
 

 

 

 

Department of Biostatistics  

655 Huntington Ave  

Building 1, Room 413 

Boston, MA 02115 

TEL 617 432 4912 

FAX 617 432 5619 

chuttenh@hsph.harvard.edu  

Curtis Huttenhower 

Professor of Computational Biology and Bioinformatics 

Department of Biostatistics 

 

 

 
 
Dear Editors, 
 
We would like to thank both you and all three referees for the thoughtful comments and close attention 
to our work provided during review. We have carefully gone over the comments and responded to each 
individually below. The most important are: 
 
● While Reviewer 3 may have overlooked several elements that were already included in the 

manuscript, which we have expanded below, we appreciate the enthusiasm expressed by Reviewers 
1 and 2, who deemed the work ‘an invaluable addition to the current list of toolsets available to 
microbiome/metagenome researchers’ and ‘informative, well-executed, and clearly written’, 
respectively. 

 
● In agreement with Reviewer 2, we clarified the novelty of MaAsLin 2 as one of the first methods in 

the field that preserves statistical power in the presence of repeated measures and multiple 
covariates, while accounting for the nuances of meta-omics features and controlling false discovery, 
unlike many other frequently used testing procedures (Response Table 1). 
 

● We further clarified that the benchmarking leading up to this methodology independently provides a 
more comprehensive evaluation of association methods for microbiome epidemiology compared to 
prior work, through a comprehensive evaluation of critical aspects not considered by previous studies 
(e.g., multiple covariates and repeated measures, among others; Response Table 2). 

 
● Finally, we point out that, as potentially misunderstood by the reviewers, there is no previous MaAsLin 

1 publication. Instead, the current version represents a software update, and this is the first 
manuscript associated with the methodology, despite its wide use in practice. Of note, it was used as 
part of the previously published HMP2 study in Nature, and its open-source Bioconductor package 
has already been downloaded more than 8,000 times prior to independent publication (Response 
Table 3). 

 
Thus, we hope to emphasize that 1) no previous method exists to address the problems solved by 
MaAsLin 2, 2) the evaluations we carried out during its development substantially exceed any that were 
carried out previously, and 3) there is a widespread, unmet need in the field of applied microbiome 
epidemiology for such a method. Our point-by-point response to these issues is summarized below. We 
attach two versions of the updated manuscript, one with modified sections highlighted, and a version 
without markup; we appreciate the opportunity to make these clarifications, and we are open to any 
further discussion or suggestions.  
 
Sincerely, 
 

 
 
Curtis Huttenhower 
Professor of Computational Biology and Bioinformatics 
Harvard T. H. Chan School of Public Health 
 

 
 



 

 

 

Referee #1 
 

The paper addresses a need in the field for robust statistical tools to study associations 
between metagenome and covariates such as location, environment, phenotypes, diet, 
health outcome and more. While there are many existing association methods, most 
methods focus on univariate associations for ease of interpretability. MaAsLin 2 is one of 
several methods that not only test for multivariate associations, it also provides multiple 
statistical models, normalization and transformation schemes in a single R package. I 
believe it’ll be an invaluable addition to the current list of toolsets available to 
microbiome/metagenome researchers. 

 
Response 1.1 We thank the reviewer for the summary of our work, especially for their positive comments 
on the originality of this work and appreciation on the importance of the associated software.  
 

The authors created a comprehensive benchmarking framework that uses synthetic 
abundances generated by SparseDOSSA. It is in my opinion a suitable alternative to 
simulating sequencing reads if the purpose is to evaluate the power of the differential 
abundance analysis tools. In the absence of an experimentally-validated gold standard, a 
synthetic abundance dataset might be the next best thing for a systematic controlled 
evaluation of statistical performance. That said, I’m curious if the biases and errors 
introduced by taxonomic and functional classifiers might affect the performance of these 
tools. The authors used a variety of widely accepted metric such as FDR, AUC and F1 score 
to pit the performance of MaAsLin 2 against other covariate association software and was 
able to show convincingly that MaAsLin 2 does indeed improve sensitivity in a variety of 
synthetic datasets while controlling for FDR. 

 
Response 1.2 Many thanks to Reviewer 1 for their supportive feedback about this study, especially the 
need for a systematic controlled evaluation of statistical performance in the absence of an experimentally 
validated ‘gold standard’. If we understand the question associated with this comment correctly, it would 
be whether issues introduced during the process of quantifying features from sequencing reads “matters” 
or should be evaluated in this context. That is, there is always some noise introduced in taxonomic profiles 
or gene profiles when computed from shotgun metagenomic sequences. If this is what’s meant by the 
question, then our thinking would be 1) yes, in principle these could affect different models differently 
(although they should usually be affected identically), but 2) it’s not clear that it’s the models’ 
responsibilities to fix this (as opposed to that of the profilers or another preprocessing / normalization 
step). 
 
As a simple example, consider between-run batch effects, a particularly extreme case of bias and error 
introduced by upstream sequence processing. It can certainly affect differential abundance model results 
if batches are confounded with biological variables of interest. It could in principle also affect different 
hypothesis tests differently; for example, a model that’s less sensitive to global block differences (and 
maybe more sensitive to individual feature differences) might have more false positives as a result. 
However, we would argue that such biases or errors should not necessarily be resolved as part of a 
modeling framework such as MaAsLin, but either during the profiling process itself, or “in between” as a 
prior normalization. As examples, we have a preprocessing model for such effects in review 
(https://doi.org/10.1101/2020.08.31.261214), as does Michael Wu’s lab 
(https://ww2.amstat.org/meetings/jsm/2021/onlineprogram/AbstractDetails.cfm?abstractid=315506). 
 
To reflect this point, we have added the following text to this effect in the Discussion (Page 28): 
 

https://doi.org/10.1101/2020.08.31.261214
https://ww2.amstat.org/meetings/jsm/2021/onlineprogram/AbstractDetails.cfm?abstractid=315506


 

 

 

‘Third, it is not possible to capture the full range of differential biases and errors introduced by various 
bioinformatics pipelines using a single, representative template dataset, as considered here. To this end, 
multiple, diverse taxonomic and functional template datasets can be considered for future benchmarking, 
potentially in combination with other upstream simulation frameworks such as CAMISIM48 to investigate 
the effect of sequence assembly, genome binning, batch effects, taxonomic binning, taxonomic profiling, 
and other steps on differential analysis performance.’ 

 
Here are some comments: 

 
1.      Is there a difference between the standardization procedure of SparseDOSSA vs 
rarefying? 

 
Response 1.3 The standardization procedure of SparseDOSSA is carried out during spike-in to ensure 
that the counts of the modified features are not dominated by the values of the target metadata but rather 
distributed similarly to real data. That is, it “scales” data-metadata relationships so that they are 
essentially independent of covariates’ unit of measurement. This is separate from a rarefaction 
procedure, which would provide an alternative to data normalization to account for library size differences. 
In other words, rarefaction is one step that can help ensure meaningful comparisons between samples, 
regardless of features’ association with the metadata, whereas the standardization procedure of 
SparseDOSSA ensures that the spiked-in features are not influenced by the range of values of the target 
metadata to enable meaningful head-to-head comparisons of various differential analysis methods. 
 

2.      From the attached manuscript, SparseDOSSA feature-metadata spike in looks like its 
magnitude is a linear function of the selected metadata. Is it able to simulate non-linear 
associations? 

 
Response 1.4 In agreement, the default SparseDOSSA spike in procedure induces an effect size as a 
linear function of the selected metadata. However, the metadata matrix is a user-defined parameter which 
can be modified before analysis to contain nonlinear input variables (e.g., smoothing splines) to induce 
non-linear associations. We have occasionally used it this way (e.g., to introduce interaction effects), 
although not in this study. We acknowledge that this constitutes an important future direction which we 
have now added in the Discussion section (Page 28) as follows: 
 
‘Fourth, while we have focused on linear associations in this study, non-linear associations may also be 
of interest (as in other types of molecular epidemiology).’ 
 

3.      As a follow up to point 2, is the reason for the good FDR performance of linear models 
a testament to the strength of linear models in general or a result of the way feature spike 
ins are generated? 
 

Response 1.5 We agree that, in this setting, the FDR control of linear models is likely an effect of both 
(i) the strength of these models in controlling the FDR in general and (ii) the linear spike-in associations 
induced by SparseDOSSA. However, this is also true for essentially all of the other models evaluated as 
well: negative Binomial, ANCOM, metagenomeSeq, and others also primarily describe linear 
relationships. Additionally, the accuracy of MaAsLin / linear models is also retained in the second set of 
validations we did using the HMP2 dataset (as described in the Significance testing with shuffled data 
subsection in Methods), which is independent from the synthetic evaluation based on SparseDOSSA 
(and of course not guaranteed to be linear). In particular, we ruled out the effect of false positive findings 
using a rigorous permutation-based approach by randomly shuffling the dataset many times, which 
served as a justification for applying LM and other related models that consistently maintained the false 
positive rates below the desired 5% significance threshold, which is not true for other metagenomics-



 

 

 

focused methods such as metagenomeSeq or count models such as Negative Binomial (Supplementary 
Fig. 13). Since the shuffled versions of the same "real" dataset can be considered a negative ‘gold 
standard’ (unaffected by the linearity assumption), we conclude that, in general, FDR control is 
surprisingly robust for linear models. 
 

4.      The use of the word ‘feature’ to describe microbial abundance can becoming 
confusing at times. Nevertheless, I don’t see a good way around it except to refrain from 
using features to describe metadata where possible. 
 

Response 1.6 We agree, and we have carefully gone over the manuscript to ensure that we only use 
the term ‘feature’ for microbial taxonomic or functional features, and not to describe metadata. Although 
the term is certainly ambiguous in other fields (e.g., machine learning), it should now be consistent at 
least throughout the manuscript. 
 

5. ‘Red flags’ were mentioned a few times in section “MaAsLin 2 methodology and 
validation”. In particular, “MaAsLin 2 was the only multivariable method tested that 
controlled FDR with the fewest ‘red flags’ across scenarios (Fig. 1C). “A concrete 
description of what these red flags are might be good. 
 

Response 1.7 In agreement, we have now added the following sentence to further clarify the definition 
of ‘red flag’ in the manuscript text (Page 9): 
 
‘For simplicity, we thus abbreviate any extreme departure from a metric’s best possible value as a ‘red 
flag’.’ 

 
6.      As a follow up to point 5, Fig. 1C shows the various metrics “averaged over all 
simulation parameters”. Several models appearing as though they have poor sensitivity 
despite the supplementary figures showing otherwise. Is that due to averaging across 
multiple simulation parameter? 
 

Response 1.8 In short, yes: some of the methods (including linear models) exhibit a significant boost in 
power for larger sample sizes and stronger effect sizes, as evident from the supplementary figures. They 
thus perform well under some circumstances, but sometimes poorly in others (or vice versa). 
 

7.      Is the metric scores for all 84 configurations and 480 core scenarios (and after 
ignoring incompatible combinations) available as a dataset? 
 

Response 1.9 We unintentionally omitted this before, but we have now curated and provided summary 
measures for all 84 configurations and 480 core scenarios as data tables in the revised manuscript 
(Supplementary Datasets S1-S8). 

 
8.      The labels of the subfigures in Fig. 5 are a,b,c whereas the caption referred to b, c, d. 
 

Response 1.10 We apologize for this error which is now fixed in the updated Fig. 5 as follows: 
 



 

 

 

 
 

9.      Figure caption 1 - “averaged over all simulation parameters (Supplementary Fig. S1B). 
“ should be Supplementary Fig. S1A 
 

Response 1.11 Thanks for noticing this typo which we have now fixed in the manuscript. 
 

10.     The labels in Supplementary Figures S3, S4, S6, S8 etc. makes it unwieldy to compare 
performance between classes of models, normalizations, and transformations. 
 

Response 1.12 We agree that due to a large number of combinations of statistical models, 
normalizations, and transformations, some of the supplementary figures are unwieldy to compare. 
However, we did not see much variation within each class of methods to justify an alternative grouping - 



 

 

 

and it would be difficult to choose and implement a single convenient standard. As a result, we have 
attempted to resolve this unwieldiness by displaying only the ‘representative’ methods in some of the 
figures (e.g., Figs. 2-4 and Supplementary Figures S2, S5, and S7) as appropriate, retaining the other 
more detailed versions for the sake of completeness and rigor. 
 

11.     In Fig. 4, it’ll be helpful to arrange the methods so that the order in a) matches b). In 
fact, if there is some consistency in the arrangement of methods between Fig. 1c, Fig. 2, 
Fig. 3 and Fig. 4, that’ll be great. 
 

Response 1.13 In an attempt to improve the comparison and interpretation of various methods in Figs. 
2-4, we have sorted the methods according to the average F1 score. We have further grouped the 
methods according to their FDR-controlling behavior (e.g., in Fig. 2), which clearly conveys the primary 
conclusion of the paper. We chose this direction over choosing a manual arrangement of methods to 
ensure a consistent reporting and interpretation within each simulation scenario as well as overall. 
 
  



 

 

 

Referee #2 
 

Mallick et al. present MaAsLin 2, an updated toolkit for performing multivariable 
association tests in meta-omics datasets. Overall, I found the paper to be informative, well-
executed, and clearly written. I have just a few comments below: 
 

Response 2.1 We thank Reviewer 2 for his or her time, input, and positive evaluation of the manuscript. 
 

I feel the authors could go a bit further in highlighting the improvements of Maaslin2 over 
Maaslin1. The authors have done a good job in showing improved performance of Maaslin2 
over Maaslin1 using an array of carefully simulated datasets. However, figure S13 actually 
shows the reverse, in which Maaslin1 is more sensitive at the same empirical FPR 
compared to Maaslin2 when applied to real data (shuffled vs not-shuffled labels). Further, 
differences in biological results of Maaslin1 and Maaslin2 were not discussed in the final 
section (448-540). So, there has not been a clear demonstration of the superiority of 
Maaslin2 over Maaslin1 *in practice*. This is an important point in order to demonstrate a 
clear advance over the authors' previous work. 

 
Response 2.2 We should first clarify that despite its long use in practice (e.g., PMIDs 23013615, 
25887922), the MaAsLin 1 methodology was never previously published. This is certainly nonobvious to 
readers - and as I'm sure you can imagine, it's been a major item on the lab's to-do list for multiple years. 
This is thus the first manuscript publishing the method (the "2" version refers to a software 
reimplementation). 
 
Briefly, the core GLM used in MaAsLin 1 and 2 is the same, but many other features were improved, 
updated, or replaced, such as the feature selection method; proportional data transformation; inclusion 
of models for count (in addition to proportional) data; the evaluation of several zero-inflated models; and 
the entire R/Bioconductor package implementation. MaAsLin 2 in roughly its current, final form was first 
used in the Integrative Human Microbiome Project (Nature PMID 31142855), and this manuscript 
represents the first publication of the method and its formal validation as carried out during that study. 
 
To clarify the difference between MaAsLin 1 and 2, we have included a dedicated subsection in the 
Methods section (Statistical methods) that specifically calls out these advances and improvements 
offered by the MaAsLin 2 software (and emphasizes the absence of a previous methodological 
publication). This is rather long to quote fully in the response, but a relevant subset includes: 
 

• “Zero-inflated Negative Binomial (ZINB): for fixed effects, we used the zeroinfl() function from the  

pscl package with the logarithm of library size (for no normalization) or scaling factor (for other 

normalization schemes such as CSS, RLE, and TMM) as offset. In the absence of a robust 

random effect implementation of the same, the ZINB method was not considered in the repeated 

measures settings. 

 
● Zero-inflated Beta (ZIB): following Peng et al., we used the gamlss() function from the  R package 

gamlss56 for fixed effects and the ZIBR() function from the ZIBR R package for random effects. 
In both cases, the features are TSS-normalized before statistical testing.  
 

● Compound Poisson (CPLM): we used the cpglm() function from the cplm package and the 
glmmPQL() function from the MASS package for fixed and random effects respectively. In both 
cases, we used the logarithm of library size (for no normalization) or scaling factor (for other 



 

 

 

normalization schemes such as CSS, RLE, and TMM) as offset. No offset was used when 
combined with the TSS-normalized relative counts. 
 

● MaAsLin 1: we used the default TSS-normalized, arcsine square root-transformed linear model 
without gradient boosting. 
 

● MaAsLin 2: we used the default TSS-normalized, log-transformed linear model with half the 
minimum relative abundance as pseudo count.” 

 
The analysis presented in Figure S13 is great. I'd appreciate if the authors would add 
numbers to each bar - it's currently hard to see whether the FPR is above 5% for any of the 
methods (especially w/o gridlines). 
 

Response 2.3 We thank the reviewer for the comment. In agreement, we have now added percentages 
to each bar to better showcase the FPR-controlling behavior of various methods (updated Figure S13): 

 
 
 

Does Maslin perform mean/variance filtering to improve power (PMID: 20460310)? I do see 
this mentioned on lines 182, 425, and 746 but not sure if this is built into the software. This 
could be a really helpful automated step, particularly if the filtering thresholds were chosen 
using a data driven approach rather than arbitrarily. 
 

Response 2.4. Yes. MaAsLin 2 currently performs (configurable) variance filtering as well as prevalence 
and abundance filtering as a preprocessing step before model fitting. By default, this entails retaining 



 

 

 

only those features that are present (or detected) in at least X (e.g., 10) percent of samples at Y minimum 
abundance (e.g., 0). If variance filtering is additionally desired, MaAsLin 2 further filters out those features 
with little or no variance based on a user-defined cutoff Z (e.g., half the median of all variances). In our 
experience, the optimal filtering threshold (i.e., X, Y, Z) varies from study to study (especially when shifting 
units between e.g., taxonomic vs. gene vs. pathway features), and as a result, the current implementation 
lets the user choose an appropriate pre-filter threshold in a data-driven manner. Having said that, we 
agree that an automated step would further refine the user experience which we intend to do in a future 
release. 
 

For gene based statistical analysis, can the authors comment on whether Maslin2 supports 
average genome copy number data, which is normalized using the mean abundance 
across a panel of universally distributed single copy marker genes (PMID: 25885687). Such 
normalization has also been applied in metatranscriptome analyses (PMID: 20844569). 
Without this normalization step, differences in genome size can lead to strong 
associations for microbial housekeeping genes like the ribosome (PMID: 25853934). This 
is one of the major differences between taxonomic and functional analyses and may be 
worth discussing in the text. 

 
Response 2.5 This is an excellent point, and one that we have seen matter in other contexts as well 
(e.g., 16S rRNA gene copy number normalization for amplicon-based taxonomic profiling). As with other 
types of “upstream” processing as discussed in Response 1.2 (e.g., batch correction), we would argue 
that users should carry out any such normalization prior to differential abundance analysis, rather than 
during (or after). We agree with the reviewer that this is particularly true since the MaAsLin model is 
intended to apply to several different types of microbial feature abundances (e.g., MUSiCC-normalized 
functional KOs or median-normalized metabolites). Since these can be typically done independently as 
a preprocessing step before running MaAsLin 2, we have avoided the complexity of coupling the two 
steps and not added them as an option in MaAsLin 2 itself.  
 
  



 

 

 

Referee #3 
 

There are three main components in this manuscript: (1) extensive simulation studies 
regarding the sensitivity and false discovery rate of different existing methods for 
modeling multi-omics data, (2) propose a new method for modeling multi-omics data 
(which could include taxonomic, metabolomic, etc. data), and (3) apply the proposed 
method to a modern dataset. I have serious concerns about (1) and (2). Note that the results 
of (1) are used to justify choices in (2), and the resultant method is then applied in (3). 

 
1. Simulation study: The process of generating simulation data is not described in this 
paper; a simulation engine called SparseDOSSA is used. Most problematically, the specific 
data generating process is not described in this manuscript. As a result, key conclusions 
for this paper have been made based on simulations that cannot be reconstructed or 
inferred with specificity given the description in the manuscript. SparseDOSSA is software 
developed by many of the same authors as this manuscript, and is under review as a 
separate paper (from https://huttenhower.sph.harvard.edu/sparsedossa/ "Citation: Will 
add once the paper is out"; note this is distinct from 
https://huttenhower.sph.harvard.edu/maaslin2). At best, it is not possible to understand or 
interpret the results of the simulation study. Furthermore, the need for a new simulation to 
investigate the performance of relative abundance methods for modeling microbiome data 
is unclear -- there are many that already exist (some of which this manuscript cites). 

 
Response 3.1 While we appreciate the reviewer’s feedback, we respectfully disagree with the reviewer 
on the statement that ‘key conclusions for this paper have been made based on simulations that cannot 
be reconstructed or inferred with specificity given the description in the manuscript.’ 
 
The reviewer’s assessment that ‘The process of generating simulation data is not described in this paper’ 
is simply not true, as we feel there was significant scientific content in the original manuscript that the 
reviewer missed. In particular, the reviewer seemed to have overlooked both the SparseDOSSA 
manuscript (included as part of the submission package) as well as the Methods subsection, ‘Data for 
differential feature model evaluations’, where we had multiple, dedicated descriptions of this 
framework, including ‘Synthetic null community abundances’ that detailed the underlying data 
generation model.  
 
As can be seen from the SparseDOSSA preprint and the associated text in the manuscript, Reviewer 3 
may also have missed several aspects of the simulation strategy's novelty not captured by the listed 
previous methods. In particular, these methods do not accurately reflect real-world microbial feature 
distributions, influencing the accuracy of their evaluation results. With respect to MaAsLin 2 and 
applications of such simulations to microbiome epidemiology, this was also discussed in the subsection, 
‘Multivariable association test evaluations’, which further detailed the scope and coverage of our 
framework, superseding previous benchmarking efforts in several ways: 
 

● As other reviewers pointed out, our benchmark is a clear advance over existing efforts, as it allows 
for repeated measures and multiple covariates (necessary for nearly all realistic microbiome 
epidemiology and not considered in tandem by any previous benchmarking efforts). 
 

● Second, it should be pointed out that this manuscript’s benchmarking is a secondary outcome of 
the study, not its primary purpose. The main goal of the research is to provide a validated, 
integrated framework for accurate microbiome association testing in (mainly) human population 
studies, which we provide in the form of the MaAsLin 2 model. 

https://huttenhower.sph.harvard.edu/sparsedossa/
https://huttenhower.sph.harvard.edu/maaslin2


 

 

 

 
● Nevertheless, our benchmarking expands the range of experimental design considerations (more 

than 1,000 simulated datasets) and the variety of evaluation metrics (more than 10 accuracy 
measures) compared to previous evaluations. This is detailed in Response Table 2, which clearly 
shows the flexibility and advantage of our framework with respect to previous strategies 
(Supplementary Fig. 1B). 
 

● For the first time, as carefully described in the manuscript, our benchmarking includes more than 
84 methods (the largest number of methods and normalization combinations ever tested in this 
area). To facilitate future methods development, in addition to MaAsLin 2 itself, we also host this 
benchmarking effort in a separate repository that is aimed at simplifying future method evaluation 
and reanalysis of published results using new methods along with applications to new datasets: 
https://github.com/biobakery/maaslin2_benchmark. 

  
● Finally, MaAsLin 2 is the only method in the microbiome literature that can (i) accommodate most 

common epidemiological study designs, including cross-sectional and longitudinal in a unified 
framework, (ii) allows joint estimation of multiple groups and time points along with other 
covariates, and (iii) maintains false discovery rate and power along with providing several data 
exploration, analysis, and quality control options for the end users (Response Table 3), again, 
completely missed by the reviewer. 

  
2. Method proposal: As a result of the simulation study the authors propose a particular 
approach to modeling multi-omics data. The extent of the description is "...a subset or the 
full complement of metadata are used to model the resulting quality-controlled microbial 
features and define p-values for each metadata association per feature using one of a wide 
range of possible multivariate models." This description does not describe a target of 
inference or a model. What it is doing is made clear in the description of the analysis of 
the HMP2 data, where random effects models are given in R's notation (L921 p40), 
indicating that the method is just a wrapper around R's lm and/or lme function. This 
method is just transforming data, throwing out some rare features, running lm/lme, and 
doing FDR on lm's p-values. This is not methodological novelty and a workflow paper/blog 
post could convey the same information more clearly. 

 
Response 3.2 The reviewer may be conflating several independent aspects of our study, which we 
attempt to clarify below: 
  

• First, if the reviewer’s concern is about how evaluated statistical models are applied or tested, we 

have already provided details of our synthetic benchmarking scheme in the Methods section, the 

main text, and reiterated in summary above. As mentioned before, no previous benchmarking 

addressed the elements needed for accurate microbiome epidemiology in practice (e.g., false 

discovery rates, multiple covariates, and repeated measures in tandem) in a unified framework 

(Response Table 2). 

 

• Second, if the reviewer’s concern is regarding the MaAsLin 2 implementation, MaAsLin 2 is 

currently the only method in the literature which implements (i) multiple normalization schemes, 

(ii) multiple statistical models, (iii) multiple covariates, (iv) multiple fixed and random effects, and 

(v) multiple in-built visualization and pre-processing options for the users, all while maintaining a 

good false discovery rate control and reasonable detection power (Response Table 3). 

 

https://github.com/biobakery/maaslin2_benchmark
https://github.com/biobakery/maaslin2_benchmark
https://github.com/biobakery/maaslin2_benchmark


 

 

 

• Third, the reviewer seemed to underemphasize the utility of our approach by missing out on 

several important and essential details. For example, the reviewer simply overlooked the shuffled 

data validation subsection in Methods, which is a second robust stream of validations we did 

before applying any method to the HMP2 dataset (Supplementary Fig. S13). This is in turn also 

independent from the synthetic evaluation based on SparseDOSSA. In particular, we ruled out 

the effect of false positive findings using a rigorous permutation-based approach by randomly 

shuffling the dataset many times, which served as a justification for applying LM and other related 

models that consistently maintained the false positive rates below the desired 5% significance 

threshold. 

 

• Finally, the reviewer’s underassessment of our validated tool undermines the utility of many 

practical bioinformatics methods: the novelty of our approach, like many existing tools in the 

literature, lies in finding an optimized combination of steps to use for a particular problem (here, 

microbiome epidemiology). MaAsLin 2 is not intended to introduce new statistical theory, but 

instead to combine several existing steps that, together, are quantitatively better than previous 

methods and rigorously validated, while providing an informed implementation and convincing 

applications. 

 
In summary, this paper shows results from a black box simulation study, that is then used 
to justify proposing a "novel method" that is actually just a wrapper for existing tools. 
 

Response 3.3 We respectfully disagree with Reviewer 3’s summary of MaAsLin 2, as the reviewer may 
have missed several essential components of the method, including: 
 

● First and foremost, the reviewer seems to be over-focused on the HMP2 analysis, whose results 
were already published independently using MaAsLin 2 (PMID: 31142855). This is apparent from 
the reviewer’s unusual assessment of MaAsLin 2 as a ‘wrapper’, as it is one of the first 
implementations in the field to carefully curate appropriate models and normalization schemes for 
microbiome epidemiology, which is critical in setting standards and establishing best practices in 
the field, as also acknowledged by Reviewers 1 and 2. 

 
● To further point out the novelty of our framework, MaAsLin 2 is currently the only tool in the 

literature which implements (i) multiple normalization schemes, (ii) multiple statistical models, (iii) 
multiple covariates, (iv) multiple fixed and random effects, and (v) multiple in-built visualization 
and pre-processing options for the users, while also maintaining a good false discovery rate 
control and sufficient power (Response Tables 1-3). 
 

● Finally, the reviewer’s criticism on the ‘black box’ nature of our validation seems implausible, as 
all three main components of our validation, i.e. (i) the simulation tool (SparseDOSSA as 
R/Bioconductor package: https://huttenhower.sph.harvard.edu/sparsedossa/), (ii) the 
benchmarking strategy (https://github.com/biobakery/maaslin2_benchmark), and (iii) the method 
implementation (MaAsLin 2, again as R/Bioconductor package: 
https://huttenhower.sph.harvard.edu/maaslin/) are completely reproducible, with open-access 

source code, documentation and tutorial data available for end users.  
 
 
 
 

https://huttenhower.sph.harvard.edu/sparsedossa/
https://huttenhower.sph.harvard.edu/sparsedossa/
https://github.com/biobakery/maaslin2_benchmark
https://huttenhower.sph.harvard.edu/maaslin/
https://huttenhower.sph.harvard.edu/maaslin/
https://huttenhower.sph.harvard.edu/maaslin/


 

 

 

Response Table 1: Summary of existing tools for microbiome differential abundance analysis 
 

 DESeq2 
edgeR 

ZIB metagenomeSeq limma 
limma VOOM 

ANCOM 
ANCOM2 

MaAsLin 2 

Designed for 
multiple 

measurement 
types (e.g. counts, 

ratios, and 
normalized 
counts)? 

No No No No No Yes 

Implements 
multiple base 

models? 

No No No No No Yes 

Implements 
multiple 

normalizations? 

No No No No No Yes 

Implements 
multiple data 

transformations? 

No No No No No Yes 

Controls FDR? Yes No No Yes No Yes 

Controls FPR? Yes Yes No Yes Yes Yes 

Handles zero-
inflation? 

No Yes Yes No No Yes 

Handles multiple 
covariates? 

Yes Yes Yes Yes No Yes 

Can fit a fixed 
effects model? 

Yes No Yes Yes Yes Yes 

Handles repeat 
measures? 

No Yes Yes Yes Yes Yes 

Handles multiple 
random effects? 

No No No No No Yes 

In-built QC such as 
independent 

filtering? 

Yes No No No No Yes 

In-built 
visualization? 

Yes No Yes Yes No Yes 

 
 
 
 



 

 

 

Response Table 2: Summary of existing benchmarking for differential abundance analysis 
 

 Weiss PMID: 
28253908 

Hawinkel 
PMID: 28968702 

Mcmurdie 
PMID: 

24699258 

Thorsen 
PMID: 

27884206 

Calgaro 
PMID: 

32746888 

Chen  
PMID: 

27187200 

MaAsLin 2 
SparseDOSSA 

Generates realistic 
synthetic data from 
template real data? 

Yes Yes Yes Yes Yes No Yes 

Simulation model Multinomial Marginal count 
model + gaussian 

copula 
+ resampling 

Multinomial Subsetting 
/resampling 

Subsetting 
/resampling 

Marginal 
zero- 

inflated 
beta 

Zero- 
inflated  

log-normal 
    + resampling 

Able to simulate new 
microbial 

observations? 

Yes Yes Yes No No Yes Yes 

Accounts for zero-
inflation? 

No No No No No Yes Yes 

Accounts for 
compositionality? 

Yes Yes Yes No No No Yes 

Accounts for feature-
feature association? 

No Yes No No No No Yes 

Evaluates multiple 
covariates? 

No No No No No No Yes 

Incorporates 
repeated measures? 

No No No No No Yes Yes 

Incorporates both 
multiple covariates 

and repeated 
measures? 

No No No No No No Yes 

Incorporates 
multivariable spike-

ins? 

No No No No No No Yes 

Calculates multiple 
evaluation metrics 
beyond FPR, FDR, 

and power? 

No Yes No No No No Yes 

Evaluates multiple 
normalizations? 

Yes Yes Yes No No No Yes 

Evaluates multiple 
transformations? 

No No No No No No Yes 

 
 

 
 
 
 



 

 

 

Response Table 3: Summary of MaAsLin 2 options, modules, and models 
 

MaAsLin 2 functionality as of 
October, 2020 

Options 

Input data Counts 
Normalized counts 

Proportions 
Ratios 

Base models (non-zero-inflated) Linear model  
Negative Binomial 

Base models (zero-inflated) Compound Poisson 
Zero-inflated Negative Binomial 

Quality control Variance filtering 
Prevalence filtering 
Abundance filtering 

Covariate standardization 

Normalization TSS 
RLE 
CSS 
TMM 

NONE 

Multiplicity adjustment Bonferroni 
BH 
BY 

Holm 
Hommel 

Hochberg 

Transform AST 
LOG 

LOGIT 
CLR 

NONE 

Output and visualization Heatmap 
Scatter plots for continuous metadata 

 Box plots for categorical metadata 
Association tables 

Residuals and estimated random effects for 
further downstream analysis 

Software compatibility R/Bioconductor 
Command line interface 

bioBakery Docker  

 
 

 


