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SUPPORTING METHODS

Molecular dynamics simulations protocol - replicas

Two replicas of molecular dynamics simulations 1 ps long were carried out for each system
(aglycosylated, GO and GOF antibodies) by AMBER 20 software (1) handled by the MOE graphical
user interface (2). As well as for the first simulation, the AMBER10:EHT force field (3) was used to
parametrize the systems and the TIP3P water model was chosen for solvent parametrization. The
systems were configured by MOE: the Langevin thermostat was applied for temperature control, the
Monte Carlo barostat was used to set constant pressure, and the simulations were carried out in the
NPT ensemble (T=300 K, P=100 kPa). Exactly as in the first simulation, sample time was set to 10
ps and the integration time step to 2 fs. Systems were minimized for 5000 steps and a heating phase
was performed for 100 ps. Then, an equilibration phase of 100 ps in the NVT and another one of 200
ps in the NPT ensemble were carried out before the production step.



SUPPORTING FIGURES & TABLES

AMBER10:EHT ff AMBER10:EHT ff
/ o ND2-C1 and C-O bond distances ppos O-C bonds distances

PRI o

‘b’\ ‘ o 10( 125 1
"%: G2 chain Time fns)

G2 chain CHARMMS3S ff CHARMMZ36 ff
ND2-C1 and C-O bond distances o O-C bond distances

& = = = = N

B N-acetylglucosamine

).000

Mannose 0 C 75 100 125 1% 175 200
Galactose

Figure S1. AMBER10:EHT parameters validation for glycans treatment in our study. (A) On
the top, the NMR structure of glycosylated hCG used as reference and represented as a ribbon loop.
Glycans are represented as sticks colored according to the SNFG system. On the bottom a schematic
representation of G2 glycan chain according to the SNFG system. (B) Glycosydic bond distances
computed during the MD simulation performed by NAMD 2.13 with AMBER10:EHT force field.
(C) Glycosydic bond distances computed during the MD simulation performed by GROMACS
2020.1 with CHARMM36 force field. In both simulations the bond length range is conserved among
all sugars couples and among the protein and glycans.




Table S1: Experimentally calculated glycosidic bonds distances of a G2 chain.

Residue Couple

C-O distance (nm)

O-C distance (nm)

ND2-C1 distance (nm)

Asn78-NAG1
NAG1-NAG2
NAG2-MAN3
MAN3-MAN4
MAN3-MAN5
MAN4-NAG6
MANS5-NAG7
NAG6-GALS
NAG7-GAL9

0.144
0.144
0.144
0.144
0.143
0.144
0.145
0.144

0.139
0.138
0.140
0.140
0.138
0.139
0.139
0.139

0.144

The table reports NOE distances calculated for a G2 chain linked to human chorionic gonadotropin
(hCG) for which the 3D structure was experimentally solved by NMR (1HD4.pdb). Sugars couples
are numbered in a progressive way and the following abbreviations are used: N-acetylglucosamine
(NAG), mannose (MAN), galactose (GAL).
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Figure S2. Autocorrelation plot of potential energy. Autocorrelation plot of potential energy

computed for three systems. In all cases the autocorrelation value stabilizes under the confidence
band within the first 5000 snapshots that corresponds to 50 ns of simulation.
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Figure S3. RMSD of single Fab domains. (A) On the left the RMSD profile of Fabl domains
computed for aglycosylated (blue), GO (green) and GOF (orange) antibodies. On the right, the
structural superposition of two representative conformations of GOF Fabl sampled during the
dynamics, corresponding to 100 ns and 350 ns checkpoints. The Fab structures are rendered as
ribbons colored both according to constant color and to an RMSD gradient, showing a variation of
domain orientation that explains the shift in RMSD profile. (B) The RMSD profile of Fab2 domains
computed for aglycosylated (blue), GO (green) and GOF (orange) antibodies. All the domains show
comparable and stable trends further confirming the convergence of simulations.
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Figure S4: RMSD analysis of replicas 2 and 3. (A) RMSD of C-alpha atoms computed for
aglycosylated (blue), GO (green) and GOF (orange) mADbs in replica 2, showing three different trends
asinreplica 1. (B) RMSD of single antibody domains in replica 2 (Fabl, Fab2 and Fc), showing that
all of them conserve their structure during the dynamics. (C) RMSD of C-alpha atoms computed for
aglycosylated (blue), GO (green) and GOF (orange) mAbs in replica 3, showing three different trends
as in replicas 1 and 2. (D) RMSD of single antibody domains in replica 3 (Fabl, Fab2 and Fc),
showing that all of them conserve their structure during the dynamics, with some variation observed
for Fc in GO antibody.
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Figure S5: RMSF of C-alpha atoms in the three replicas. In panels (A-C) the RMSF of C-alpha
atoms computed for each antibody domain in replicas 1, 2 and 3, respectively. The calculation was
performed excluding the first 200 ns of trajectories, since considered as equilibration phase, with
respect to the mean structure. All domains show comparable fluctuation trends, with small differences
recognized for Fabl GOF in replica 1, that fluctuates more than others, explaining also the different
RMSD trend of this domain (see Fig. S3) and for the first CH2 domain of Fc GO that fluctuates more
in all the replicas, suggesting a conformational change in this region.
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Figure S6: Cluster analysis. Cluster matrices showing the identified groups with an RMSD-based 7
A threshold. On x-axis, the timeframes (the first 200 ns were excluded from calculation), on y-axes,
the number of frames included in each cluster and the frame corresponding to the medoid structure.
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Figure S7: Radius of gyration of C-alpha atoms by replica. (A) The Rg computed for the
aglycosylated mADb in the three simulations and the corresponding medoid structures isolated by
clustering show the propensity of this antibody to reach different states. (B) The Rg computed for the
GO0 mAb in the three simulations and the corresponding medoid structures isolated by clustering show
the propensity of this antibody to maintain a Y-shaped form. (C) The Rg computed for the GOF mAb
in the three simulations and the corresponding medoid structures isolated by clustering show the
propensity of this antibody to assume a T-shaped form.
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Figure S8: Distribution of the distances between CH2 domains by replica. (A-C) Box plots of
CH2 domains distances computed between the two glycosylated Asn residues (Asn301, Asn297
according to the standard EU numbering) in the last 6,000 timeframes of each simulation. Globally,
this analysis shows how the CH2 domains of Fc portion in GO antibody are more distant (approx. 4-
5 nm) than in GOF mAb which values span between approx. 2.5 and 3.5 nm. Considering the
aglycosylated antibody, distance values can vary a lot, exploring conformations similar to both GO
and GOF, because of the higher instability of this antibody. On y-axis the distance in nm is reported;
on x-axis the antibody species. Outliers are shown as diamonds.
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Figure S9: Angles ¢ and 0 by replica and structural superposition of 30 conformations per
antibody. (A-C) Scatter plots of ¢ and 6 angles computed for Fab1 and Fab2 of each antibody in each
replica. As a result, in all the simulations Fab2 positions are quite conserved exploring very similar
values of ¢ and 0 angles, while Fab1 domains show different trends. (D) The structural alignment of
30 conformations per each mAb (10 per replica) better show that the Fab2 position is conserved in
all antibodies, while Fabl reaches different conformations according to the glycosylation pattern. The
aglycosylated antibody results to explore more than others, probably due to the absence of glycans
allosteric modulation.
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Figure S10: Cumulative distribution of ¢ and 6 angles. Box plots representing the distribution of
¢ (A) and 0 (B) angles for Fab1 and Fab2 considering 18,000 timeframes as the sum of the last 6,000
timeframes of each simulation. To better represent ¢ angle values and to avoid graphical issues due
to the periodicity, a value of 360° was summed to the original angle when ¢ > 90°, while a value of
360° was subtracted when ¢ > 270°. As a result of the distribution, in all the species Fab2 explores
less than Fabl with more comparable values on both ¢ and 6 dimensions. Moreover, focusing on
Fabl, the aglycosylated antibody shows the highest variability on both angles, the GO mAb results to
explore especially on phi, and the GOF one tends to change both ¢ and 6, suggesting in the first case
a rotation of the Fab and in the second one the collapse onto the Fc.
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Figure S11: Normalized principal component analysis by replica. In this plot, the normalized
eigenvalues vs eigenvector numbers. The sum of the first three component describes for each antibody
more than 80% of its dynamics, that can be considered sufficient to cover the principal motions of
the proteins. However, the 95% of motion is globally described by the first 5 PC in the aglycosylated
system, by the first 7 in the GO one and by the first 6 in GOF antibody.

Table S2: Eigenvalues corresponding to the first three eigenvectors of replica 1.

Aglycosylated mAb GO mAb GOF mADb
Eigenvector 1 338.99 518.02 573.60
Eigenvector 2 210.73 167.13 214.44
Eigenvector 3 135.82 48.28 77.40
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Figure S12: Normalized dihedral-angle distributions of glycan chains by replica. The dihedral-
angle distributions of GO and GOF chains in replica 1 (A), replica 2 (B) and replica 3 (C). All the
angles show a unimodal distribution that suggests the stability of glycans conformation. (D) The
schematic representation of GO/GOF chains with the numbering used in the plots.



Aglycosylated mAb

Figure S13: Solvent analysis by replica. Solvent analysis performed by 3D-RISM on aglycosylated,
GO0 and GOF mADs in the three replicas. In the picture, the top view of CH2 domains is shown as grey
ribbons and glycans as dark grey spheres, with fucose in red. Water molecules with a negative
hydration free energy value (dG) are shown as green spheres, pointing out that in GOF Fc the water
placement within the cavity is more favored than in others.



SUPPORTING REFERENCES

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E.
Cheatham, Ill, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H.
Gohlke, A.W. Goetz, R. Harris, S. lzadi, S.A. Izmailov, C. Jin, K. Kasavajhala, M.C., and
P.A.K. 2021. Amber 2021. .

MOE. 2021. Chemical Computing Group Inc. Molecular Operating Environment (MOE);
Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910: Montreal, QC,
Canada,. .

Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R.,
Crowley, M.R.C.W., Walker, R.C., Zhang, W. and Merz, K.M.Case, D.A., Darden, T.A.,
Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Crowley, M.R.C.W, K.M.
2008. AMBER 10. San Francisco: University of California.



APPENDIX

Evaluation of the convergence of simulations

The evaluation of systems convergence was performed by the block analysis technique
and specifically computing structural observables and principal component analysis
(PCA) on trajectory segments 200 ns long. In order to avoid background noise due to
the high flexibility of the hinge, the analysis was performed on structured domains,
namely the two Fabs and the Fc. The distribution of RMSD and Rg together with the
RMSF profiles are provided below, showing very similar median values between the
last four blocks, and suggesting that the convergence is reached after approx. 200 ns.
Then, PCA was performed for single domains, isolating the first two principal motions
identified for each segment. According to the results, in several cases the first two
segments (0-400 ns) present different projections with respect to the other three, that
instead shows overlapped plots. Overall, this result suggests that principal modes can
be considered stabilized after 400 ns of simulation. Considering both the structural
observables and the PCA, we decided to exclude the first 200 ns of MD for the cluster

and H-bonds analysis.
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Figure S14: RMSD and Rg distribution and RMSF profiles of aglycosylated mAb domains. (A-
B) Box plots showing the distribution of RMSD and Rg computed on C-alpha atoms for each antibody
domain in each trajectory segment. Outliers are represented as diamonds. (C) RMSF profiles of C-
alpha of each antibody domain in each segment.
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Figure S15: RMSD and Rg distribution and RMSF profiles of GO mAb domains. (A-B) Box
plots showing the distribution of RMSD and Rg computed on C-alpha atoms for each antibody
domain in each trajectory segment. Outliers are represented as diamonds. (C) RMSF profiles of C-
alpha of each antibody domain in each segment.
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Figure S16: RMSD and Rg distribution and RMSF profiles of GOF mAb domains. (A-B) Box
plots showing the distribution of RMSD and Rg computed on C-alpha atoms for each antibody
domain in each trajectory segment. Outliers are represented as diamonds. (C) RMSF profiles of C-
alpha of each antibody domain in each segment.
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Figure S17: Principal component analysis. Bi-dimensional projections of the first two principal
components computed per aglycosylated (A), GO (B) and GOF (C) mAb domains in each trajectory
segment.



