Appendix

A Main Theorem

Our model is set up as follows:

1. For the ith subject, the true response Y; depends on the covariates X; following
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1+ exp(X{ Bo)
2. The surrogate outcome S; depends on Y; following
P(S;=1]Y;=1)=p,P(Si=0]Y;=0)=po,

where p; and py are two constants.

3. To obtain the subset ), the sampling procedure I(i € V) depends on S; following
PeeV|S;=1)=h,PiieV]|S;=0)=hy,

where hy and hgy are two preset constants.

Additionally, define w; = h1S; + ho(1 — S;), the “biased” log-likelihood [;(3) and the
“weighted” misspecified log-likelihood ¢/ (7y):

li(B) = Yi(c+ XiB) — log{1 + exp(c + X;B)} and g;(v) = w; [SiXiy — log{1 + exp(X;7)}]
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In addition to the model setting, we further require some regularity conditions to ensure the

existence of our estimator.
Assumption 1.
1. B(|Xi|3) < o0 fori=1,...,N;
2. The unique solutions to Eg{VI;(8)} = 0 and E,{V¢'(S;, X;;v)} = 0 exist.

These assumptions are very mild, and hold in most of common models (linear models,

generalized linear models, etc.).

Theorem 1. For the MLE estimators vi Yy and N, consider the combined estimator and

the estimated variance

B =By — Hy'Gsy G5 Hs(3y, — 75)
var(B,) = Hy' — (1 — [V||F|"HHy'Gsy Gg' Gy Hy ',

where

Hy = V[ V(By), Hs=|F['Y ViF5)
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Then suppose ﬁ;l and @51 exist almost surely, under Assumption 1

VIV {war(B )} {BA —Bo — (;) } ~ N(0,1),

where ¢ 1s a constant.

Proof.



Estimating Equation for 5;

Recall that the working estimation equation is Vg(S;, X;;7). Then in the selected sub-

samples, we are solving the new equation:
E{Vg(S;, Xi;v)I(i € V)} =0
Suppose the solution = exists, denoted by 4 and 4y, the empirical solutions to

FI7D V(S Xiy)B(i € V) = 0 and [V ) Vg(S;, Xiiy) = 0.

ieF eV

We have ||z — 4l = 0p(1) and ||y, — vl = 0p(1). Hence, for ¢ € F, define the new

estimating equation
Vgi(v) = Vg (5, Xi;y) = Vg(Si, Xi;7)P(i € V).

Specifically, in our case

exp(XT ) ) exp(X{ ~p) T
V ! = W; Sz - : Xi7 v ) = Wi Z XZX ’
gi(vy) = w { T+ exp(X) ~)) 9:(Y0) = w {1+ exp(X] )} i

where w; = hys; + ho(1 — S;). Additionally, although not directly related, the detailed
property regarding the misspecified models can be found in White (1982).

Biased Estimator for 3,

On the other hand, given the biased validation set V, for 3, estimation,

PYi=1|i€V)
CPYi=1i€V) PY,=1,S=1icV)+P(Y,=1,5=0,icV)
PlieV) P(ieV)

P, =1,5 =1PGeV|S)+PY;,=1,5=0)P3icV|S)
PGeV]|Si=P(S;,=1) +PGeV]S; =0)P(S; = 0)
pihiP(Y; = 1) + (1 — p1)hoP(Y; = 1)

b [ P(Y; = 1) + (1= po){1 = P(Y; = 1)}] + ho [po{1 = P(Yi = 1)} + (1 — p1)P(Y; = 1)]
_ {p1hi + (1 = p)ho} exp(X/ By)

hi{p1 exp(X] By) + (1 = po)} + ho{po + (1 — p1) exp(X] By)}
_ exp(c + XiTﬁo)

1+ exp(c+ X/ By)’




where ¢ = log [{hip1 + ho(1 — p1) H{h1(1 — po) + hopo} !

|. Let 1;(8) be the log-likelihood of
Y;, then

exp(c + X, B3)
{1 + exp(c+ XTB)}

Vi(B) = {Yi _ (et X )
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Therefore, we obtain the MLE estimator ﬁv,

12 {Bv — By — (0> } = n'/2{HY(By,)} ' Viv(By) ~ N{0,G, " (By)},

where VIy(8) = [V|™ ey VE(B) and Hy (By) = [ V21 {By, + t(By, —
ally, G (B,) =

Combining all results, we can apply the formula in Chen and Chen (2000) and define

Bo) }dt. Addition-
E{V?1;(B,)} is the Fisher information matrix with respect to 3.

BA = Bv - IA{_l(?1"SY(§’_11CIS(’AYV - 'AYf)
w@r(B,) = Hy!' — (1 - |V||F|")Hy' Gsy G5 Gy Hy

where

Hy = V7)) VA(B,), Hs=|F""> Vii(F5)
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By the Slutsky’s theorem, we have

V(B ,)} {BA — By~ (;) } ~ N(0,1).

B Group Assignment with Fixed Total Validation Size

Recall that our setting gives

. exp(c—l— XT/BO)
PY,=1]|i€V)= T+ explc+ X Bg)°
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where ¢ = log [{hip1 + ho(1 — p1) }{hi1(1 — po) + hopo} '] Let py be the marginal prevalence
of Y. Under the null hypothesis,

exp(bo)

= T explbo)

where by is the intercept term. We hope P(Y; = 1 | i« € V) = 0.5 in order to achieve a

balanced comparison within V. Therefore, ¢ 4+ by = 0 and

10g{h1p1+h0(1—P1)}+10g<1L>:0

hi(1 — po) + hopo — Po

On the other hand, when the total validation size n is fixed, let Ny = >
k=1,2, hy =nyN;' and hg = (n —n1)N,; ' Consequently,

er 1(S; = k) for

mN '+ (n—n)Ng'(1=p1) po
niNT (1 —po) + (n — )Ny 'po L —po

ny {Nflpl - N1 —p1)} po +nNg (1 —p1)po
n {N7H(1 = po) — Ny 'po} (1 = po) +nNg 'po(1 — po)

= 1.

This leads to our conclusion:

_ nN1{po(1 — po) — (1 — p1)po}
{Nop1 — Ni(1 = p1)} po — {No(1 — po) — Nipo} (1 — Po)'

ni

(1)

However, in rare disease studies, often, py is so low that the required n; goes far beyond n.

In this case, we hope to make c as large as possible:

_ n {Nopl—N1(1—p1)}—|—nN1(1—p1)
n1 = arg max
n1€[0,n] n1 {No(1 — po) — Nipo} + nNipo

(2)

Especially, when both py and 1 —p; — 0, we can set n; = n and ng = 0 to select as many

cases as possible.

C Additional Simulation Results

This section provides additional simulation results of the model specified in Section 3.1
when p; = 60% and 80%. Box plots of MSE and empirical average coverage probabilities
are presented.

Additional simulation results for the power comparisons with prevalence of 3%/5% are



Table 2: Empirical average coverage probabilities at 95% level for p; = 60%. Different
combinations of prevalence and specificity are demonstrated.

Prevalence (%) | po(%) | Oracle | Ori-Unif | Aug-Unif | Ori-Bias | OSCA
60 95 95 94 96 95
) 80 95 95 95 95 95
90 95 95 94 95 94
60 95 95 95 95 95
10 80 95 95 95 95 95
90 95 95 95 95 94
60 95 95 95 95 95
30 80 95 95 95 95 95
90 95 95 95 95 94
60 95 95 95 95 95
50 80 95 95 95 95 95
90 95 95 95 95 94

Table 3: Empirical average coverage probabilities at 95% level for p; = 80%. Different
combinations of prevalence and specificity are demonstrated.
Prevalence (%) | po(%) | Oracle | Ori-Unif | Aug-Unif | Ori-Bias | OSCA
60 95 95 94 95 95
5 80 95 95 94 95 95
90 95 95 94 95 94
60 95 95 95 95 95
10 80 95 95 95 95 94
90 95 95 94 95 94
60 95 95 95 95 95
30 80 95 95 95 95 95
90 95 95 95 95 95
60 95 95 95 95 95
50 80 95 95 95 95 95
90 95 95 95 95 95
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Figure 6: Box plots of the empirical MSE. Five methods are compared with fixed p; = 60%.
Each column gives results at different specificities (90%, 80% and 60%) and each row for
different prevalence. The red, the gold, the green, the blue and the purple boxes respec-
tively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the
original biased-sampling method and the proposed method.
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Figure 7: Box plots of the empirical MSE. Five methods are compared with fixed p; = 80%.
Each column gives results at different specificities (90%, 80% and 60%) and each row for
different prevalence. The red, the gold, the green, the blue and the purple boxes respec-
tively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the
original biased-sampling method and the proposed method.



given in Figure 8.
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Figure 8: Power comparisons under different alternative hypotheses. Total validation sample
size was varied from 200 to 2000. Combinations of prevalence at 3%/5% and alternative
hypotheses 81 = 0.3/0.5 were presented. In all panels, gold, green, blue, and purple lines

stand for Ori-Unif, Aug-Unif, Ori-Bias and OSCA respectively.
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Table 4: Empirical average coverage probabilities at 95% level for p; = 90%. Different
combinations of prevalence and specificity are demonstrated.

Prevalence (%) | po(%) | Oracle | Ori-Unif | Aug-Unif | Ori-Bias | OSCA
60 95 95 95 96 95
5 80 95 95 94 95 95
90 95 95 94 96 94
60 95 95 95 95 95
10 30 95 95 95 95 95
90 95 95 94 95 94
60 95 95 95 95 95
30 80 95 95 95 95 95
90 95 95 94 95 94
60 95 95 95 95 95
20 80 95 95 95 95 95
90 95 95 95 95 95
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