Cell Reports Medicine, Volume 2

Supplemental information

Stage-stratified molecular profiling

of non-muscle-invasive bladder cancer enhances

biological, clinical, and therapeutic insight

Carolyn D. Hurst, Guo Cheng, Fiona M. Platt, Mauro A.A. Castro, Nour-al-dain S. Marzouka, Pontus Eriksson, Emma V.I. Black, Olivia Alder, Andrew R.J. Lawson, Sia V. Lindskrog, Julie E. Burns, Sunjay Jain, Jo-An Roulson, Joanne C. Brown, Jan Koster, A. Gordon Robertson, Inigo Martincorena, Lars Dyrskjøt, Mattias Höglund, and Margaret A. Knowles

		ion tangetea	sequencing. Its
ACAN	EGFR	LARP1B	RAD21
AHNAK2	ELF3	LGALS8	RARG
AKT1	EP300	LPHN3	RB1
ARHGAP18	EPG5	LRRC7	RBM10
ARHGEF10	ERBB2	MAGI3	RBM6
ARHGEF3	ERBB3	MAML1	RHOA
ARID1A	ERCC2	MAPK8IP3	RHOB
ARID2	ESPL1	MECOM	RREB1
ARID4A	FANCA	MYCBP2	RXRA
ASH1L	FAT1	MYO5B	RYR2
ASXL2	FAT2	NAT10	SCN1A
ATM	FAT3	NCOR1	SLC25A48
ATP6V1B2	FAT4	NCSTN	SPTAN1
ATP7B	FBXW7	NF1	STAG1
B3GNT9	FGFR3	NFE2L2	STAG2
BRAF	FMN1	NFE2L3	STK38
BRCA2	FOXA1	NOTCH1	SYNE1
BTG2	FOXQ1	NOTCH2	SYNE2
C10RF173	FREM2	NOTCH3	TET3
CACNA1D	HAUS6	NRAS	TEX15
CCND1	HEPACAM	OSMR	TNC
CCND3	HERC1	PAIP1	TP53
CDKN1A	HMCN1	PALM3	TRAK1
CDKN2A	HRAS	PCDHA9	TSC1
CDKN2B	HRNR	PDZD2	TSC2
CEP290	INADL	PGS1	TXNIP
CHD6	ITK	PHF3	UEVLD
CLTC	KDM3A	PIK3CA	USP47
CLU	KDM6A	PIK3R1	UTY
COL11A1	KIF16B	PIK3R4	VCAN
CPAMD8	KLF5	POLE	WHSC1L1
CREBBP	KMT2A	POLE2	WNK1
DLG4	KMT2C	POTEF	ZFHX3
DOPEY1	KMT2D	PTEN	ZFP36L1
DUX4L4	KRAS	RAB11FIP1	ZFYVE26

Table S2. Genes selected for targeted sequencing. Related to Figures 1-3.

D

Distribution of NMIBC copy number and expression subtypes

CN1 27.2%	CN2 24.4%	CN3 24.4%	CN4 24.4%	
E1 32%	E2 28%	E3 24%	E4 16%	

	CN1	CN2	CN3	CN4	
Stage T1	10%	30%	60%	96%	
High grade	30%	57%	74%	100%	
Progression	0%	<mark>7%</mark>	<mark>9%</mark>	23%	

	E1	E2	E3	E4
Stage T1	10%	33%	96%	77%
High grade	34%	47%	100%	97%
Progression	1.5%	0%	25%	16%

Supplementary Figure 1. Features of copy number and expression subtypes of all 217 NMIBC. Related to Figure 1.

(A) Fraction of genome altered (FGA) in copy number subtypes CN1-CN4. Analysis of copy number data from NGS and array-based platforms was restricted to those genomic regions associated with BAC clones present on the 1Mb resolution CGH array. Each region was assigned a copy number class (0 = no copy number alteration; 1 = gain; 2 = high-level amplification; -1 = loss; -2 = high-level loss). FGA is defined as the percentage of clones reporting significantly altered copy number (gain or loss).

(B) Kaplan-Meier plots of progression-free survival (PFS) of NMIBC patients according to Fraction of Genome Altered (FGA) with tumors assigned to arbitrary groups with <1% FGA (A), 1-<10% FGA (B), 10-<30% FGA (C) and \geq 30% FGA (D).

(C) Derivation of four NMIBC expression subtypes by two stage NMF analysis, showing subdivision of tumors of stage Ta and T1 into clusters and plots of cophenetic coefficients among k clusters for each analysis.

(D) Top, distribution of copy number and expression subtypes in 217 NMIBC. Lower panels show tumor stage, grade and progression frequencies according to subtypes.

(A) Kruskal-Wallis test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. (B) Log-rank analysis.

Supplementary Figure 2. Expression signatures, recurrence-free survival and progression-free survival of NMIBC subtypes. Related to Figure 1.

(A) Urothelial differentiation signature in NMIBC expression subtypes.

(B) Expression of early cell cycle genes in NMIBC expression subtypes.

(C) Expression of late cell cycle genes in NMIBC expression subtypes.

(D) Expression of DNA repair genes in NMIBC expression subtypes.

(E) Kaplan-Meier plots of recurrence-free survival (RFS) according to NMIBC copy number subtypes CN1-CN4 (left) and expression subtypes E1-E4 (right).

(F) Kaplan-Meier plots of PFS of patients with T1 tumors only according to NMIBC copy number (left) and expression subtypes (right).

(A-D) Group measurements compared using Kruskal-Wallis test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. Adjusted p values; ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. (E and F) Log-rank analysis.</p>

Supplementary Figure 3. Features of stage Ta tumors according to Ta-derived genomic and expression subtypes. Related to Figure 2.

(A) Heatmaps of z-scores derived by clustering of expression levels of differentially expressed gene categories in genomic subtypes GS1 and GS2. Top bar in each panel indicates GS1 and GS2 assignment.

(B) Recurrence-free survival (RFS) according to high and low tumor grade. Log-rank analysis.

(C) Percentage of APOBEC-related mutations according to Ta tumor genomic subtype.

(D) mRNA expression levels of APOBEC3A, 3B and 3H in Ta genomic subtype tumors.

(E) Left, plot of NMF consensus clusters for three Ta expression subtypes TaE1-TaE3. Right, plot showing cophenetic coefficients among k clusters.

(F) Relationships of Ta genomic and expression subtypes.

(G) Volcano plots of genes differentially expressed (LIMMA test) between Ta tumor expression subtypes TaE1-TaE3 with false discovery rate p<0.01. Numbers of significantly up-regulated genes in each comparison are indicated at the top of each plot. Selected genes are indicated.

(B) Log-rank analysis. (C and D) Mann-Whitney test. Mean, 25th and 75th percentiles, minimum and maximum values are shown. (F) Chi-square test with Bonferroni correction.

Supplementary Figure 4. Expression differences between stage Ta tumor genomic and expression subtypes. Related to Figure 2.

(A) Non-coding RNA signature (GO:16070) according to Ta expression subtypes.

(B) MA plot of genes differentially expressed between TaE1 and T1E3. Small nucleolar RNAs with higher expression in T1E1 are marked in red.

(C) Expression of UCA1 in Ta expression subtypes.

(D) FGFR3-related signature according to Ta expression subtypes. FGFR3 mutation frequencies are indicated.

(E) Scores for expression of transcription factors (TFs) implicated in urothelial differentiation.

(F) Heatmap of regulon activity for 373 regulons with differential activity in stage Ta tumors supervised by Ta expression subtype. Expression and genomic covariates are shown below.

(G) Heatmap of z-scores for genes in GO:6955 "Immune response" in Ta expression subtypes TaE1 and TaE3.

(H) Scores for selected immune signatures [S1] in Ta expression subtypes. Activated DC8+ (left); EM, effector memory (middle); T reg, T regulatory (right).

(I) Expression levels of granzyme (GZMA) (left) and perforin 1 (PRF1) (right) in Ta expression subtypes.

(A, C, D, E, H and I) Group measurements compared using Kruskal-Wallis test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. Adjusted p values; ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

Table S4. snoRNAs differential	y ex	pressed in com	parisons of	Ta e>	pression subgr	oups. Ro	elated to Fig	ure 2.
--------------------------------	------	----------------	-------------	-------	----------------	----------	---------------	--------

TaE1	L vs 2	TaE1 vs 3			
SNORA11	SNORD119	SNORA11	SNORD15B		
SNORA12	SNORD11B	SNORA12	SNORD18A		
SNORA14A	SNORD12	SNORA14A	SNORD32B		
SNORA20	SNORD126	SNORA20	SNORD35B		
SNORA21	SNORD127	SNORA21	SNORD37		
SNORA22	SNORD12B	SNORA22	SNORD41		
SNORA23	SNORD13	SNORA23	SNORD42A		
SNORA24	SNORD14E	SNORA24	SNORD46		
SNORA26	SNORD15B	SNORA26	SNORD58A		
SNORA30	SNORD18A	SNORA30	SNORD58C		
SNORA37	SNORD32B	SNORA37	SNORD59B		
SNORA47	SNORD35B	SNORA47	SNORD60		
SNORA48	SNORD37	SNORA48	SNORD61		
SNORA49	SNORD41	SNORA49	SNORD70		
SNORA50	SNORD42A	SNORA50	SNORD71		
SNORA52	SNORD46	SNORA52	SNORD78		
SNORA54	SNORD58A	SNORA54	SNORD8		
SNORA57	SNORD58C	SNORA57	SNORD82		
SNORA5A	SNORD59B	SNORA5A	SNORD85		
SNORA65	SNORD60	SNORA65	SNORD9		
SNORA68	SNORD61	SNORA68	SNORD91B		
SNORA71B	SNORD70	SNORA71B	SNORD92		
SNORD10	SNORD71	SNORD10	SNORD94		
SNORD104	SNORD78	SNORD104	SNORD97		
SNORD105	SNORD8	SNORD105	SNORD99		
SNORD105B	SNORD82	SNORD105B	SNORA28		
SNORD11	SNORD85	SNORD11	SNORA71D		
SNORD111	SNORD9	SNORD111	SNORA76		
SNORD111B	SNORD91B	SNORD111B	SNORD12C		
SNORD116-1	SNORD92	SNORD116-1	SNORD59A		
SNORD116-11	SNORD94	SNORD116-11	SNORD63		
SNORD116-12	SNORD97	SNORD116-12	SNORA10		
SNORD116-14	SNORD99	SNORD116-14	SNORA14B		
SNORD116-15	SNORA45	SNORD116-15	SNORA16B		
SNORD116-16	SNORD113-5	SNORD116-16	SNORA38B		
SNORD116-18	SNORD115-14	SNORD116-18	SNORA5C		
SNORD116-2	SNORD53	SNORD116-2	SNORA70C		
SNORD116-23	SNORD93	SNORD116-23	SNORA70D		
SNORD116-24	SNORA28	SNORD116-24	SNORA70E		
SNORD116-25	SNORA71D	SNORD116-25	SNORA71A		
SNORD116-26	SNORA76	SNORD116-26	SNORA71C		
SNORD116-27	SNORD12C	SNORD116-27	SNORA80B		
SNORD116-29	SNORD59A	SNORD116-29	SNORD121A		
SNORD116-8	SNORD63	SNORD116-8	SNORD123		
SNORD117	SNORD90	SNORD117	SNORD14A		
		SNORD119	SNORD15A		
		SNORD11B	SNORD16		
		SNORD12	SNORD3A		
		SNORD126	SNORD3C		
		SNORD127	SNORD69		
		SNORD12B	SNORD83A		
		SNORD13	SNORD91A		
		SNORD14E	SNORD116-13		
		-			

Supplementary Figure 5. Genomic features of stage T1 tumors. Related to Figure 3.

(A) Fraction of Genome Altered (FGA%) according to T1 copy number subtypes T1CN1-T1CN4.

(B) Kaplan-Meier plots of PFS according to T1 copy number subtypes T1CN1-T1CN4.

(C) Kaplan-Meier plots of PFS according to Fraction of Genome Altered (FGA) of patients with T1 tumors assigned to arbitrary groups with <1% FGA (A), 1-<10% FGA (B), 10-<30% FGA (C) and $\geq 30\%$ FGA (D).

(D) Kaplan-Meier plots of progression-free survival (PFS) according to tumor mutational burden. High, top 25%; Mid, middle 50%; Low, lowest 25%.

(E) Trinucleotide mutational profiles from two signatures extracted from whole exome data using NMF analysis in MutationalPatterns.

(F) Heatmap generated in MutationalPatterns showing identification of COSMIC mutational signatures in T1 tumors. Signatures 2 and 13 which are attributed to the activity of APOBEC cytidine deaminases, SBS1 and SBS5 are indicated.

(G) Comparison of the frequencies of mutations identified \geq 5% of T1 tumors with those reported in muscleinvasive bladder tumors [S2].

(H) Oncoplot showing genes mutated in \ge 9% of T1 tumors. Data for genes included in the 140 gene target capture. See Table S5 for prediction of oncogenic drivers from whole exome data.

(A) Kruskal-Wallis test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. Adjusted p values; ****p<0.0001, **p<0.01. (B-D) Log-rank analysis. (G) Fisher's exact test with Bonferroni correction. Asterisks indicate p<0.01.

Table S6. dNdScv analysis of exome data from T1 tumors. Related to Figure 3.

Gene	Synonymous mutations	Missense mutations	Nonsense mutations	Essential splice site	Indels	dN/dS – missense*	dN/dS – nonsense*	dN/dS – indels*	q-value missense mutations	q-value truncating mutations	q-value (all genes)	q-value (known bladder cancer genes)	significance all genes	known bladder cancer genes
KDM6A	2	4	9	2	12	1.485510846	28.06428314	59.51189176	0.792690954	1.84E-06	2.17E-12	6.88E-15	TRUE	TRUE
TP53	0	13	4	0	4	20.25419979	58.93851075	71.99831236	3.16E-05	0.010714376	6.84E-11	2.17E-13	TRUE	TRUE
ELF3	1	4	2	0	9	5.371672988	26.28859173	171.5766234	0.783760701	0.897278091	1.82E-09	5.76E-12	TRUE	TRUE
ARID1A	2	8	11	1	6	1.970017649	30.86657391	18.61373692	0.783760701	2.87E-07	4.48E-09	1.42E-11	TRUE	TRUE
FGFR3	2	21	0	0	2	11.86845137	0	17.53234553	1.77E-05	0.897278091	4.73E-06	1.50E-08	TRUE	TRUE
RB1	0	0	3	1	5	0	19.58206803	38.16918067	0.783760701	0.384810895	0.000228603	7.25E-07	TRUE	TRUE
CDKN1A	0	2	1	0	4	6.352842167	28.29451632	171.9232429	0.783760701	0.897278091	0.00043603	1.38E-06	TRUE	TRUE
KMT2D	2	13	8	2	7	1.785312361	14.09890579	8.964036904	0.783760701	0.002188136	0.00043603	1.38E-06	TRUE	TRUE
ZFP36L1	1	5	1	0	4	7.453908566	30.21378992	83.67945449	0.783760701	0.897278091	0.00043603	1.38E-06	TRUE	TRUE
ARID2	1	4	10	0	0	1.411549215	24.34705699	0	0.817148289	4.00E-05	0.000820136	2.60E-06	TRUE	TRUE
FAM229A	0	3	0	0	3	11.49345738	0	166.2148539	0.783760701	0.897357875	0.003971316	NA	TRUE	FALSE
ERCC2	1	13	0	0	1	9.508835961	0	9.31909825	0.020714612	0.897278091	0.028903276	0.0001057	FALSE	TRUE
SPA17	0	2	0	0	3	7.424679135	0	139.9704033	0.783760701	0.897278091	0.028903276	NA	FALSE	FALSE
TSC1	5	7	3	2	3	1.955453408	13.71759019	18.26223288	0.783760701	0.263760412	0.028903276	0.0001057	FALSE	TRUE
PTEN	0	2	2	0	3	3.11728669	28.404692	52.66213194	0.783760701	0.897278091	0.028903276	0.0001057	FALSE	TRUE
CREBBP	0	12	5	0	3	4.380993841	16.70750866	8.708760255	0.783760701	0.263760412	0.033449633	0.000121161	FALSE	TRUE
EP300	8	13	3	0	7	1.58981765	2.760988549	20.55603991	0.783760701	0.897278091	0.264231139	0.0012841	FALSE	TRUE
ERBB3	1	12	0	0	1	5.501520469	0	5.280591041	0.783760701	0.897278091	0.999804434	0.007835389	FALSE	TRUE
PIK3CA	1	10	0	0	1	5.452910411	0	6.634082103	0.783760701	0.897278091	0.999804434	0.011517583	FALSE	TRUE
STAG2	1	2	1	1	3	0.861942431	6.510764538	16.76556446	0.940156287	0.897278091	0.999804434	0.016367923	FALSE	TRUE
FBXW7	2	7	3	0	0	4.564784934	16.05640084	0	0.783760701	0.897278091	0.999804434	0.016460315	FALSE	TRUE
ERBB2	5	13	0	1	1	3.896005194	3.101184214	5.646364465	0.783760701	0.897278091	0.999804434	0.021392185	FALSE	TRUE
RHOA	1	3	0	0	1	8.248049147	0	36.55584416	0.783760701	0.897278091	0.999804434	0.024896042	FALSE	TRUE
KANSL1	0	0	2	0	1	0	11.5226294	6.412146264	0.783760701	0.897278091	0.999804434	0.025531368	FALSE	TRUE
GNA13	2	5	0	0	1	5.485490625	0	18.76146499	0.783760701	0.897278091	0.999804434	0.028946739	FALSE	TRUE

* Maximum likelihood estimates obtained by dNdScv for missense mutations, nonsense mutations and indels. Grey shading indicates results from restricted hypothesis testing of known bladder cancer genes (qrht < 0.05). FAM229A excluded as somatic missense mutations create a rare germline SNP of unknown significance. SPA17 excluded as all mutations in same sample.

Table S7. ERBB2 and ERBB3 mutations and ERBB2 copy number in T1 tumors. Related to Figure 4.

Sample	ERBB2 mutation	ERBB3 mutation	ERBB2 copy	ERCC2 mutation status	Expression	Copy number
1091	ΝΔ	ΝΔ	number status	ΝΔ	subtype	subtype
1106	n S310E· n C311Sfs*10	n P5905	Normal	n E606K· n V604Rfs*103	1	1
1137	Wildtyne	Wildtyne	Normal	n T484M	1	1
1315	NA	NA	Normal	NA	1	1
1408	Wildtype	Wildtype	Loss	p.E86O	- 1	- 1
2020	Wildtype	Wildtype	Normal	Wildtype	1	1
2046	Wildtype	Wildtype	Normal	Wildtype	1	1
2390	Wildtype	Wildtype	Normal	p.N238S	1	1
589	NA	NA	Normal	NA	2	1
1062	p.A1243T; c.1737+2T>C	p.G284R	Normal	Wildtype	2	1
571	NA	NA	Normal	NA	3	1
1279	p.D636Pfs*8	Wildtype	Normal	p.N238S	3	1
1318	Wildtype	Wildtype	Normal	p.T76I	3	1
1747	Wildtype	Wildtype	Normal	p.V242F	3	1
1831	p.N259S	p.E150K	Normal	p.S381F; p.T484M	3	1
2165	Wildtype	Wildtype	Normal	Wildtype	3	1
2437	Wildtype	Wildtype	Normal	Wildtype	3	1
1729	Wildtype	Wildtype	Normal	Wildtype	4	1
1/66	Wildtype	p.M4331	Normal	p.G665A	4	1
2138	Wildtype	Wildtype	Normal	Wildtype	4	1
94	vvilatype	vvildtype	Normal	wildtype	1	2
315	NA M/ildtures		Normai	NA Mildture e	1	2
227	vviidtype	windtype	Amp/Gam	windtype	1	2
109/	NA	NA	Normal	ΝΔ	1	2
1210	NA	NΔ	Amn/Gain	NΔ	1	2
1210	Wildtyne	Wildtyne	Normal	Wildtyne	1	2
1481	Wildtype	Wildtype	Normal	Wildtype	1	2
1968	Wildtype	Wildtype	Normal	Wildtype	1	2
2103	p.S310F	Wildtype	Amp/Gain	Wildtype	1	2
2272	Wildtype	Wildtype	Normal	Wildtype	1	2
1358	Wildtype	p.R679Q	Amp/Gain	Wildtype	2	2
1428	Wildtype	Wildtype	Normal	p.N238S	2	2
1457	Wildtype	Wildtype	Normal	Wildtype	2	2
1629	Wildtype	Wildtype	Normal	Wildtype	2	2
1978	Wildtype	p.V104L	Normal	Wildtype	2	2
2056	Wildtype	Wildtype	Amp/Gain	Wildtype	2	2
2155	Wildtype	Wildtype	Amp/Gain	Wildtype	2	2
555	Wildtype	Wildtype	Normal	Wildtype	3	2
936	Wildtype	Wildtype	Normal	Wildtype	3	2
940	Wildtype	Wildtype	Normal	Wildtype	3	2
1395	Wildtype	Wildtype	Normai	Wildtype	3	2
1445	Wildtype	Wildtype	Allip/Galli Normal	Wildtype	с С	2
1633	Wildtype	Wildtype	Normal	Wildtype	3	2
1679	Wildtype	Wildtype	Normal	Wildtype	3	2
1810	Wildtype	Wildtype	Normal	p.P463S	3	2
1933	Wildtype	Wildtype	Amp/Gain	Wildtype	3	2
2175	Wildtype	Wildtype	Normal	p.E86Q	3	2
377	Wildtype	Wildtype	Normal	Wildtype	4	2
418	Wildtype	Wildtype	Normal	Wildtype	4	2
534	Wildtype	Wildtype	Normal	Wildtype	4	2
1234	Wildtype	Wildtype	Amp/Gain	Wildtype	4	2
1817	p.R103Q	p.Q298E	Amp/Gain	p.Q662H	4	2
1087	Wildtype	Wildtype	Normal	Wildtype	1	3
1138	NA	NA	Normal	NA	1	3
1145	NA	NA	Normal	NA	1	3
1325	Wildtype	Wildtype	Normal	p.L633V	1	3
1392	Wildtype	Wildtype	Normal	Wildtype	1	3
2429	wildtype	whatype	Normal	wildture	1	3
סכ / 1022	Wildtype	Wildtype	Normal	Wildtype	2	3
1023	whatype	whatype	Normal	whatype	2	J

1252	Wildtype	Wildtype	Amp/Gain	Wildtype	2	3
1300	p.E766Q; p.G778D	p.G582E	Normal	Wildtype	2	3
1407	Wildtype	Wildtype	Normal	Wildtype	2	3
1517	Wildtype	Wildtype	Normal	Wildtype	2	3
1735	Wildtype	Wildtype	Normal	Wildtype	2	3
2022	Wildtype	Wildtype	Amp/Gain	Wildtype	2	3
1860	p.V697L	Wildtype	Amp/Gain	p.N238S	3	3
2356	Wildtype	Wildtype	Normal	Wildtype	3	3
2224	p.R103Q	p.Q298E	Normal	p.T76I	4	3
393	Wildtype	Wildtype	Amp/Gain	Wildtype	2	4
544	Wildtype	Wildtype	Amp/Gain	Wildtype	2	4
1211	Wildtype	Wildtype	Loss	Wildtype	2	4
1934	Wildtype	Wildtype	Amp/Gain	Wildtype	2	4
2000	Wildtype	Wildtype	Loss	Wildtype	2	4
2033	p.L651V	Wildtype	Normal	Wildtype	2	4
2139	p.S250F; p.S609Y	Wildtype	Amp/Gain	p.N238S	2	4
2169	Wildtype	Wildtype	Normal	Wildtype	2	4
2178	Wildtype	Wildtype	Normal	Wildtype	2	4
2222	Wildtype	p.K747N	Normal	Wildtype	2	4
132	p.E238Q; p.S310F	p.1600M	Normal	Wildtype	3	4
435	p.E507K	p.M91I; p.E150*	Amp/Gain	p.S246F	3	4
1047	Wildtype	Wildtype	Amp/Gain	Wildtype	3	4
1124	Wildtype	Wildtype	Amp/Gain	Wildtype	3	4
1974	Wildtype	Wildtype	Normal	Wildtype	3	4
2058	Wildtype	Wildtype	Amp/Gain	Wildtype	3	4
411	NA	NA	Amp/Gain	NA	4	4
930	NA	NA	Amp/Gain	NA	4	4
1016	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
1249	Wildtype	Wildtype	Normal	Wildtype	4	4
1419	Wildtype	p.V104L	Normal	p.T484M	4	4
1503	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
1530	Wildtype	Wildtype	Normal	Wildtype	4	4
1559	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
1745	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
1853	p.D277H	Wildtype	Amp/Gain	Wildtype	4	4
1947	Wildtype	Wildtype	Amp/Gain	p.R658G	4	4
2037	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
2064	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4
2214	Wildtype	p.L74F	Amp/Gain	p.Y24C	4	4
2223	Wildtype	p.D863N	Normal	p.E606Q	4	4
2267	Wildtype	Wildtype	Normal	p.N238S	4	4
2423	Wildtype	Wildtype	Amp/Gain	Wildtype	4	4

В

Beta(t) for Group

10

0

Testing proportional hazards

assumption for PFS data

Global Schoenfeld Test p: 0.4195

Group

T1E1 (N=22)

T1E2 (*N=20*)

Р

0.302

0.147

0.067

Р

0.182

0.182

0.068

Weighted cox regression under nonproportional hazards assumption

Group	Hazard Ra	atio (95	% CI; RF	S)	P
T1E1 <i>(N=22)</i>	Reference	H			
T1E2 <i>(N=22)</i>	1.9 (0.73 – 5.0)		-	_	0.184
T1E3 <i>(N=25)</i>	1.9 (0.77 – 4.8)	-	-		0.161
T1E4 <i>(N=24)</i>	2.4 (0.98 – 6.0)	-			0.055
		1	2	5	

**

k=2

k=2

26

Reference

3.3

(0.34 - 32)

4.9 (0.57 – 42)

7.1 *(0.87 – 58)*

27

26

Cox regression under proportional

hazards assumption

Hazard Ratio (95% CI; PFS)

Hazard Ratio (95% CI; RFS)

0.5 1 2 5 10 20 50

2

4

25

Supplementary Figure 6. Derivation and features of T1 tumor expression subtypes. Related to Figure 5.

(A) Derivation of four stage T1 expression subtypes by two stage NMF analysis, showing numbers of tumors in clusters and plots of cophenetic coefficients among k clusters for each analysis.

(B) Left, Schoenfeld plots for RFS and PFS data for T1 expression subtypes (see STAR Methods). Middle and right, forest plots showing results of Cox regression analyses under proportional and non-proportional hazards assumptions for RFS and PFS of T1 expression subtypes using the 'coxph' function (Therneau, 2021; R package version 3.2-13, 2021. https://CRAN.R-project.org/package=survival) and 'coxphw' [S3].

(C) Fraction of genome altered (FGA) according to T1 expression subtypes.

(D) Scores for expression of transcription factors (TFs) implicated in urothelial differentiation according to T1 expression subtypes.

(E) Heatmap of regulon activity for 286 regulons with differential activity in stage T1 tumors supervised by T1 expression subtype. Expression and genomic covariates are shown below.

(C and D) Kruskal-Wallis test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. Adjusted p values; ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

Supplementary Figure 7. Relationship of PPARG signature to immune infiltration in NMIBC. Related to Figure 6.

(A) Heatmap of z-scores for genes in a T-cell inflamed signature [S4] in T1 expression subtypes.

(B) Expression scores for a panel of epithelial marker genes (see Methods) used to provide an estimate of epithelial tumor cell content in T1 samples. Samples with zscores < -0.05 indicated by black dots were removed from analysis of the relationship of PPARG signature and tumor infiltration. Mean, 25th and 75th percentiles, minimum and maximum values are shown.

(C) Heatmap of z-scores for pro-inflammatory chemokines that attract effector T cells that were shown to be regulated by PPARG in T24 bladder tumor cells [S5] in T1 expression subtypes.

(D) Heatmap of z-scores for 60-gene immune signature [S6] in T1 tumors reported in the first UROMOL study [S7] (ArrayExpress: E-MTAB-4321). Graph below shows correlation of PPARG and immune signatures scores.

(E) Heatmap of z-scores for 60-gene immune signature in T1 tumors from the study of Sjodahl *et al* [S8] (GSE: 32894). Graph below shows correlation of PPARG and immune signatures scores.

(F) PPARG signature score in Ta expression subtypes.

(G) Correlation of PPARG signature and urothelial differentiation signature in Ta samples.

(F) Kruskal-Wallis test test with Dunn's multiple comparison correction. Mean, 25th and 75th percentiles, minimum and maximum values are shown. Adjusted p values; ****p<0.0001, ***p<0.001, **p<0.001. (D and E lower panels and G) Pearson r.

Supplemental references

- S1. Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., and Trajanoski, Z. (2017). Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep 18, 248-262. 10.1016/j.celrep.2016.12.019.
- S2. Robertson, A.G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A.D., Hinoue, T., Laird, P.W., Hoadley, K.A., Akbani, R., et al. (2017). Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 540-556. 10.1016/j.cell.2017.09.007.
- S3. Dunkler, D., Ploner, M., Schemper, M., and Heinze, G. (2018). Weighted Cox Regression Using the R Package coxphw. J Statistical Software 84. doi: 10.18637/jss.v084.i02.
- S4. Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman, D.R., Albright, A., Cheng, J.D., Kang, S.P., Shankaran, V., et al. (2017). IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. *127*, 2930-2940. 10.1172/JCI91190.
- S5. Korpal, M., Puyang, X., Jeremy Wu, Z., Seiler, R., Furman, C., Oo, H.Z., Seiler, M., Irwin, S.,
 Subramanian, V., Julie Joshi, J., et al. (2017). Evasion of immunosurveillance by genomic alterations of PPARgamma/RXRalpha in bladder cancer. Nat Commun *8*, 103. 10.1038/s41467-017-00147-w.
- S6. Danaher, P., Warren, S., Dennis, L., D'Amico, L., White, A., Disis, M.L., Geller, M.A., Odunsi, K.,
 Beechem, J., and Fling, S.P. (2017). Gene expression markers of Tumor Infiltrating Leukocytes.
 Journal for immunotherapy of cancer 5, 18. 10.1186/s40425-017-0215-8.
- S7. Hedegaard, J., Lamy, P., Nordentoft, I., Algaba, F., Hoyer, S., Ulhoi, B.P., Vang, S., Reinert, T., Hermann, G.G., Mogensen, K., et al. (2016). Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell 30, 27-42. 10.1016/j.ccell.2016.05.004.
- S8. Sjodahl, G., Lauss, M., Lovgren, K., Chebil, G., Gudjonsson, S., Veerla, S., Patschan, O., Aine, M., Ferno, M., Ringner, M., et al. (2012). A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377-3386. 10.1158/1078-0432.CCR-12-0077-T.