
Appendix

A Main Theorem

Our model is set up as follows:

1. For the ith subject, the true response Yi depends on the covariates Xi following

Yi | X ∼ Bin

{
exp(X>i β0)

1 + exp(X>i β0)
| X
}
.

2. The surrogate outcome Si depends on Yi following

P (Si = 1 | Yi = 1) = p1,P (Si = 0 | Yi = 0) = p0,

where p1 and p0 are two constants.

3. To obtain the subset V , the sampling procedure I(i ∈ V) depends on Si following

P(i ∈ V | Si = 1) = h1,P(i ∈ V | Si = 0) = h0,

where h1 and h0 are two preset constants.

Additionally, define wi = h1Si + h0(1 − Si), the “biased” log-likelihood li(β) and the

“weighted” misspecified log-likelihood g′i(γ):

li(β) = Yi(c+ Xiβ)− log{1 + exp(c+ Xiβ)} and g′i(γ) = wi [SiXiγ − log{1 + exp(Xiγ)}]
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Then

∇li(β) =

{
Yi −

exp(c+ X>i β)

1 + exp(c+ X>i β)

}
Xi,∇2li(β) =

[
exp(c+ X>i β){

1 + exp(c+ X>i β)
}2
]
XiX

>
i

∇g′i(γ) = wi

{
Si −

exp(X>i γ)

1 + exp(X>i γ)

}
Xi,∇2g′i(γ) = wi

exp(X>i γ)

{1 + exp(X>i γ)}2
XiX

>
i .

In addition to the model setting, we further require some regularity conditions to ensure the

existence of our estimator.

Assumption 1.

1. E(‖Xi‖22) <∞ for i = 1, . . . , N ;

2. The unique solutions to Eβ{∇li(β)} = 0 and Eγ{∇g′(Si,Xi;γ)} = 0 exist.

These assumptions are very mild, and hold in most of common models (linear models,

generalized linear models, etc.).

Theorem 1. For the MLE estimators β̂V , γ̂V and γ̂F , consider the combined estimator and

the estimated variance

β̂A = β̂V − Ĥ−1Y ĜSY Ĝ
−1
S ĤS(γ̂V − γ̂F)

v̂ar(β̂A) = Ĥ−1Y − (1− |V||F|−1)Ĥ−1Y ĜSY Ĝ
−1
S Ĝ>SY Ĥ

−1
Y ,

where

ĤY = |V|−1
∑
i∈V

∇2li(β̂V), ĤS = |F|−1
∑
i∈F

∇2g′i(γ̂F)

ĜSY = |V|−1
∑
i∈V

∇li(β̂V)∇g′>i (γ̂F), ĜS = |F|−1
∑
i∈F

∇g′i(γ̂F)∇g′>i (γ̂F).

Then suppose Ĥ−1Y and Ĝ−1S exist almost surely, under Assumption 1

|V|1/2{v̂ar(β̂A)}−1/2
{
β̂A − β0 −

(
c

0

)}
 N(0, I),

where c is a constant.

Proof.
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Estimating Equation for Si

Recall that the working estimation equation is ∇g(Si,Xi;γ). Then in the selected sub-

samples, we are solving the new equation:

E{∇g(Si,Xi;γ)I(i ∈ V)} = 0

Suppose the solution γ ′0 exists, denoted by γ̂F and γ̂V the empirical solutions to

|F|−1
∑
i∈F

∇g(Si,Xi;γ)P(i ∈ V) = 0 and |V|−1
∑
i∈V

∇g(Si,Xi;γ) = 0.

We have ‖γ̂F − γ ′0‖ = op(1) and ‖γ̂V − γ ′0‖ = op(1). Hence, for i ∈ F , define the new

estimating equation

∇g′i(γ) = ∇g′(Si,Xi;γ) = ∇g(Si,Xi;γ)P(i ∈ V).

Specifically, in our case

∇g′i(γ0) = wi

{
Si −

exp(X>i γ
′
0)

1 + exp(X>i γ
′
0)

}
Xi,∇2g′i(γ0) = wi

exp(X>i γ
′
0)

{1 + exp(X>i γ
′
0)}2

XiX
>
i ,

where wi = h1si + h0(1 − Si). Additionally, although not directly related, the detailed

property regarding the misspecified models can be found in White (1982).

Biased Estimator for β0

On the other hand, given the biased validation set V , for β0 estimation,

P(Yi = 1 | i ∈ V)

=
P(Yi = 1, i ∈ V)

P(i ∈ V)
=

P(Yi = 1, Si = 1, i ∈ V) + P(Yi = 1, Si = 0, i ∈ V)

P(i ∈ V)

=
P(Yi = 1, Si = 1)P(i ∈ V | S1) + P(Yi = 1, Si = 0)P(i ∈ V | S0)

P(i ∈ V | Si = 1)P(Si = 1) + P(i ∈ V | Si = 0)P(Si = 0)

=
p1h1P(Yi = 1) + (1− p1)h0P(Yi = 1)

h1 [p1P(Yi = 1) + (1− p0){1− P(Yi = 1)}] + h0 [p0{1− P(Yi = 1)}+ (1− p1)P(Yi = 1)]

=
{p1h1 + (1− p1)h0} exp(X>i β0)

h1{p1 exp(X>i β0) + (1− p0)}+ h0{p0 + (1− p1) exp(X>i β0)}

=
exp(c+ X>i β0)

1 + exp(c+ X>i β0)
,
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where c = log [{h1p1 + h0(1− p1)}{h1(1− p0) + h0p0}−1]. Let li(β) be the log-likelihood of

Yi, then

∇li(β) =

{
Yi −

exp(c+ X>i β)

1 + exp(c+ X>i β)

}
Xi, ∇2li(β) =

[
exp(c+ X>i β){

1 + exp(c+ X>i β)
}2
]
XiX

>
i

Therefore, we obtain the MLE estimator β̂V ,

n1/2

{
β̂V − β0 −

(
c

0

)}
= n1/2{H′Y (β̂V)}−1∇lV(β0) N{0,G−1y (β0)},

where ∇lV(β) = |V|−1
∑

i∈V ∇li(β) and H′Y (β̂V) =
∫ 1

0
∇2lV{β̂V + t(β̂V − β0)}dt. Addition-

ally, Gy(β0) = E{∇2li(β0)} is the Fisher information matrix with respect to β0.

Combining all results, we can apply the formula in Chen and Chen (2000) and define

β̂A = β̂V − Ĥ−1Y ĜSY Ĝ
−1
S ĤS(γ̂V − γ̂F)

v̂ar(β̂A) = Ĥ−1Y − (1− |V||F|−1)Ĥ−1Y ĜSY Ĝ
−1
S Ĝ>SY Ĥ

−1
Y ,

where

ĤY = |V|−1
∑
i∈V

∇2li(β̂V), ĤS = |F|−1
∑
i∈F

∇2g′i(γ̂F)

ĜSY = |V|−1
∑
i∈V

∇li(β̂V)∇g′>i (γ̂F), ĜS = |F|−1
∑
i∈F

∇g′i(γ̂F)∇g′>i (γ̂F).

By the Slutsky’s theorem, we have

|V|1/2{v̂ar(β̂A)}−1/2
{
β̂A − β0 −

(
c

0

)}
 N(0, I).

B Group Assignment with Fixed Total Validation Size

Recall that our setting gives

P(Yi = 1 | i ∈ V) =
exp(c+ X>i β0)

1 + exp(c+ X>i β0)
,
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where c = log [{h1p1 + h0(1− p1)}{h1(1− p0) + h0p0}−1]. Let ρ0 be the marginal prevalence

of Y . Under the null hypothesis,

ρ0 =
exp(b0)

1 + exp(b0)
,

where b0 is the intercept term. We hope P(Yi = 1 | i ∈ V) = 0.5 in order to achieve a

balanced comparison within V . Therefore, c+ b0 = 0 and

log

{
h1p1 + h0(1− p1)
h1(1− p0) + h0p0

}
+ log

(
ρ0

1− ρ0

)
= 0.

On the other hand, when the total validation size n is fixed, let Nk =
∑

i∈F I (Si = k) for

k = 1, 2, h1 = n1N
−1
1 and h0 = (n− n1)N

−1
0 . Consequently,

n1N
−1
1 p1 + (n− n1)N

−1
0 (1− p1)

n1N
−1
1 (1− p0) + (n− n1)N

−1
0 p0

ρ0
1− ρ0

= 1

n1

{
N−11 p1 −N−10 (1− p1)

}
ρ0 + nN−10 (1− p1)ρ0

n1

{
N−11 (1− p0)−N−10 p0

}
(1− ρ0) + nN−10 p0(1− ρ0)

= 1.

This leads to our conclusion:

n1 =
nN1 {p0(1− ρ0)− (1− p1)ρ0}

{N0p1 −N1(1− p1)} ρ0 − {N0(1− p0)−N1p0} (1− ρ0)
. (1)

However, in rare disease studies, often, ρ0 is so low that the required n1 goes far beyond n.

In this case, we hope to make c as large as possible:

n1 = arg max
n1∈[0,n]

n1 {N0p1 −N1(1− p1)}+ nN1(1− p1)
n1 {N0(1− p0)−N1p0}+ nN1p0

(2)

Especially, when both ρ0 and 1−p1 → 0, we can set n1 = n and n0 = 0 to select as many

cases as possible.

C Additional Simulation Results

This section provides additional simulation results of the model specified in Section 3.1

when p1 = 60% and 80%. Box plots of MSE and empirical average coverage probabilities

are presented.

Additional simulation results for the power comparisons with prevalence of 3%/5% are
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Table 2: Empirical average coverage probabilities at 95% level for p1 = 60%. Different
combinations of prevalence and specificity are demonstrated.

Prevalence (%) p0(%) Oracle Ori-Unif Aug-Unif Ori-Bias OSCA

5
60 95 95 94 96 95
80 95 95 95 95 95
90 95 95 94 95 94

10
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 94

30
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 94

50
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 94

Table 3: Empirical average coverage probabilities at 95% level for p1 = 80%. Different
combinations of prevalence and specificity are demonstrated.

Prevalence (%) p0(%) Oracle Ori-Unif Aug-Unif Ori-Bias OSCA

5
60 95 95 94 95 95
80 95 95 94 95 95
90 95 95 94 95 94

10
60 95 95 95 95 95
80 95 95 95 95 94
90 95 95 94 95 94

30
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 95

50
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 95
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Figure 6: Box plots of the empirical MSE. Five methods are compared with fixed p1 = 60%.
Each column gives results at different specificities (90%, 80% and 60%) and each row for
different prevalence. The red, the gold, the green, the blue and the purple boxes respec-
tively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the
original biased-sampling method and the proposed method.
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Figure 7: Box plots of the empirical MSE. Five methods are compared with fixed p1 = 80%.
Each column gives results at different specificities (90%, 80% and 60%) and each row for
different prevalence. The red, the gold, the green, the blue and the purple boxes respec-
tively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the
original biased-sampling method and the proposed method.
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given in Figure 8.

Figure 8: Power comparisons under different alternative hypotheses. Total validation sample
size was varied from 200 to 2000. Combinations of prevalence at 3%/5% and alternative
hypotheses β1 = 0.3/0.5 were presented. In all panels, gold, green, blue, and purple lines
stand for Ori-Unif, Aug-Unif, Ori-Bias and OSCA respectively.
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Table 4: Empirical average coverage probabilities at 95% level for p1 = 90%. Different
combinations of prevalence and specificity are demonstrated.

Prevalence (%) p0(%) Oracle Ori-Unif Aug-Unif Ori-Bias OSCA

5
60 95 95 95 96 95
80 95 95 94 95 95
90 95 95 94 96 94

10
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 94 95 94

30
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 94 95 94

50
60 95 95 95 95 95
80 95 95 95 95 95
90 95 95 95 95 95
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