Appendix

A Main Theorem

Our model is set up as follows:

1. For the *i*th subject, the true response Y_i depends on the covariates \mathbf{X}_i following

$$Y_i \mid \mathbf{X} \sim \operatorname{Bin} \left\{ \frac{\exp(\mathbf{X}_i^\top \boldsymbol{\beta}_0)}{1 + \exp(\mathbf{X}_i^\top \boldsymbol{\beta}_0)} \mid \mathbf{X} \right\}.$$

2. The surrogate outcome S_i depends on Y_i following

$$\mathbb{P}(S_i = 1 \mid Y_i = 1) = p_1, \mathbb{P}(S_i = 0 \mid Y_i = 0) = p_0,$$

where p_1 and p_0 are two constants.

3. To obtain the subset \mathcal{V} , the sampling procedure $\mathbb{I}(i \in \mathcal{V})$ depends on S_i following

$$\mathbb{P}(i \in \mathcal{V} \mid S_i = 1) = h_1, \mathbb{P}(i \in \mathcal{V} \mid S_i = 0) = h_0,$$

where h_1 and h_0 are two preset constants.

Additionally, define $w_i = h_1 S_i + h_0 (1 - S_i)$, the "biased" log-likelihood $l_i(\beta)$ and the "weighted" misspecified log-likelihood $g'_i(\gamma)$:

$$l_i(\boldsymbol{\beta}) = Y_i(c + \mathbf{X}_i \boldsymbol{\beta}) - \log\{1 + \exp(c + \mathbf{X}_i \boldsymbol{\beta})\} \text{ and } g'_i(\boldsymbol{\gamma}) = w_i \left[S_i \mathbf{X}_i \boldsymbol{\gamma} - \log\{1 + \exp(\mathbf{X}_i \boldsymbol{\gamma})\}\right]$$

Then

$$\nabla l_i(\boldsymbol{\beta}) = \left\{ Y_i - \frac{\exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})}{1 + \exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})} \right\} \mathbf{X}_i, \nabla^2 l_i(\boldsymbol{\beta}) = \left[\frac{\exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})}{\left\{ 1 + \exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta}) \right\}^2} \right] \mathbf{X}_i \mathbf{X}_i^{\top} \nabla g_i'(\boldsymbol{\gamma}) = w_i \left\{ S_i - \frac{\exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma})}{1 + \exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma})} \right\} \mathbf{X}_i, \nabla^2 g_i'(\boldsymbol{\gamma}) = w_i \frac{\exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma})}{\left\{ 1 + \exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma}) \right\}^2} \mathbf{X}_i \mathbf{X}_i^{\top}.$$

In addition to the model setting, we further require some regularity conditions to ensure the existence of our estimator.

Assumption 1.

- 1. $\mathbb{E}(\|\mathbf{X}_i\|_2^2) < \infty \text{ for } i = 1, \dots, N;$
- 2. The unique solutions to $\mathbb{E}_{\beta}\{\nabla l_i(\beta)\} = \mathbf{0}$ and $\mathbb{E}_{\gamma}\{\nabla g'(S_i, \mathbf{X}_i; \gamma)\} = \mathbf{0}$ exist.

These assumptions are very mild, and hold in most of common models (linear models, generalized linear models, etc.).

Theorem 1. For the MLE estimators $\hat{\boldsymbol{\beta}}_{\mathcal{V}}$, $\hat{\boldsymbol{\gamma}}_{\mathcal{V}}$ and $\hat{\boldsymbol{\gamma}}_{\mathcal{F}}$, consider the combined estimator and the estimated variance

$$\begin{split} \widehat{\boldsymbol{\beta}}_{A} &= \widehat{\boldsymbol{\beta}}_{\mathcal{V}} - \widehat{\mathbf{H}}_{Y}^{-1} \widehat{\mathbf{G}}_{SY} \widehat{\mathbf{G}}_{S}^{-1} \widehat{\mathbf{H}}_{S} (\widehat{\boldsymbol{\gamma}}_{\mathcal{V}} - \widehat{\boldsymbol{\gamma}}_{\mathcal{F}}) \\ \widehat{var}(\widehat{\boldsymbol{\beta}}_{A}) &= \widehat{\mathbf{H}}_{Y}^{-1} - (1 - |\mathcal{V}||\mathcal{F}|^{-1}) \widehat{\mathbf{H}}_{Y}^{-1} \widehat{\mathbf{G}}_{SY} \widehat{\mathbf{G}}_{S}^{-1} \widehat{\mathbf{G}}_{SY}^{\top} \widehat{\mathbf{H}}_{Y}^{-1}, \end{split}$$

where

$$\widehat{\mathbf{H}}_{Y} = |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla^{2} l_{i}(\widehat{\boldsymbol{\beta}}_{\mathcal{V}}), \quad \widehat{\mathbf{H}}_{S} = |\mathcal{F}|^{-1} \sum_{i \in \mathcal{F}} \nabla^{2} g_{i}'(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}})$$
$$\widehat{\mathbf{G}}_{SY} = |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla l_{i}(\widehat{\boldsymbol{\beta}}_{\mathcal{V}}) \nabla g_{i}'^{\top}(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}), \quad \widehat{\mathbf{G}}_{S} = |\mathcal{F}|^{-1} \sum_{i \in \mathcal{F}} \nabla g_{i}'(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}) \nabla g_{i}'^{\top}(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}).$$

Then suppose $\widehat{\mathbf{H}}_Y^{-1}$ and $\widehat{\mathbf{G}}_S^{-1}$ exist almost surely, under Assumption 1

$$|\mathcal{V}|^{1/2} \{ \widehat{var}(\widehat{\boldsymbol{\beta}}_A) \}^{-1/2} \left\{ \widehat{\boldsymbol{\beta}}_A - \boldsymbol{\beta}_0 - \begin{pmatrix} c \\ \mathbf{0} \end{pmatrix} \right\} \rightsquigarrow N(\mathbf{0}, \mathbf{I}),$$

where c is a constant.

Proof.

Estimating Equation for S_i

Recall that the working estimation equation is $\nabla g(S_i, \mathbf{X}_i; \boldsymbol{\gamma})$. Then in the selected subsamples, we are solving the new equation:

$$\mathbb{E}\{\nabla g(S_i, \mathbf{X}_i; \boldsymbol{\gamma}) \mathbb{I}(i \in \mathcal{V})\} = \mathbf{0}$$

Suppose the solution γ_0' exists, denoted by $\widehat{\gamma}_{\mathcal{F}}$ and $\widehat{\gamma}_{\mathcal{V}}$ the empirical solutions to

$$|\mathcal{F}|^{-1} \sum_{i \in \mathcal{F}} \nabla g(S_i, \mathbf{X}_i; \boldsymbol{\gamma}) \mathbb{P}(i \in \mathcal{V}) = 0 \text{ and } |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla g(S_i, \mathbf{X}_i; \boldsymbol{\gamma}) = 0$$

We have $\|\widehat{\gamma}_{\mathcal{F}} - \gamma'_0\| = o_p(1)$ and $\|\widehat{\gamma}_{\mathcal{V}} - \gamma'_0\| = o_p(1)$. Hence, for $i \in \mathcal{F}$, define the new estimating equation

$$\nabla g'_i(\boldsymbol{\gamma}) = \nabla g'(S_i, \mathbf{X}_i; \boldsymbol{\gamma}) = \nabla g(S_i, \mathbf{X}_i; \boldsymbol{\gamma}) \mathbb{P}(i \in \mathcal{V}).$$

Specifically, in our case

$$\nabla g_i'(\boldsymbol{\gamma}_0) = w_i \left\{ S_i - \frac{\exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma}_0')}{1 + \exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma}_0')} \right\} \mathbf{X}_i, \nabla^2 g_i'(\boldsymbol{\gamma}_0) = w_i \frac{\exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma}_0')}{\{1 + \exp(\mathbf{X}_i^{\top} \boldsymbol{\gamma}_0')\}^2} \mathbf{X}_i \mathbf{X}_i^{\top},$$

where $w_i = h_1 s_i + h_0 (1 - S_i)$. Additionally, although not directly related, the detailed property regarding the misspecified models can be found in White (1982).

Biased Estimator for β_0

On the other hand, given the biased validation set $\mathcal{V},$ for $\boldsymbol{\beta}_0$ estimation,

$$\begin{split} & \mathbb{P}(Y_{i} = 1 \mid i \in \mathcal{V}) \\ &= \frac{\mathbb{P}(Y_{i} = 1, i \in \mathcal{V})}{\mathbb{P}(i \in \mathcal{V})} = \frac{\mathbb{P}(Y_{i} = 1, S_{i} = 1, i \in \mathcal{V}) + \mathbb{P}(Y_{i} = 1, S_{i} = 0, i \in \mathcal{V})}{\mathbb{P}(i \in \mathcal{V})} \\ &= \frac{\mathbb{P}(Y_{i} = 1, S_{i} = 1)\mathbb{P}(i \in \mathcal{V} \mid \mathbf{S}_{1}) + \mathbb{P}(Y_{i} = 1, S_{i} = 0)\mathbb{P}(i \in \mathcal{V} \mid \mathbf{S}_{0})}{\mathbb{P}(i \in \mathcal{V} \mid S_{i} = 1)\mathbb{P}(S_{i} = 1) + \mathbb{P}(i \in \mathcal{V} \mid S_{i} = 0)\mathbb{P}(S_{i} = 0)} \\ &= \frac{p_{1}h_{1}\mathbb{P}(Y_{i} = 1) + (1 - p_{0})\{1 - \mathbb{P}(Y_{i} = 1)\}] + h_{0}\left[p_{0}\{1 - \mathbb{P}(Y_{i} = 1)\} + (1 - p_{1})\mathbb{P}(Y_{i} = 1)\right]}{h_{1}\left[p_{1}\mathbb{P}(Y_{i} = 1) + (1 - p_{1})h_{0}\right]\exp(\mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0})} \\ &= \frac{\{p_{1}h_{1} + (1 - p_{1})h_{0}\}\exp(\mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0})}{h_{1}\{p_{1}\exp(\mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0}) + (1 - p_{0})\} + h_{0}\{p_{0} + (1 - p_{1})\exp(\mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0})\}} \\ &= \frac{\exp(c + \mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0})}{1 + \exp(c + \mathbf{X}_{i}^{\top}\boldsymbol{\beta}_{0})}, \end{split}$$

where $c = \log [\{h_1p_1 + h_0(1-p_1)\}\{h_1(1-p_0) + h_0p_0\}^{-1}]$. Let $l_i(\boldsymbol{\beta})$ be the log-likelihood of Y_i , then

$$\nabla l_i(\boldsymbol{\beta}) = \left\{ Y_i - \frac{\exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})}{1 + \exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})} \right\} \mathbf{X}_i, \quad \nabla^2 l_i(\boldsymbol{\beta}) = \left[\frac{\exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta})}{\left\{ 1 + \exp(c + \mathbf{X}_i^{\top} \boldsymbol{\beta}) \right\}^2} \right] \mathbf{X}_i \mathbf{X}_i^{\top}$$

Therefore, we obtain the MLE estimator $\hat{\boldsymbol{\beta}}_{\mathcal{V}}$,

$$n^{1/2}\left\{\widehat{\boldsymbol{\beta}}_{\mathcal{V}}-\boldsymbol{\beta}_{0}-\binom{c}{\mathbf{0}}\right\}=n^{1/2}\{\mathbf{H}_{Y}'(\widehat{\boldsymbol{\beta}}_{\mathcal{V}})\}^{-1}\nabla\bar{l}_{\mathcal{V}}(\boldsymbol{\beta}_{0})\rightsquigarrow N\{\mathbf{0},\mathbf{G}_{y}^{-1}(\boldsymbol{\beta}_{0})\},$$

where $\nabla \overline{l}_{\mathcal{V}}(\boldsymbol{\beta}) = |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla l_i(\boldsymbol{\beta})$ and $\mathbf{H}'_Y(\widehat{\boldsymbol{\beta}}_{\mathcal{V}}) = \int_0^1 \nabla^2 \overline{l}_{\mathcal{V}} \{\widehat{\boldsymbol{\beta}}_{\mathcal{V}} + t(\widehat{\boldsymbol{\beta}}_{\mathcal{V}} - \boldsymbol{\beta}_0)\} dt$. Additionally, $\mathbf{G}_y(\boldsymbol{\beta}_0) = \mathbb{E}\{\nabla^2 l_i(\boldsymbol{\beta}_0)\}$ is the Fisher information matrix with respect to $\boldsymbol{\beta}_0$.

Combining all results, we can apply the formula in Chen and Chen (2000) and define

$$\widehat{\boldsymbol{\beta}}_{A} = \widehat{\boldsymbol{\beta}}_{\mathcal{V}} - \widehat{\mathbf{H}}_{Y}^{-1} \widehat{\mathbf{G}}_{SY} \widehat{\mathbf{G}}_{S}^{-1} \widehat{\mathbf{H}}_{S} (\widehat{\boldsymbol{\gamma}}_{\mathcal{V}} - \widehat{\boldsymbol{\gamma}}_{\mathcal{F}})$$
$$\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}}_{A}) = \widehat{\mathbf{H}}_{Y}^{-1} - (1 - |\mathcal{V}||\mathcal{F}|^{-1}) \widehat{\mathbf{H}}_{Y}^{-1} \widehat{\mathbf{G}}_{SY} \widehat{\mathbf{G}}_{S}^{-1} \widehat{\mathbf{G}}_{SY}^{\top} \widehat{\mathbf{H}}_{Y}^{-1},$$

where

$$\widehat{\mathbf{H}}_{Y} = |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla^{2} l_{i}(\widehat{\boldsymbol{\beta}}_{\mathcal{V}}), \quad \widehat{\mathbf{H}}_{S} = |\mathcal{F}|^{-1} \sum_{i \in \mathcal{F}} \nabla^{2} g_{i}'(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}})$$
$$\widehat{\mathbf{G}}_{SY} = |\mathcal{V}|^{-1} \sum_{i \in \mathcal{V}} \nabla l_{i}(\widehat{\boldsymbol{\beta}}_{\mathcal{V}}) \nabla g_{i}'^{\top}(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}), \quad \widehat{\mathbf{G}}_{S} = |\mathcal{F}|^{-1} \sum_{i \in \mathcal{F}} \nabla g_{i}'(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}) \nabla g_{i}'^{\top}(\widehat{\boldsymbol{\gamma}}_{\mathcal{F}}).$$

By the Slutsky's theorem, we have

$$|\mathcal{V}|^{1/2} \{ \widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}}_A) \}^{-1/2} \left\{ \widehat{\boldsymbol{\beta}}_A - \boldsymbol{\beta}_0 - \begin{pmatrix} c \\ \mathbf{0} \end{pmatrix} \right\} \rightsquigarrow N(\mathbf{0}, \mathbf{I}).$$

B Group Assignment with Fixed Total Validation Size

Recall that our setting gives

$$\mathbb{P}(Y_i = 1 \mid i \in \mathcal{V}) = \frac{\exp(c + \mathbf{X}_i^\top \boldsymbol{\beta}_0)}{1 + \exp(c + \mathbf{X}_i^\top \boldsymbol{\beta}_0)},$$

where $c = \log [\{h_1p_1 + h_0(1-p_1)\}\{h_1(1-p_0) + h_0p_0\}^{-1}]$. Let ρ_0 be the marginal prevalence of Y. Under the null hypothesis,

$$\rho_0 = \frac{\exp(b_0)}{1 + \exp(b_0)},$$

where b_0 is the intercept term. We hope $\mathbb{P}(Y_i = 1 \mid i \in \mathcal{V}) = 0.5$ in order to achieve a balanced comparison within \mathcal{V} . Therefore, $c + b_0 = 0$ and

$$\log\left\{\frac{h_1p_1 + h_0(1-p_1)}{h_1(1-p_0) + h_0p_0}\right\} + \log\left(\frac{\rho_0}{1-\rho_0}\right) = 0.$$

On the other hand, when the total validation size n is fixed, let $N_k = \sum_{i \in \mathcal{F}} \mathbb{I}(S_i = k)$ for $k = 1, 2, h_1 = n_1 N_1^{-1}$ and $h_0 = (n - n_1) N_0^{-1}$. Consequently,

$$\frac{n_1 N_1^{-1} p_1 + (n - n_1) N_0^{-1} (1 - p_1)}{n_1 N_1^{-1} (1 - p_0) + (n - n_1) N_0^{-1} p_0} \frac{\rho_0}{1 - \rho_0} = 1$$

$$\frac{n_1 \left\{ N_1^{-1} p_1 - N_0^{-1} (1 - p_1) \right\} \rho_0 + n N_0^{-1} (1 - p_1) \rho_0}{n_1 \left\{ N_1^{-1} (1 - p_0) - N_0^{-1} p_0 \right\} (1 - \rho_0) + n N_0^{-1} p_0 (1 - \rho_0)} = 1.$$

This leads to our conclusion:

$$n_1 = \frac{nN_1 \{p_0(1-\rho_0) - (1-p_1)\rho_0\}}{\{N_0p_1 - N_1(1-p_1)\}\rho_0 - \{N_0(1-p_0) - N_1p_0\}(1-\rho_0)}.$$
(1)

However, in rare disease studies, often, ρ_0 is so low that the required n_1 goes far beyond n. In this case, we hope to make c as large as possible:

$$n_{1} = \underset{n_{1} \in [0,n]}{\arg \max} \frac{n_{1} \left\{ N_{0} p_{1} - N_{1} (1 - p_{1}) \right\} + n N_{1} (1 - p_{1})}{n_{1} \left\{ N_{0} (1 - p_{0}) - N_{1} p_{0} \right\} + n N_{1} p_{0}}$$
(2)

Especially, when both ρ_0 and $1 - p_1 \rightarrow 0$, we can set $n_1 = n$ and $n_0 = 0$ to select as many cases as possible.

C Additional Simulation Results

This section provides additional simulation results of the model specified in Section 3.1 when $p_1 = 60\%$ and 80%. Box plots of MSE and empirical average coverage probabilities are presented.

Additional simulation results for the power comparisons with prevalence of 3%/5% are

Prevalence (%)	$p_0(\%)$	Oracle	Ori-Unif	Aug-Unif	Ori-Bias	OSCA
5	60	95	95	94	96	95
	80	95	95	95	95	95
	90	95	95	94	95	94
10	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	94
30	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	94
50	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	94

Table 2: Empirical average coverage probabilities at 95% level for $p_1 = 60\%$. Different combinations of prevalence and specificity are demonstrated.

Table 3: Empirical average coverage probabilities at 95% level for $p_1 = 80\%$. Different combinations of prevalence and specificity are demonstrated.

Prevalence (%)	$p_0(\%)$	Oracle	Ori-Unif	Aug-Unif	Ori-Bias	OSCA
5	60	95	95	94	95	95
	80	95	95	94	95	95
	90	95	95	94	95	94
10	60	95	95	95	95	95
	80	95	95	95	95	94
	90	95	95	94	95	94
30	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	95
50	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	95

Figure 6: Box plots of the empirical MSE. Five methods are compared with fixed $p_1 = 60\%$. Each column gives results at different specificities (90%, 80% and 60%) and each row for different prevalence. The red, the gold, the green, the blue and the purple boxes respectively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the original biased-sampling method and the proposed method.

Figure 7: Box plots of the empirical MSE. Five methods are compared with fixed $p_1 = 80\%$. Each column gives results at different specificities (90%, 80% and 60%) and each row for different prevalence. The red, the gold, the green, the blue and the purple boxes respectively stand for the oracle method, the uniform-sampling method, the Aug-Unif method, the original biased-sampling method and the proposed method.

given in Figure 8.

Alternative Hypothesis

Figure 8: Power comparisons under different alternative hypotheses. Total validation sample size was varied from 200 to 2000. Combinations of prevalence at 3%/5% and alternative hypotheses $\beta_1 = 0.3/0.5$ were presented. In all panels, gold, green, blue, and purple lines stand for Ori-Unif, Aug-Unif, Ori-Bias and OSCA respectively.

References

- Chen, Y. and Chen, H. (2000). A unified approach to regression analysis under doublesampling designs. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 62(3):449–460.
- White, H. (1982). Maximum likelihood estimation of misspecified models. *Econometrica*, 50(1):1–25.

Table 4: Empirical average coverage probabilities at 95% level for $p_1 = 90\%$. Different combinations of prevalence and specificity are demonstrated.

Prevalence (%)	$p_0(\%)$	Oracle	Ori-Unif	Aug-Unif	Ori-Bias	OSCA
5	60	95	95	95	96	95
	80	95	95	94	95	95
	90	95	95	94	96	94
10	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	94	95	94
30	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	94	95	94
50	60	95	95	95	95	95
	80	95	95	95	95	95
	90	95	95	95	95	95