poses. Importantly, when evaluating the performance of our method on a 

particular target protein, we excluded the data for that target protein from the similarity statistics. 

Selection of helper ligands 

For all targets, we downloaded Ki or IC50 data (whichever was more numerous) from ChEMBL 

(16). We removed ligands that did not meet the following criteria: a ChEMBL confidence score 

of 9 (the highest value), molecular weight < 800 Da, and Ki or IC50 < 1 µM. Ligand structures 

were generated from the SMILES strings provided by ChEMBL. 
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We benchmarked two criteria for selecting which ChEMBL ligands to use as helper ligands for 

each query ligand: (1) the highest affinity binders that do not share a chemical scaffold, and (2) 

the ligands that share the largest chemical substructure with the query ligand. To define the size 

of the common substructure, we used the same maximum common substructure definition as that 

used to compute substructure similarity. For selection method (1), we added helper ligands in 

order of affinity, not adding a ligand if it has greater than 80% substructure overlap with any 

ligand already in the selected set of helpers. 

The benchmarking results presented in the figures were obtained using the following ligand 

selection criteria and number of helper ligands: Fig. 4A and Supplementary Fig. 5A: 20 helper 

ligands selected using criterion (1); Fig. 4B: the indicated number of ligands selected using 

criterion (1); Supplementary Fig. 4A and Supplementary Fig. 5B: 20 helper ligands selected 

using criterion (2); and Supplementary Fig. 4B: the indicated number of ligands selected using 

criterion (2). For a handful of targets, fewer than 20 helper ligands were available meeting our 

criteria. In these cases, we used the minimum of the indicated number of ligands and the number 

of available ligands. In Fig. 4A and Supplementary Fig. 4A, the individual targets listed are 

those for which poses were predicted for two or more query ligands. Data for targets for which 

only a single query ligand’s pose was predicted are also included in aggregate performance 

metrics (for each target class and overall). 

Performance evaluation 

We developed an overall performance metric to represent the expected performance in drug 

development campaigns. For each protein family, we computed the average performance, then 

weighted each by the fraction of FDA-approved drugs targeting the protein family, as reported in 

Santos et al., 2017. 

Description of the ComBindVS method 

ComBindVS takes as input a structure of the target protein, a set of ligands known to bind the 

target (helper ligands), and a library of candidate molecules to screen. First, poses are predicted 

for the set of known binders using ComBind. Second, for each candidate molecule, per-ligand 

docking software (Glide for the results presented here) is used to produce many candidate poses 

and a pose is selected from the candidate poses that minimizes the ComBind score with respect 

to the poses for the helper ligands. In these evaluations, the poses for the helper ligands are fixed, 

since we do not know if the candidate molecule can bind the target protein. Third, the ComBind 

score of each candidate molecule in its predicted pose is used as a prediction of its affinity 

relative to other molecules, and for virtual screening, the candidate molecules are ranked by this 

score.  

In ComBindVS, we replaced the substructure similarity term with a shape similarity term when 

determining poses and scores for candidate molecules (i.e., the second and third steps above). 

Our substructure similarity term is defined only for pairs of ligands with a common substructure 

of at least half the size of the smaller ligand, which sometimes leads to large differences in score 

between two very similar candidate molecules because ones shares a sufficiently sized 

substructure with a helper ligand while the other does not. The shape similarity term captures 

much of the same information as the substructure similarity term but avoids these sudden 

“jumps” in score between similar molecules. We computed the shape similarity of two poses 

using the Schrodinger shape screening tool with ‘pharm’ atom-typing using the ‘inplace’ mode 
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(17). These shape similarity values were incorporated into the ComBind scoring function 

identically as were the interaction similarity and substructure similarity metrics. 

For each candidate molecule, we considered up to 30 candidate poses (decreased from 100 for 

computational efficiency; for the same reason, we left “Enhanced Sampling” at the default value 

instead of 4). 

Ligand chemical similarity and its integration with per-ligand docking or ComBindVS 

Ligand chemical similarity methods can largely be separated into “2D” methods that consider the 

presence of similar chemical groups in the provided ligands and “3D” methods that consider the 

relative 3D positioning of functional groups able to form particular intermolecular interactions. 

We chose a widely used method in each of these two families to compare against ComBindVS. 

We computed 2D ligand chemical similarity using the Tanimoto similarity metric acting on 

diameter-four extended connectivity fingerprints (ECFP4) with Morgan atom typing, as 

implemented in RDKit version 2020.03.1. We computed 3D ligand chemical similarity using the 

Schrodinger shape screening tool using ‘pharm’ atom-typing (17). We averaged these similarity 

scores across the helper ligands. 

To combine these scores with each other, as well as with the ComBind or per-ligand docking 

scores, we used use a framework similar to that described above for incorporation of pose 

similarity scores. In particular, we computed the empirical distribution of each similarity metric 

for the active and decoy compounds across the DUD-E dataset. Given a ligand to score, we 

compute the appropriate similarity metric, look up the frequency of that similarity value in the 

active and decoy distributions, and then compute the negative log ratio of these two values. 

These scores are then simply combined by addition. Data from the target protein being evaluated 

were excluded from the statistics. We found this method of integrating the Glide or ComBind 

scores with the ligand-based scores to perform comparably to or better than the z-score method 

(18) and the product-of-ranks method (19) (Supplementary Fig. 9C,D). 

The “ligand-based” method for which we present results in Figure 5 incorporates the 2D and 3D 

ligand chemical similarity metrics described above. The combination of these two methods 

performed comparably to or better than either method alone (Supplementary Fig. 9B). 

ComBindVS performance evaluation 

We considered data from all 102 targets in the DUD-E benchmark set (20). For each target 

protein, we used the provided structure for docking. These protein structures and the provided 

ligand data were processed using the same protocol described above for our pose prediction 

benchmark. We removed systems where the crystallographic ligand is chelated to a metal 

because automated use of Glide is not recommended in these cases (21).  

For each target protein, we randomly selected 1, 5, and 10 ligands to use as helper ligands in 

ComBindVS or the ligand-based method. In addition, the crystallographic ligand was included as 

a helper ligand, and only its near-native poses were considered by ComBind. In cases where 

docking failed to produce any near-native poses, the native pose was used. For each protein, we 

repeated this procedure 5 times with different helper ligands and averaged the results, to lower 

the variance of the results. For each target protein, we excluded any data involving that protein 

from the statistics used in the ComBind scoring function. 
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To assess the impact of the chemical similarity of the candidate molecules to the helper ligands, 

we split the candidate molecules into two bins based on the maximum 2D Tanimoto similarity to 

any of the helper ligands: 0 to 0.2 and 0.2 to 0.3. We did not evaluate performance for candidate 

molecules with a maximum Tanimoto coefficient greater than 0.3; due to the methodology used 

for generation of decoys in DUD-E, very few (~1%) of the decoys fall in this regime, making the 

virtual screening problem uncharacteristically easy. So that the test set would not change for 

different numbers of helper ligands, we performed this filter considering the full set of 10 helper 

ligands for each target. We only included target proteins for which there are at least 10 actives 

and 100 decoys meeting each similarity threshold. For the threshold of 0.2, this left 39 targets, 

and for the range of 0.2 to 0.3 this left 76 targets. 

In addition to enrichment factors, we quantified performance using the adjusted area under log 

receiver operating characteristic curve (aulogROC) metric (22). Both metrics are designed to 

reward strong performance in the low false-positive-rate regime, which is the most relevant 

because in virtual screening projects typically only the highest-scoring molecules are synthesized 

and assayed. The aulogROC is computed by plotting the true-positive-rate as a function of the 

logarithm of the false-positive rate, then integrating the area under the curve. We integrated over 

0.001 to 1, and then subtracted 0.14462 from the result, such that a random ranking of candidate 

molecules has an expected aulogROC of 0. Qualitatively similar results were observed with 

enrichment factors and the aulogROC metric (Supplemental Fig. 9A). We note that the lower 

performance of per-ligand docking in the 0 to 0.2 Tanimoto similarity bin compared to the 0.2 to 

0.3 bin is likely due to per-ligand docking performing best on candidate molecules that are 

chemically similar to the co-crystalized ligand (23). 

ComBindVS computing requirements 

Virtual screening of very large compound libraries can be computationally intensive. 

Fortunately, ComBindVS increases computing requirements only modestly relative to per-ligand 

docking—by less than a factor of two, even when using dozens of known binders as helper 

ligands. 

Prediction of binding poses of antipsychotics at the D2R 

Execution of the ComBind method 

We predicted binding poses for the typical antipsychotics spiperone, mespiperone, benperidol, 

and pimozide at the human D2 dopamine receptor (D2R). We prepared the ligands using the 

Schrodinger ligprep tool, considering the unprotonated tautomer and both inversions of the 

protonated tautomer. The same docking protocol was used as described above, except that the 

top 300 poses were considered by ComBind, in order to account for the use of the 3 tautomeric 

states of the ligand. 

Quantitative binding affinity prediction 

We assembled a set of piperidine butyrophenones from ChEMBL by downloading all ligands 

from ChEMBL release 27 for the human or rat D2R annotated with a Ki, then selecting all 

ligands matching the SMARTS pattern 

“[cH]1[cH]c[cH][cH]c1C(=O)[C;R0][C;R0][C;R0][N;r6]”. The helper ligands (spiperone, 

pimozide, benperidol, and n-methyl spiperone) were excluded from this set. The ComBindVS 

protocol was used to produce quantitative affinities exactly as described above. The p-value 

reported in this section was obtained by bootstrapping. 
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D2 Dopamine receptor mutagenesis 

Wild type (wt) human D2R in pcDNA3.1 was kindly provided by the laboratory of Jonathan 

Javitch (Columbia University, New York, NY). Mutations were introduced through of a 

modified QuikChange (Stratagene, La Jolla, CA) mutagenesis protocol using the following 

primers V91F: 5’-GGTCATGCCCTGGTTTGTCTACCTGG-3’, S193A: 

5’CGTGGTCTACGCCTCCATCGTCTCC-3’, S193V: 5’-

CGTGGTCTACGTCTCCATCGTCTCC-3’, S193L: 5’-

CGTGGTCTACCTCTCCATCGTCTCC-3’, W100L: 5’-

GGTAGGTGAGTTGAAATTCAGCAGG-3’, C118M: 5’-

GGACGTCATGATGATGACGGCGAGC-3’, W386F: 5’-

CGTGTTCATCATCTGCTTTCTGCCCTTCTTC-3’, F389L: 5’-

GCTGGCTGCCCTTATTCATCACACACATCC-3’. 

Membrane preparation and radioligand binding 

Membranes were isolated from HEK293T cells transiently transfected with D2R(wt) or D2R-

mutants. Briefly, cells were harvested 48 hr post-transfection (with Lipofectamine 2000), rinsed 

with PBS, lifted with harvesting buffer (0.68 mM EDTA, 150 mM NaCl, 20 mM HEPES, pH 

7.4), and centrifuged at 200 x g for 3 min.  The cells were resuspended in ice cold homogenizing 

buffer (10 mM HEPES, pH 7.4, 100 mM NaCl, 0.5 mM EGTA), homogenized using a Tissue 

Tearer (BioSpec, Bartlesville, OK) for 30 sec, and centrifuged at 20,000 x g for 20 min. 

Membranes were resuspended in Binding Buffer (20 mM HEPES, pH 7.4, 100 mM NaCl) using 

a Dounce glass homogenizer, flash frozen in liquid N2 and stored at –80oC. 

For saturation binding assays, cell membranes (0.6–20 g per well, depending on the mutant) 

were incubated for 1.5 hr at 30oC with [3H]-spiperone (Perkin Elmer, Waltham, MA) (0.02–12 

nM, depending on the Kd of the D2R mutant) in Binding Buffer containing 0.001% BSA, 1 mM 

ascorbic acid,  and 100 nM GDP with or without 20 M (+)butaclamol (to determine non-

specific binding). For competition binding assays, cell membranes (0.6–20 g, depending on the 

D2R mutant) were incubated for 1.5 h at 30oC with [3H]-spiperone (0.05–0.6 nM, depending on 

the Kd of the D2R mutant) in Binding Buffer containing 0.001% BSA, 1 mM ascorbic acid, 100 

nM GDP and 0–0.1 nM test compound (purchased from Millipore-Sigma, St Louis, MO), or 20 

M (+)butaclamol (to determine non-specific binding). Sample membranes were harvested by 

vacuum filtration on 96-well GF/C filter plates, washed with ice cold binding buffer to remove 

unbound radioligand, and allowed to dry before adding Microscint 0 (Perkin Elmer, Waltham, 

MA) for counting in a Top Count Scintillation Counter (Perkin Elmer/Packard, Waltham, MA ). 

Data were fit to a one site binding curve to determine Kd for [3H]-spiperone saturations, or to a 

one-site competition binding curve to calculate Ki of test compounds using Prism (GraphPad, 

San Diego CA). 
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Supplementary Figures

 
Supplementary Figure 1: Examples of interaction similarity and substructure similarity 

computation. (A) Comparison of interactions formed by two ligands bound to PLK1, for a pair 

of correct poses (top) and randomly chosen poses (bottom). (B) Overlays of two ligands that 

share a common substructure bound to BRD4 for correct docked poses (top) and randomly 

chosen highly ranked docked poses (bottom).  
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Supplementary Figure 2: A state-of-the-art per-ligand scoring function (Glide) 

underestimates the similarity of binding poses of different ligands binding to the same 

target protein. (A) and (B) are identical to Fig. 2C and D, respectively, except that the black 

curves in this figure are computed using only the pose ranked first by Glide for each ligand.  
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Supplementary Figure 3: The output of Glide’s per-ligand scoring functions is in units of 

energy similar to those of ComBind’s pairwise potential. A quantile plot showing the 

relationship between Glide scores and the negative log likelihood ratio of a pose being correct. 

For each of the docked poses of each ligand in our benchmark set, we computed the Glide score 

and determined whether the pose was correct. We split all of the resulting data into quantiles 

based on Glide scores, with each quantile containing 100 poses. Each point in the plot represents 

the mean Glide score and negative log likelihood ratio for a given quantile. The red line shows 

the best-fit linear relationship between these two quantities as determined by logistic regression.  
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Supplementary Figure 4: ComBind performance using a congeneric series of ligands. This 

figure corresponds to Fig. 4, but with helper ligands selected from ChEMBL ligands according 

to the “congeneric” criterion (i.e., ligands that share the greatest common substructure with the 

query) instead of the “high affinity” criterion. 
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Supplementary Figure 5: Importance of components of the ComBind scoring function. 
Performance using various components of the ComBind scoring function when using helper 

ligands chosen by either the high-affinity (A) or congeneric (B) ChEMBL ligand selection 

criterion. ComBind uses per-ligand docking scores, similarity scores based on interactions, and 

similarity scores based on relative positions of shared substructures. “Per-ligand docking” 

(Glide) omits all similarity scores. The remaining bars (“No Per-Ligand Scores,” “No 

Substructure,” and “No Interactions”) show the effects of omitting per-ligand scores, 

substructure position similarity scores, and protein–ligand interaction similarity scores, 

respectively, from the ComBind potential. 
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Supplementary Figure 6: Prediction and validation of the binding poses of antipsychotics 

at the D2 dopamine receptor—additional data. (A) Binding poses of pimozide, benperidol, 

spiperone, and mespiperone as predicted by Glide. (B) Binding poses of the same ligands, as 

predicted by ComBind. (C) Results of mutagenesis studies designed to test ComBind’s binding 

pose predictions. Ligands are color-coded as in panel A. Error bars show standard error of the 

mean. S193 was mutated to A, S, V and L; these results are discussed in the main text. Unlike 

Glide, ComBind predicts that all four ligands will position a fluorobenzene ring at the bottom of 

the binding pocket, packing favorably against Trp386 (W386). Indeed, mutating W386 to a 

smaller residue (Phe) reduced affinity to a similar extent for all of the ligands, with a slightly 

smaller effect for pimozide, which packs less tightly against W386 according to ComBind’s 

prediction. At the top of the ligand binding pocket, near Val91 (V91) and Trp100 (W100), 

ComBind predicts that the pimozide and benperidol will place identical functional groups that 

differ somewhat from those of spiperone and mespiperone. Indeed, mutation of these residues 

affects pimozide and benperidol slightly differently from spiperone and mespiperone. 
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Supplementary Figure 7: Example of a case where ComBind correctly predicts that a 

shared chemical scaffold is placed differently for different ligands. We show two ligands that 

bind the kinase CDK2. These ligands share a common scaffold but adopt significantly different 

binding poses. In A and B, we show their experimentally determined poses (PDB: 1JSV and 

PDB: 1DI8, respectively). In C and D, we show the poses predicted by ComBind for the two 

ligands. The shared scaffold is shown in the thicker sticks and parts of the ligands that differ are 

shown in the thinner lines. 
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Supplementary Figure 8: Example of a case where ComBind correctly predicts that ligands 

form distinct interactions with the protein. We ran ComBind for 20 ligands that bind F10. 

While most of the ligands have a positively charged group, only some of them position it to form 

a salt bridge with D189 (e.g., ligand 1, shown in panel A) while others orient it in the complete 

opposite direction (e.g., ligand 2, shown in panel B). ComBind correctly predicts both binding 

poses (C, D). (E) One of the candidate poses for ligand 1 forms the same salt bridge as ligand 2. 

ComBind correctly avoided choosing this pose, even though choosing it would have led to more 

similar interactions between ligands. 
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Supplementary Figure 9: Virtual screening performance using aulogROC metric, 

performance for individual targets, performance of ligand-based methods, and comparison 

of integration strategies. The left column shows performance for candidate molecules very 

different from any helper ligand (Tc ≤ 0.2), and the right column shows performance for 

candidate molecules moderately similar to at least one helper ligand (0.2 < Tc < 0.3). (A) 

Average performance on DUD-E benchmark set as quantified by the adjusted area under log 

receiver operating characteristic curve (aulogROC) metric, defined in Methods. (B) Comparison 

of performance of a 2D ligand-based method, a 3D ligand-based method, and a combination of 

the two. (C) Comparison of strategies for integrating results of ligand-based screening and per-

ligand docking. The “combination by naïve Bayes” strategy is referred to as “per-ligand docking 

+ chemical similarity” in other figures. See Methods for a complete description of each 

integration strategy. (D) Comparison of methods for integrating results of ligand-based screening 

and ComBindVS. The “combination by naïve Bayes” strategy is referred to as “ComBindVS + 

chemical similarity” in other figures. (E) Comparison of enrichment factor 1% for each target 

protein in the DUD-E benchmark for the indicated scoring methods. 

  



 21 

 

Supplementary Fig. 10. Examples of how ComBindVS can improve relative binding 

affinity predictions for analogs. (A) Benperidol to droperidol. ComBind predicts benperidol’s 

binding pose more accurately than per-ligand docking, which predicts a “flipped” pose (see  

main text). As a result, ComBind more accurately predicts the change in affinity due to chemical 

modification. (B) ChEMBL3818994 to ChEMBL3819427. When a substitution is made 

preventing a hydrophobic contact shared by the helper ligands, ComBind correctly predicts that 

this will decrease rather than increase binding affinity. Experimental ΔΔG values are the 

difference in RTlog(Ki) between each pair of ligands. Predicted ΔΔG values are the difference in 

ComBindVS or per-ligand docking scores between each pair of ligands.
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Supplementary Fig. 11. ComBindVS correctly predicts that addition of a hydrophobic 

group to the secondary amine of spiperone increases ligand affinity, even though this 

addition decreases interaction similarity to all the helper ligands. In the example shown here, 

ComBind predicts that addition of an isobutyl group to the secondary amine of spiperone 

(resulting in molecule ChEMBL334349) increases binding affinity. We observed similar results 

for other hydrophobic substituents. ΔΔG values are computed as in Supplementary Fig. 10. 
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Supplementary Figure 12. ComBind improves pose prediction accuracy for binding 

pockets with diverse properties. (A) A poorly formed, shallow binding pocket in 

bromodomain-containing protein 4 (BRD4; PDB entry 2YEL). (B) A deep binding pocket in the 

dopamine transporter (DAT; PDB entry 4M48). (C) A fully enclosed binding pocket in the 

androgen receptor (AR; PDB entry 1E3G). Each protein is shown as a transparent yellow 

surface. Each ligand is shown as magenta spheres; these spheres appear orange when occluded 

by the protein (i.e., for the entire ligand in C and parts of it in B and A). For each of these target 

proteins, ComBind predicts ligand binding poses more accurately than per-ligand docking (Fig. 

4). 
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Supplementary Tables 

Supplementary Table 1: Performance of Glide SP and Glide XP on our benchmark set. The 

data presented in this table does not include ligands that share a substantially sized chemical 

scaffold with the ligand present in the experimental structure used for docking. Including such 

ligands increases the success rate for both Glide SP and Glide XP (to 49%, 53%, 47%, 

respectively). 

# Ligands Is the top-ranked pose correct? Is any candidate pose correct? 

 SP XP IFD SP XP  IFD 

327 44% 45% 40% 81% 63% 81% 
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Supplementary Table 2: Structural data used for benchmarking ComBind. From left to 

right, columns represent: Protein family, protein name, Uniprot ID, ChEMBL target ID, number 

of ligands, number of ligands that do not share a scaffold with the ligand present in the 

experimental structure used for docking, and number of ligands that do not share a scaffold with 

the ligand present in the experimental structure used for docking and have at least one correct 

candidate pose. The right-most column corresponds to the number of ligands included in our 

benchmarks for each target protein. 

PROTEIN 

FAMILY 

PROTEIN UNIPROT CHEMBL # TOTAL 

LIGANDS 

# DIVERSE 

LIGANDS 

# DIVERSE LIGANDS 

WITH AT LEAST ONE 

CORRECT 

CANDIDATE POSE 

GPCR 5-HT2B P41595 CHEMBL1833 5 5 5 

 β1AR P07700 CHEMBL213 11 6 6 

 β2AR P07550 CHEMBL210 7 4 4 

 mGluR5 P41594 CHEMBL2564 4 3 1 

 Smo Q99835 CHEMBL5971 4 3 2 

 

ION CHANNEL GluN1/2A Q05586 

Q12879 

CHEMBL1907604 8 6 4 

 GluR-2 P19491 CHEMBL3503 15 7 6 

 GluK1 P22756 CHEMBL2919 18 18 15 

 

TRANSPORTER DAT Q7K4Y6 CHEMBL238 8 8 7 

 SERT P31645 CHEMBL228 4 4 4 

 GLUT1 P11166 CHEMBL2535 2 1 1 

 

NUCLEAR 

RECEPTOR 
ER P03372 CHEMBL206 20 14 12 

 GR P04150 CHEMBL2034 16 10 8 

 MR P08235 CHEMBL1994 12 10 9 

 AR P10275 CHEMBL1871 19 12 10 

 VDR P11473 CHEMBL1977 20 3 3 

 

PROTEASE F2 P00734 CHEMBL204 20 19 15 

 F10 P00742 CHEMBL244 20 19 12 

 PLAU P00749 CHEMBL3286 20 20 19 

 P00760 P00760 CHEMBL3769 20 19 16 

 BACE1 P56817 CHEMBL4822 20 19 7 
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PHOSPHORYLASE PYGM P00489 CHEMBL4696 20 5 4 

PHOSPHATASE PTPN1 P18031 CHEMBL335 20 19 8 

TRANSCRIPTION 

FACTOR 
BRD4 O60885 CHEMBL1163125 16 13 7 

CHAPERONE HSP90-α P07900 CHEMBL3880 20 16 10 

PHOSPHO-

DIESTERASE 
PDE10A Q9Y233 CHEMBL4409 20 19 17 

RECEPTOR σ1 Q99720 CHEMBL287 4 4 3 

ELATASE ELANE P08246 CHEMBL248 8 1 1 

REDUCTASE DHFR P00374 CHEMBL202 20 20 15 

KINASE Cdk2 P24941 CHEMBL301 20 20 17 
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Supplementary Table 3: ComBind is robust to cases where some of the ligands considered 

have no correct (near-native) candidate pose. Here we show the results of running ComBind 

for 20 ligands that bind PTPN1. We considered ligands whose binding poses have been 

determined experimentally, so that we could assess whether the predicted poses are correct. For 

over half of the ligands, there were no correct candidate poses (likely because these ligands 

induce a conformational change in the binding pocket). Despite this, ComBind produces more 

accurate pose predictions than state-of-the art per-ligand docking software. The ligands used in 

the predictions correspond to those present in the following PDB structures: 1C88, 1C86, 1GFY, 

1ECV, 1C83, 1C84, 1L8G, 1KAV, 1BZJ, 1NWL, 1G7F, 1QXK, 1PYN, 1G7G, 1NZ7, 1NNY, 

1NO6, 1ONZ, 1NL9, 1ONY. 

 Ligand 

 a b c d e f g h i j k l m n o p q r s t 

Is any candidate pose correct? Y Y Y Y Y Y Y Y Y N N N N N N N N N N N 

Is Glide’s predicted pose correct? Y Y Y Y Y Y N N N N N N N N N N N N N N 

Is ComBind’s predicted pose correct? Y Y Y Y Y Y Y Y N N N N N N N N N N N N 
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Supplementary Table 4: Ligands used in predictions for the β1 adrenoceptor. From left to 

right, columns represent: index of ligand (a–k are as shown in Fig. 3; xtal denotes the 

cocrystallized ligand in the protein structure used for docking), name of ligand, mode of action, 

and PDB ID of the experimental structure. 

Index Ligand Mode of action Structure 

xtal cyanopindolol antagonist 2VT4 

a dobutamine partial agonist 2Y00 

b carmoterol partial agonist 2Y02 

c isoprenaline full agonist 2Y03 

d salbuterol partial agonist 2Y04 

e carazolol inverse agonist 2YCW 

f iodocyanopindolol antagonist 2YCZ 

g 4-(piperazin-1-yl)-1H-indole antagonist 3ZPQ 

h 4-methyl-2-(piperazin-1-yl) 

quinoline 

antagonist 3ZPR 

i bucindolol antagonist 4AMI 

j carvedilol inverse agonist 4AMJ 

k methylcyanopindolol inverse agonist 5A8E 
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Supplementary Table 5: Definitions for the measures used to quantity the presence of each 

of the three interaction types considered in this study. 

Hydrogen Bond 

A = a hydrogen bond acceptor; D = a hydrogen bond donor; H = the associated hydrogen 

distance term = {
1 if distance(𝐻, 𝐴) ≤ 2.5 Å                 

3.0 Å − distance(𝐻,𝐴)

0.5 Å
if 2.5 Å <  distance(𝐻, 𝐴) ≤ 3.0 Å

 

     angle term = {
1 if angle(𝐷, 𝐻, 𝐴) ≥ 120°.             

angle(𝐷,𝐻,𝐴)−90°

30°
if 90° ≤  angle(𝐷, 𝐻, 𝐴) < 120°

 

hydrogen bond value = distance term * angle term 

 

Salt Bridge 

N = an atom with a negative formal charge; P = an atom with a positive formal charge 

salt bridge value = {
1 if distance(𝑁, 𝑃) ≤ 4.0 Å                 

5.0 Å − distance(𝑁,𝑃)

1.0 Å
if 4.0 Å <  distance(𝑁, 𝑃) ≤ 5.0 Å

 

 

Hydrophobic Contact 

A1, A2, …, An = all carbon or halogen atoms in the ligand; B1, B2, …, Bm = all carbon atoms in 

the given protein residue 

distance term for Ai and Bj = 

 {
1 if distance(𝐴𝑖, 𝐵𝑗) ≤ 1.25 𝑟𝑖𝑗                     

1.75 𝑟𝑖𝑗  − distance(𝐴𝑖, 𝐵𝑗)

0.5 𝑟𝑖𝑗
if 1.25 𝑟𝑖𝑗 < distance(𝐴𝑖 , 𝐵𝑗) ≤ 1.75 𝑟𝑖𝑗

 

  

where rij is the sum of the van der Waals radii of Ai and Bj 

hydrophobic contact value = ∑ ∑ distance term for 𝐴𝑖 and 𝐵𝑗 𝑚
𝑗=1

𝑛
𝑖=1  
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Supplementary Table 6: Atom types used in maximum common substructure definition. 

SMARTS pattern and intuitive description of each atom type used when searching for common 

substructures. Each atom in a molecule is assigned the most specific atom type (lowest in the 

table) that applies to it. 

SMARTS Description 

(*) Any Atom 

(#1) Hydrogen 

(#6) Carbon 

(#6; r5; CX4) 

(#6; r6) 

Saturated carbon in 5-member ring  

Carbon in 6-member ring 

c1ccccc1 Carbon-only aromatic ring 

(CR0) Carbon not in a ring 

(#7) Nitrogen 

(#7; r5) Nitrogen in 5-member ring 

(#8) Oxygen 

O=* Ketone Oxygen 

(#8; r5) Oxygen in 5-member ring 

(#15) Phosphorus 

(#16) Sulphur 

(#16; r5) Sulphur in 5-member ring 

(#9, #17, #35, #53) Halogens 
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