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S1. Extended description of SSA-FBA

In this section of the Appendix we expand upon the relationship between SSA-FBA and the re-

duced chemical master equation. Reduction of the chemical master equation (CME) is based on

an assumption of time-scale separation, i.e., the assumption that transients in concentrations of

a group of Ns (slow) species decay much slower than those of the remaining group of N f (fast)

species. The vector of total molecular counts of N = N f +Ns species, n = (n f ,ns), is then parti-

tioned into fast n f and slow ns vectors of dimensions N f and Ns, respectively. In SSA-FBA, par-

titioning of molecular species is based on choices made by the modeller when designating species

to be internal or external to the metabolic network, which in turn dictates the structure of the SSA-

FBA model to be simulated. Ideally, we would like to enforce that internal species correspond
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to fast species and external to slow, but sometimes the formal derivation of SSA-FBA described

below may break down because the identification of n f with counts of internal species and ns with

counts of external species is not realised by a model. It should be pointed out that an equivalent

limitation holds for dynamic FBA (DFBA) [1], where conventionally the distinction between fast

and slow concentrations is based on the separation of intra- and extracellular metabolites.

Given M chemical reactions with corresponding propensity values a j ( j = 1,2, ...,M), the full

CME [2] expressed in terms of the partitioning of species is

dP(n f ,ns)

dt
=

M

∑
j=1

a j(n f −S f
j ,n

s−Ss
j)P(n

f −S f
j ,n

s−Ss
j)−a j(n f ,ns)P(n f ,ns) (1)

where S f
j and Ss

j are the jth columns of the portions of the stoichiometric matrix corresponding to

fast and slow species, respectively. Summing over n f we obtain a master equation for the marginal

distribution
dP(ns)

dt
=

M

∑
j=1

ā j(ns−Ss
j)P(n

s−Ss
j)− ā j(ns)P(ns), (2)

where

ā j(ns)≡ E
[
a j(n f ,ns)|ns

]
= ∑

n f

a j(n f ,ns)P(n f |ns) (3)

is the expectation value of a j(n f ,ns) conditioned on ns. We will refer to Equation (2) as the

marginal chemical master equation (MCME). Rao and Arkin [3] introduced a stochastic equiv-

alent of the quasi-steady state assumption (sQSSA): that the conditional distribution P(n f |ns) is

assumed to rapidly converge to a stationary distribution on an interval over which P(ns) remains

approximately constant

0≈ dP(n f |ns)

dt
=

(
dP(n f ,ns)

dt
−P(n f |ns)

dP(ns)

dt

)
1

P(ns)
. (4)

After substituting dP(n f ,ns)/dt and dP(ns)/dt for their right-hand sides in Equation (4), this

condition together with the MCME (2) yields a differential algebraic equation (DAE) for P(ns).

Alternatively, the work of Thomas, Straube & Grima [4, 5] uses a projection operator method
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combined with linear noise approximation to obtain a reduced Fokker-Planck equation for the

fluctuations in the concentrations of the slow variables, and Smith, Cianci & Grima [6] present a

different reduction of the CME based on the separation of chemical abundances (e.g., metabolites

considered abundant and macromolecules considered non-abundant) rather than time-scales.

Full reduction of the CME (1) depends on obtaining the stationary conditional distribution

P(n f |ns), which is required for calculating each ā j(ns) that is then substituted into the MCME

(2). Due to analytic intractability of Equation (4) however, a closed form expression for P(n f |ns)

is usually inaccessible and therefore this distribution and ā j(ns) must be approximated for most

systems. The approximate form of P(n f |ns) used in [3, 7] is Markovian, whereas in [4, 5, 8] a num-

ber of arguments are presented to justify using a Gaussian distribution built from solutions of the

associated deterministic rate equations and covariance matrix from first-order corrections. These

deterministic rate equations correspond to the lowest-order terms in the system size expansion

described in [4, 5], but can also be obtained by full marginalisation of the CME (1) to obtain ordi-

nary differential equations (ODEs) for expected counts molecular species in terms of the expected

propensity values E
[
a j(n f ,ns)

]
( j = 1,2, ...,M). Rate equations are more commonly considered

in terms of concentrations of species x = n/Ω and macroscopic rate functions v j(x) = a j(n)/Ω

(where Ω is the system’s volume), which motivates the system size expansion that becomes ac-

curate in the limit Ω→ ∞. In [8] the system size expansion combined with time-scale separation

produces an approximation of expected propensity values based on conditional averages for fast

species satisfying the deterministic steady state condition, whereas in [3, 7] each ā j(ns) is con-

structed using moments of the Markovian approximation for P(n f |ns).

The key motivation for SSA-FBA is that, in large-scale metabolic network models, rate equa-

tions are rarely known (even approximately) for fast reactions, and therefore it becomes impossible

to parameterise any exact or approximate form of the MCME described above. Moreover, even if

the functional form of ā j(ns) could be justified on biological grounds, it would almost never be the

case that all parameter values on which propensity functions depend could be accurately measured

experimentally. Consequently, SSA-FBA borrows from the solution to this problem proposed by
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(D)FBA [1, 9, 10] where linear programming (LP) is used to identify a numerical solution to the

deterministic algebraic steady state conditions

M

∑
j=1

S f
j · ā j(ns) = 0. (5)

Using LP to find numerical values for expected propensities ā j(ns) satisfying constraints (5) and

then substituting these into the MCME (2) will formally define SSA-FBA as a stochastic extension

of DFBA. Indeed, marginalising the MCME (2) and expressing the resulting ODEs and constraints

(5) in terms of species concentrations yields

dxs

dt
=

M

∑
j=1

Ss
j · v j(xs),

M

∑
j=1

S f
j · v j(xs) = 0, (6)

which is precisely the DAE used in the definition of DFBA.

In an SSA-FBA model, reactions are separated into three mutually disjoint subsets based on

whether the participating species are defined to be internal or external to the metabolic reaction

network (see Section 2 in the main text for illustration). Since to some extent the validity of SSA-

FBA is dependent on internal species being identified with fast species and external with slow,

respectively, these two sets of terms will be used interchangeably in the sections below. As we

have already pointed out, to strengthen the formal relationship between SSA-FBA and the reduced

CME described above, it is important that this identification is adhered to whenever possible. The

three subsets of reactions in an SSA-FBA model are:

• FBA only reactions: reactions that interconvert among the internal species; their bounds

can be calculated using the counts of slow species,

• SSA only reactions: reactions that interconvert among the external species,

• SSA-FBA reactions: reactions that convert between the internal and external species; their

bounds can be calculated using the counts of slow species.

SSA-FBA uses FBA to obtain numerical values for the expected propensity values of FBA only
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and SSA-FBA reactions since both depend on fast species. On the other hand, propensity values

for SSA only reactions can be calculated by evaluating the rate law directly because, by definition,

these reactions have expected propensity values given by ā j(ns) = a j(ns). To calculate propensity

values for the subset of MFBA (FBA only and SSA-FBA) reactions at time t, LP maximises a

linear objective function to obtain an MFBA-dimensional vector āFBA of FBA only and SSA-FBA

propensities that satisfy (5) and fall within lower and upper bounds l(t) ≡ l(ns(t)) and u(t) ≡

u(ns(t)). As the notation suggests, these bounds are parameterised by the current molecular counts

ns(t) of slow species at time t. The embedded LP problem of SSA-FBA at time t is

maximise : z = c · āFBA

subject to : S f · āFBA = 0, l(t)≤ āFBA ≤ u(t),
(7)

where S f is an (N f ×MFBA)-dimensional matrix and c = (c1,c2, ...,cMFBA)
T an MFBA-dimensional

vector of constant coefficients. The resulting SSA-FBA propensity values obtained by solving the

LP problem (7) are combined with those of the SSA only reactions to determine the next reaction

event occurring at time t + τ as determined by Gillespie’s stochastic simulation algorithm (SSA)

[11, 12], which would provide an exact trajectory of the MCME (2) if propensity values were

known precisely. Following execution of the selected reaction using the corresponding stoichiom-

etry, updated molecular counts ns(t + τ) of slow species are then used to update the bounds in the

LP problem, which can be solved for a new set of FBA only and SSA-FBA propensity values. The

procedure is repeated until the end of the simulation is reached.

The relative scale of SSA only to SSA-FBA propensity values obtained from the embedded

FBA problem (7) serves as an additional parameter of an SSA-FBA model, as are the stoichiom-

etry values of the reactions these correspond to. The choice of this relative scaling factor proves

to be important for simulation efficiency and is related to the multi-scale nature of single-cell

metabolism, because numerical exploration of the state space will become challenging if propen-

sity values differ by several orders of magnitude. There is some flexibility regarding the relative

scaling of SSA only to SSA-FBA propensity values; our provided guidelines are that this scale fac-

5



tor should be inversely correlated with the stoichiometry of SSA-FBA reactions (i.e., stoichiometry

of SSA-FBA reactions should increase as their propensity values scale down relative to SSA only

propensity values).

S2. Fast algorithm for exact SSA-FBA simulations

As outlined in Appendix S1, exact simulation of an SSA-FBA model appears to imply that a call

to an LP solver (such as the Simplex Method) must be made following execution of every reac-

tion event, which could become computationally expensive for systems where execution of many

reaction events is necessary before any appreciable effects of changing the bounds of FBA only

or SSA-FBA reactions are realised. However, in this section of the Supplementary Appendix,

we detail an advanced optimal basis method which typically requires many fewer LP executions.

This significantly improves the run time of an SSA-FBA simulation, while still executing exact

simulations in the sense described in Appendix S1. Implementation of this method involves two

algorithms: Algorithm 1 is a simple extension of SSA [11, 12] for the MCME (2) that incorporates

propensity values of SSA-FBA reactions obtained from the embedded LP problem (7). These are

returned by Algorithm 2, which uses an optimal basis of the LP problem to calculate them. Inspi-

ration for Algorithm 2 came from a related algorithm for solving ODEs containing embedded LP

problems [13], e.g. DFBA models. However, significant differences between DFBA (continuous

ODEs) and SSA (discrete events) necessitates a distinct, novel methodology and software imple-

mentation. It should be noted that our algorithm is compatible with lexicographic optimisation

for LP uniqueness as also described in [13] in order to address the problem that solutions to the

FBA problem (propensity values of SSA-FBA reactions) are not necessarily unique. Algorithm 1

is outlined below, and Algorithm 2 will be described after presenting the necessary overview of

optimal bases in LP problems.
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Algorithm 1 depends on the reaction probability density function

p(τ, j|ns, t) = ā j(ns)exp(−ā0(ns)τ) , (8)

where

ā0(ns) = ∑
j∈R

ā j(ns). (9)

In Algorithm 1, propensity values for SSA only reactions are calculated by direct evaluation of the

propensity function, whereas propensity values for SSA-FBA reactions are calculated by solving

the embedded LP problem in Algorithm 2. Propensity values for FBA only reactions are not

required for simulation of an SSA-FBA model because they do not appear in the MCME (2).

Therefore, the subset R in (9) contains the SSA only and SSA-FBA reaction indices, excluding

those of FBA only reactions. An informed reader will notice the similarity between Algorithm 1

and the slow-scale SSA algorithm [7, 14]. Indeed, Algorithm 1 is nearly identical with the main

difference being the use of Algorithm 2 to calculate propensity values for SSA-FBA reactions. In

slow-scale SSA however, where the goal is to provide a good approximation of trajectories of the

MCME (2) rather than accommodate large metabolic network models lacking kinetic information,

expected propensities are approximated using moments of an approximation of P(n f |ns) [3, 7].

Before describing Algorithm 2, we briefly recall the use of (non-)basic variables for solving

LP problems such as (7) that take the more general form

maximise : z = c ·aS

subject to : aR = A ·aS, lR(t)≤ aR ≤ uR(t), lS(t)≤ aS ≤ uS(t).
(10)

Here maximisation is performed with respect to the structural variables aS corresponding to propen-

sity values āFBA in the original LP problem (7). The problem can be written compactly as

maximise : z = (0,c) ·a

subject to : (I,−A) ·a = 0, L(t)≤ a≤ U(t),
(11)
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Algorithm 1 Simulation of an SSA-FBA model
Initialise: Set t = 0, initial state ns(0), j = 0, and fix a simulation end time T

1. Given j and the current state ns(t): compute SSA only propensity values by evaluating rate
equations, use Algorithm 2 to obtain propensity values for SSA-FBA reactions, and calculate
ā0 in (9).

2. Calculate the stochastic time step as

τ =− 1
ā0

lnr1

where r1 is a uniformly distributed number on [0,1]

3. Sample a second random number r2 uniformly distributed on [0,1] and set j such that

∑
i∈R< j

āi

ā0
≤ r2 ≤ ∑

i∈R≤ j

āi

ā0

where R< j, R≤ j are the subsets of R containing all reaction indices i : j > i ∈ R and
i : j ≥ i ∈R, respectively.

4. Update the number of slow species according to ns(t + τ) = ns(t)+Ss
j and let t ← t + τ . If

t ≥ T stop simulation, otherwise return to Step 1.
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Algorithm 2 Return current SSA-FBA propensity values
Parameters: j ∈R, ns(t) from Algorithm 1, basis valid = True, and dependency list =∅.

1. If j = 0, update all bounds using ns(0) and solve the LP problem (7) using the Simplex
Method. Calculate resulting propensity values for all SSA-FBA reactions and store the sim-
plex tableau matrix, current bound values, and the current values of basic variables. Other-
wise, if j > 0, find all āFBA,i corresponding to SSA-FBA and FBA only reactions with bounds
that depend on slow species produced/consumed by reaction j and do the following:

1.1. For each such basic variable āFBA,i, update its bound with the new supplied value and
add its index i to the set dependency list

1.2. For each such non-basic variable āFBA,i not fixed at the relevant bound, update its bound
with the new supplied value

1.3. For each such non-basic variable āFBA,i fixed at the relevant bound, update its bound
with the new supplied value and identify all basic variables corresponding to non-zero
entries in the respective column of the simplex tableau matrix. For each kth such basic
variable, add to its current value the difference between the new and previous bound
value (weighted by the corresponding entry of the simplex tableau matrix) and enter its
index k to the set dependency list

2. If j = 0, skip this step. Otherwise, if j > 0, check that all basic variables in dependency list
remain within their new bounds. If true, keep the propensity values of the SSA-FBA reac-
tions using either stored basic values (if the propensity value is basic) or the current bound
values (if the propensity value is non-basic). If false, re-solve the LP problem (7) using
the Simplex Method, calculate the resulting propensity values for all SSA-FBA reactions,
and store the simplex tableau matrix and the current values of the basic variables. Calcu-
late the propensity values for SSA-FBA reactions using either the stored basic values (if the
propensity value is basic) or the current bound values (if the propensity value is non-basic).

3. Return previously calculated propensity values for all SSA-FBA reactions

9



where a = (aR,aS)
T is the augmented set of variables also containing the auxiliary variables

aR. The constraint matrix A has dimension dR× dS, where dR is the number of auxiliary vari-

ables, dS the number of structural variables, and bound vectors L(t) = (lS(t), lR(t))T and U(t) =

(uS(t),uR(t))T both have dimension dS +dR. We refer to the LP problem (11) at time t as LP(t),

where the only difference between LP(t1) and LP(t2) are different values of the upper and lower

bounds at time points t1 and t2. This representation is also useful because by using it one does not

distinguish between structural and auxiliary variables.

A variable is called non-basic, if its (lower or upper) bound is active, i.e. the variable is fixed at

that bound; otherwise it is called basic. In a basic solution, there are always dS non-basic variables

and dR basic variables, which corresponds to the situation in which exactly dR bounds are active.

It is a well-known result in the theory of LP problems that if (11) has an optimal solution, it has

(at least one) basic feasible solution that maximises the objective z. Here feasible implies that

the basic solution lies within the constraints of the LP problem (11). In a basic solution, the dR-

dimensional vector aB(t) of basic variable values is related to the dS-dimensional vector aN(t) of

non-basic variables fixed at either their upper or lower bound (hence explicit t-dependence) by the

dR×dS simplex tableau matrix Ξ:

aB(t) = Ξ ·aN(t) (12)

where the augmented vector (aB,aN)
T = Π ·a is related to a by a permutation matrix Π.

In the fast SSA-FBA simulation algorithm, the Simplex Method is first used to obtain an op-

timal basic feasible solution of the form (12) for the initial problem LP(0) at the beginning of a

simulation. The Simplex Method defines an associated simplex tableau matrix Ξ and the set of ac-

tive constraints, i.e., which non-basic variables aN(0) are fixed at which initial bounds L(0),U(0).

After a reaction event is executed at time t + τ , determining an optimal basic feasible solution to

the new problem LP(t + τ) requires either invoking the Simplex Method or using Equation (12)

with the simplex tableau matrix Ξ from a solution to the previous problem LP(t). The decision for

how the new optimal basic feasible solution is calculated by Algorithm 2 is based on the following

claim.
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Claim 1. Given an optimal basic feasible solution (aB(t),aN(t)) of LP problem LP(t) with asso-

ciated simplex tableau matrix Ξ, the solution

aB(t + τ) = Ξ ·aN(t + τ), (13)

where the arrangement of active constraints of non-basic variables aN(t + τ) remains unchanged,

is an optimal basic feasible solution to problem LP(t+τ) if basic variables aB(t+τ) remain within

their new bounds.

Proof. Proving this claim depends on showing that the Karush-Kahn-Tucker (KKT) conditions for

an optimal basic feasible solution to LP(t + τ) are satisfied as long as basic variables aB(t + τ)

remain within the new set of bounds L(t + τ),U(t + τ). The KKT conditions are

1. (I,−A) ·a = 0

2. (I,−A)T ·πππ +λλλ L +λλλU = (0,c)T

3. L(t + τ)≤ a≤ U(t + τ)

4. λλλ L ≤ 0, λλλU ≥ 0

5. D(λλλ L) · (a−L(t + τ)) = D(λλλU) · (a−U(t + τ)) = 0

where πππ and λλλU ,λλλ L are a dR- and (dS +dR)-dimensional vectors, respectively, of Lagrange multi-

pliers. D is the operator that takes a d-dimensional vector to a square (d×d)-dimensional matrix

whose only nonzero entries are the vector’s components ordered along the diagonal. The claim

assumes that LP(t) has an optimal basic feasible solution with associated simplex tableau matrix

Ξ and therefore (13) satisfies Condition 1 by construction because these constraints do not change

in LP(t + τ). Similarly, because Condition 2 is identical for both problems LP(t) and LP(t + τ),

and the set of active constraints for non-basic variables aN(t + τ) remains unchanged (perhaps

with new upper or lower bound values), Lagrange multipliers πππ and λλλU ,λλλ L are free to take on

the same values as those in problem LP(t) in order to satisfy Conditions 2, 4, 5. This implies
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that only Condition 3 must be validated for (13) to be an optimal basic feasible solution to problem

LP(t+τ), and since non-basic variables must be fixed at their new bounds this remaining condition

is guaranteed to hold if basic variables aB(t + τ) do not exceed them either.

Claim 1 justifies the method used for numerical calculation of SSA-FBA propensity values in

Algorithm 2. After a reaction event has been executed in Algorithm 1 and the resulting counts

of slow species used to update problem LP(t + τ), Equation (13) generates basic variables that

are evaluated for violation of their bounds. Whenever a basic variable is found to lie outside

its bounds, the Simplex Method is called to obtain a new optimal basic feasible solution and an

associated simplex tableau matrix for LP(t + τ). However, if all basic variables remain within

their bounds then (13) provides the full set of numerical values from which propensity values for

SSA-FBA reactions can be returned and, consequently, the number of times the Simplex Method

is called over the course of a simulation can be reduced dramatically.

In addition to evaluating the approximate SSA-FBA simulation method using the toy model de-

scribed in the main text (see Figures 3a-c in main text for results), we evaluated the performance of

our fast SSA-FBA simulation method using the Mycoplasma genitalium metabolic network model

by simulating random sequences of (50000, 100000, or 200000) reaction execution events. Ex-

ecution of each individual event corresponded to a random selection of one to five SSA-FBA or

FBA only reactions whose upper bound values are known in the original M. genitalium metabolic

model (i.e., not zero or infinity), and reducing their upper bounds through multiplication by a con-

stant less than one (0.9 used in experiments presented here). The cumulative effect was to slowly

drive the growth rate of M. genitalium to zero over the course of simulation. After execution of

each event, SSA-FBA and FBA only propensity values were calculated either by directly solving

the embedded FBA problem or using the fast optimal basis algorithm. Employing this approach

rather than evaluating a full SSA-FBA simulation allowed us to confidently compare the perfor-

mance of direct and fast methods, while confirming that calculated propensity values remained

identical. Figure 3d in the main text displays representative results of the comparisons between

the fast and direct SSA-FBA simulation methods, showing that the former improves run time by
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an order of magnitude over the latter. The fast optimal basis algorithm also scales better in the

number of reaction execution events than the direct implementation (slopes of linear regressions

using data from Figure 3d are 19.0 versus 1.7 for direct versus fast, respectively).

An SSA-FBA simulation package implementing the fast, direct and approximate SSA-FBA

simulation methods for generic SSA-FBA models is available for free at https://gitlab.

com/davidtourigny/single-cell-fba. The package is distributed as a Python exten-

sion module written in C++ and includes code that enables users to reproduce the tests, toy model

and single-cell M. pneumoniae model described here and in the main text.

S3. Extended description of reduced single-cell model

To enable us to use a model to gain insights into the molecular underpinnings of the metabolism

of individual Mycoplasma pneumoniae cells with modest complexity, we decided to construct

a model that could explain the growth of M. pneumoniae cells and account for the functional

contribution of each individual gene to growth. Consequently, we chose to construct a model that

represents the nutrient import and export, metabolism, transcription, translation, macromolecular

complexation, and RNA and protein turnover of M. pneumoniae and the genes which catalyse these

functions. We simulated the model using SSA-FBA, with metabolism represented using FBA and

the non-metabolic processes represented using SSA.

Here, we outline some key features of the model. The full details of the model are defined in

Supplementary File S1. Supplementary File S1 is also the input file to the script for simulating

models found within the SSA-FBA simulation package available for free at https://gitlab.

com/davidtourigny/single-cell-fba. The script uses this file to represent the model

as an SSA-FBA model and uses SSA-FBA to simulate it. Alternative models can be built by

modifying this file. Supplementary File S1 defines each compartment, species, reaction, rate law,

rate parameter, and initial condition of the model.
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Compartments represented by the model

To capture M. pneumoniae cells and their external environment as simply as possible, we decided

that the model should represent two compartments: M. pneumoniae cells, including their cytosols

and membranes, and the external environment outside their membranes.

Species and reactions represented by the model

The exact scope of the model was driven by the genomic sequence of M. pneumoniae [16], its anno-

tation [23, 24], its reconstructed metabolism [15], its genetic code (https://www.ncbi.nlm.

nih.gov/Taxonomy/Utils/wprintgc.cgi), and its reconstructed complexome [25, 26,

19]. First, we determined the biochemical processes that the model must represent, including the

transcription of each RNA; the translation of each protein; the assembly of each complex; the

turnover of each RNA, protein, and complex; and the metabolic reactions needed to synthesise the

substrates of these processes and recycle the byproducts of these processes, namely the reactions

needed to produce nucleotide triphosphates, amino acids, and water for transcription and trans-

lation, and the reactions needed to recycle nucleotide diphosphates, nucleotide monophosphates,

diphosphates, phosphates, hydrogen ions, and amino acids produced by transcription, translation,

and the turnover of RNAs, proteins, and complexes.

In turn, this established the enzymes that the model must represent, namely the genes required

to transcribe RNAs (RNA polymerase), translate proteins (ribosome), turnover RNAs (RNases),

turnover proteins (proteases), turnover complexes (RNases and proteases), and produce and recycle

the metabolites described above (metabolic enzymes). The metabolic enzymes required for these

metabolic functions were determined using the reconstructed metabolism of M. pneumoniae [15];

specifically, we used the reconstruction to determine the minimum set of enzymes required for

these metabolic functions.

Subsequently, this established the genes that the model must represent, namely the genes that

code for each enzyme. We used the annotation of the genome of M. pneumoniae, the gene-reaction

rules of the metabolic reconstruction of M. pneumoniae [15], and the reconstructed complexome
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of M. pneumoniae [25, 26, 19] to determine the genes that code for each enzyme.

Together, this established the species that the model must represent, including a species for each

RNA transcript of each gene, a species for each protein of each protein-coding gene, a species for

each macromolecular complex, and species for each metabolite involved in each metabolic reac-

tion. We determined the sequence of each RNA species using the genomic sequence of M. pneu-

moniae and the start and stop coordinate of each gene. We determined the sequence of each protein

species using the sequence of its RNA template and the genetic code of M. pneumoniae (https:

//www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). We obtained the struc-

ture of each complex from previous reconstructions [25, 26, 19]. We obtained the structure of

each metabolite from the previous metabolic reconstruction [15]. We used BpForms and BcForms

[30] to calculate the chemical formula and molecular weight of each RNA, protein, and complex

species.

The model represents 93 genes (13% of the genome of M. pneumoniae), 293 species, and

506 reactions. This includes 83 metabolites, 93 RNAs, 90 proteins, 27 complexes, 33 enzymes,

86 metabolic reactions, 93 transcription reactions, 90 translation reactions, 27 complex assem-

bly reactions, 93 RNA turnover reactions, 90 protein turnover reactions, and 27 complex turnover

reactions. In addition, the metabolism portion of the model involves one pseudo-species that rep-

resents the biomass of the cell, one pseudo-reaction that represents its synthesis, and 32 exchange

pseudo-reactions for each extracellularly-localized metabolite.

Equations and rate laws of the non-metabolic reactions

The rate laws of the non-metabolic reactions were chosen to capture the effect of the concentration

of each substrate and enzyme on the rate of each reaction. In particular, each rate law was chosen

to be the product of the maximum turnover rate of each enzyme, logistic terms of the concentration

of each substrate, and a linear term of the concentration of the enzyme. The logistic terms capture

the behaviours that the rates of reactions vanish when no substrate is present and that the rates of

reactions saturate at high substrate concentrations when each enzyme is occupied.
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Transcription

The model represents the transcription of each RNA i as a single lumped reaction that fuses nu-

cleotide triphosphates, NTP j into a sequence-dependent polymer, where mi j represents the count

of nucleotide j in RNA i

∑
j

mi jNTP j +H+→ RNAi +

(
∑

j
mi j

)
PPi. (14)

The rate, vsyn
r,i of the transcription of each RNA i is modelled as the product of the maximum

rate of its transcription ksyn
r,i , logistic terms of the concentration of each nucleotide triphosphate,

M j, and the concentration of RNA polymerase, Epol

vsyn
r,i = ksyn

r,i

(
∏

j

M j

KM,n +M j

)
Epol. (15)

Translation

Similarly, the model represents the translation of each protein i as a single lumped reaction powered

by the hydrolysis of GTP that fuses amino acids, AA j into a sequence-dependent polymer, where

mi j represents the count of amino acid j in protein i

∑
j

mi jAA j +

(
∑

j
2mi j +3

)
GTP+

(
∑

j
mi j +4

)
H2O→

proteini +

(
∑

j
2mi j +3

)
(GDP+Pi+H+) .

(16)

The rate, vsyn
p,i of the translation of each protein i is modelled as the product of the maximum

rate of its translation ksyn
p,i , logistic terms of the concentration of each amino acid, M j, and the

concentration of its template RNA, Ri, and the concentration of ribosomes, Eribo

vsyn
p,i = ksyn

p,i

(
∏

j

M j

KM,a +M j

)
Ri

KM,ri +Ri
Eribo. (17)
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Macromolecular complexation

The model represents the synthesis of each complex i as a single lumped reaction that agglomerates

ri j molecules of each RNA subunit j and pi j molecules of each protein subunit j

∑
j

ri jRNA j +∑
j

pi jprotein j→ complexi. (18)

The rate, vsyn
c,i of the assembly of each complex i is modelled as the product of the maximum

rate of its assembly ksyn
c,i and the minimum concentration of its subunits, R j and Pj

vsyn
c,i = ksyn

c,i min
(

min
j st. ri j>0

R j, min
j st. pi j>0

Pj

)
. (19)

RNA degradation

The model represents the hydrolytic degradation of each RNA i as a single lumped reaction that

disassembles polymers to individual nucleotide monophosphates, NMP j, where mi j represents the

count of nucleotide j in RNA i

RNAi +

(
∑

j
mi j−1

)
H2O→∑

j
mi jNMP j +

(
∑

j
mi j−1

)
H+. (20)

The rate, vdegr, i of the degradation of each RNA i is modelled as the product of the maximum

rate of its degradation kdeg
r,i , a logistic term of the concentration of the RNA, Ri, and the concentra-

tion of oligoribonuclease NrnA, ENrnA

vdeg
r,i = kdeg

r,i
Ri

KM,ri +Ri
ENrnA. (21)

Protein degradation

Similarly, the model represents the hydrolytic degradation of each protein i as a single lumped

reaction that disassembles polymers to individual amino acids, AA j, where mi j represents the
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count of amino acid j in protein i

proteini +

(
∑

j
mi j−1

)
H2O→∑

j
mi jAA j. (22)

The rate, vdeg
p,i of the degradation of each protein i is modelled as the product of the maxi-

mum rate of its degradation kdeg
p,i , a logistic term of the concentration of the protein, Pi, and the

concentration of protease Lon, ELon

vdeg
p,i = kdeg

p,i
Pi

KM,pi +Pi
ELon. (23)

Complex degradation

Similarly, the model represents the hydrolytic degradation of each complex i as a single lumped

reaction that disassembles polymers to individual nucleotide monophosphates, NMP j, and amino

acids, AA j, where mn,i j and ma,i j represent the counts of nucleotide monophosphates and amino

acids j in complex i

complexi +

(
∑

j
mn,i j +∑

j
ma,i j−2

)
H2O→

∑
j

mn,i jNMP j +∑
j

ma,i jAA j +

(
∑

j
mn,i j−1

)
H+.

(24)

The rate, vdeg
c,i of the degradation of each complex i is modelled as the product of the maxi-

mum rate of its degradation kdeg
c,i , a logistic term of the concentration of the complex, Ci, and the

concentration of protease Lon, ELon

vdeg
c,i = kdeg

c,i
Ci

KM,ci +Ci
ELon (25)
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Flux bounds of the model

To capture the impact of gene expression on metabolism, we chose to bound the flux of metabolic

reactions by the product of the concentration of its enzyme and the maximum turnover rate (kcat)

of the enzyme. Unfortunately, experimental measurements of these values are not available for M.

pneumoniae, but many are for other bacterial species in the BRENDA database [27]. If the mea-

sured kcat of a given enzyme was available for one or more wild-type bacterial species in BRENDA.

We used the largest of these values (multiplied by the concentration of enzyme) to bound the FBA

reaction catalysed by that enzyme as described above. Conversely, FBA reactions catalysed by

enzymes for which no measured kcat values are available in BRENDA were left unbounded. An

exception to this rule was that the same kcat values were used for reactions differing only by the

use of a cofactor (e.g., kcat value available for reaction catalysed by enzyme using ATP was also

used as kcat value for the same enzyme using GTP if kinetic data for the latter are not available).

Biosynthetic pseudo-reaction of the model

Typically, flux-balance analysis models include a pseudo-reaction that represents the average molec-

ular composition of cells and the average energy required to assemble and maintain cells. Similar

to our previous work [19], our model generalizes this reaction to encompass the substrates that

the metabolic machinery must produce to support all of the other processes in a cell, as well as

the byproducts of these processes that the metabolic machinery must recycle. For this model, the

biomass synthesis pseudo-reaction represents the production of nucleotide triphosphates, amino

acids, and water for transcription, translation and RNA and protein turnover and the recycling of

nucleotide diphosphates, nucleotide monophosphates, amino acids, phosphates, diphosphates, and

hydrogen ions produced by transcription; translation; and the turnover of RNAs, proteins, and

complexes.
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Parameters of the rate laws and initial conditions

The model includes 1,003 parameters. This includes 33 parameters for the mean initial intracellular

count of each intracellular metabolite, 32 parameters for the mean initial extracellular count of

each extracellular metabolite, 93 parameters for the mean initial intracellular count of each RNA,

90 parameters for the mean initial intracellular count of each protein, 27 parameters for the mean

initial intracellular count of each complex, 27 parameters for the maximum turnover rates of 27

metabolic reactions (described in previous section “Flux bounds of the model”), 93 parameters

for the maximum synthesis rate of each RNA, 90 parameters for the maximum synthesis rate of

each protein, 1 parameter for the maximum assembly rate of the complexes, 93 parameters for

the maximum turnover rate of each RNA, 90 parameters for the maximum turnover rate of each

protein, 27 parameters for the maximum turnover rate of each complex, 1 parameter for the affinity

of RNA polymerase for nucleotide triphosphates, 90 parameters for the affinity of ribosomes for

each mRNA, 1 parameter for the affinity of ribosomes for amino acids, 93 parameters for the

affinity of RNases for each RNA, 90 parameters for the affinity of proteases for each protein, 27

parameters for the affinity of proteases for each complex, 2 parameters for the fluxes of the import

and export of nutrients, 1 parameter for the average initial volume of each cell, and 1 parameter for

the initial density of cells in their growth media.

We used several types of experimental biochemical and physiological data to calibrate the

model to represent the growth of M. pneumoniae. This includes data about the sequence of the M.

pneumoniae genome [16]; the start and stop coordinates and direction of each gene in M. pneu-

moniae [23, 24]; the typical concentrations of metabolites in bacteria [20]; the abundances of M.

pneumoniae RNAs [29] and proteins [28]; the half-lives of M. pneumoniae RNAs and proteins

[28]; the turnover rates of 27 metabolic reactions in various bacteria [27], the fluxes of the import

and export of nutrients by the closely related bacterium Mycoplasma genitalium [21]; the average

volume of M. pneumoniae cells [17]; the typical water content of bacteria [22]; the chemical com-

position of the Hayflick medium typically used to culture M. pneumoniae (PPLO media, Becton,

Dickinson and Company; Beef heart infusion A1502, Solabia Group; Donor horse serum, Corn-
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ing; Pork meat peptone - A1728, Solabia Group) and that of SP4 media frequently used to culture

M. genitalium [19]; and the density of M. pneumoniae cells in cultures [15].

Distributions of the initial count of each species

First, we recognized that the mean initial abundance of each species within individual cells is

approximately equal to the population-average abundance of each species, which has been exper-

imentally characterized. Next, we approximated the mean initial abundance of each complex as

the minimum ratio of the total experimentally observed abundance of each subunit [29, 28] to its

reconstructed stoichiometry within the complex [25, 26, 19]. Third, we approximated the mean

initial free abundance of each RNA and protein as the difference between its total observed abun-

dance and the mean initial abundance estimated to be bound to complexes. For proteins that do not

participate in complexes, the free abundance is equal to its total observed abundance.

We estimated the mean initial intracellular concentration of each metabolite as its observed

population-average concentration, equal to 1 mM for each nucleotide triphosphate, diphosphate,

and monophosphate; 0.5 mM for each amino acid; 1 mM for diphosphate; 5 mM for phosphate

11.2 nM (equal to pH 7.75) for hydrogen ions; and 55 M for water. We estimated the mean initial

extracellular concentration of each metabolite similarly. To represent the physiology of individual

cells, the initial conditions of the model describe the distribution of the count of each species in

cells and in their growth medium. The distribution of the count of each species is modelled as a

Poisson distribution with a mean equal to the average value of that species across the cycle. At the

beginning of each simulation, these distributions are sampled to determine the initial conditions of

the simulation.

Rate parameters of the non-metabolic reactions

Following the rule of thumb that the affinity of an enzyme for a substrate is often similar to the

concentration of the substrate, first, we approximated each KM as the average experimentally ob-

served concentration of its associated substrate. Specifically, we equated KM,n of Equation 15 to
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1 mM [20]; we equated KM,a of Equation 17 to 0.5 mM [20]; and we equated KM,ri , KM,pi , and

KM,ci of Equations 17, 21, 23, and 25 to the average abundance of each RNA, protein, and complex

estimated in the previous subsection.

Next, we equated the modelled degradation rate of each RNA, vdeg
r,i , to the observed degra-

dation rate equal to ln(2)/τiRi, where τi is the experimentally observed half-life of RNA i. Us-

ing the value of KM,ri estimated above and rearranging yields kdeg
r,i = 2ln(2)/τiRi/ENrnA. A sim-

ilar analysis for the degradation of proteins and complexes yields kdeg
p,i = 2ln(2)/τiPi/ELon and

kdeg
c,i = 2ln(2)/τiCi/ELon.

Finally, to capture the growth of M. pneumoniae cells, the average rate of synthesis of each

RNA, protein, and complex must be balanced by the average rate of its degradation. This implies

that vsyn
x,i = vdeg

x,i for x ∈ {r,p,c}. Using the values of vdeg
x,i and KM,yi

estimated above yields ksyn
r,i =

24ln(2)/τiRi/Epol and ksyn
p,i = 221ln(2)/τiPi/Eribo. We approximated the assembly of each complex

as a fast process with ksyn
c,i as 1/60 s−1.

Coefficients of the biosynthetic pseudo-reaction

To capture the growth of M. pneumoniae cells, the average output of the modelled metabolism of

M. pneumoniae must be the inverse of the average output of the other modelled processes. Specif-

ically, the average rate of metabolic production of nucleotide triphosphates must equal the aver-

age rate of consumption of nucleotide triphosphates by the other modelled processes. Similarly,

the average rate of metabolic recycling of nucleotide diphosphates, nucleotide monophosphates,

diphosphate, and phosphate must equal the average rate of production of these metabolites by the

other modelled processes.

Therefore, we estimated the coefficient of each metabolite of the biosynthetic pseudo-reaction

as its total average rate of consumption or production across all of the other modelled processes.

We estimated the average rate of consumption/production of each metabolite in each non-metabolic

process by (a) evaluating the rate laws (Equations 15, 17, 17, 19, 23, and 25) with the average

abundance of each species estimated above and (b) multiplying each result by the stoichiometry of
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the metabolite in the corresponding reaction.

Annotation of the semantic meaning of each species and reaction

These precise semantic meaning of each species and reaction is defined in Supplementary File S1.

The semantic meaning of each metabolite species is defined using SMILES and annotated using

a ChEBI or PubChem identifier. The semantic meaning of each RNA species is defined by its

genomic coordinates and direction and annotated using its sequence and an NCBI Gene identifier.

The semantic meaning of each protein species is defined by the sequence of its RNA transcript and

annotated using its sequence and a UniProt identifier. The semantic meaning of each complex is

defined by the stoichiometries of its subunits. Supplementary File S1 also describes the chemical

formula, molecular weight, and charge of each species. The semantic meaning of each reaction

is defined by the stoichiometry of each substrate and product. Where applicable, the semantic

meaning of the metabolic reactions is also annotated using Enzyme Commission (EC) numbers.

Additional details of simulation

Simulations of the model used the SSA-FBA simulation package available at https://gitlab.

com/davidtourigny/single-cell-fba. As described at the end of Supplementary Ap-

pendix S1, the relative scale of SSA only to SSA-FBA propensity values (based on the stoichiom-

etry of SSA-FBA reactions) serves as an additional parameter that controls the degree to which

the simulation approximates biology and and can dictate the speed of simulation. For simula-

tions described in the main text, the relative stoichiometry of SSA-FBA reactions was chosen to

be 200, implying that execution of an SSA-FBA reaction event corresponds to updating species

count by 200 times the stoichiometry of the corresponding SSA-FBA selected reaction. This in

turn corresponds to a relative scaling factor of 0.005.

It is common for the population of some species to be driven negative values in hybrid de-

terministic and stochastic adaptations of SSA [31]. In order to prevent unphysiological nega-

tive species counts from arising in simulations, the SSA-FBA simulation package https://
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gitlab.com/davidtourigny/single-cell-fba employs the Zero-Reaction rule de-

scribed in [31] as the best remedy for nonlinear and sensitive systems considering its efficiency

and simplicity.

To remove internal cycles from optimal solutions to the embedded FBA problem (7) we em-

ployed lexicographic optimisation using a second, parsimonious FBA objective (minimising the

sum of absolute flux values). Briefly, after solving (7), the resulting optimal value z∗ is used to

bound the objective function as an additional constraint in the LP problem

minimise : ||āFBA||1

subject to : S f · āFBA = 0, l(t)≤ āFBA ≤ u(t), c · āFBA ≥ z∗
(26)

where ||y||1 = ∑
N
k=1 |yk| denotes the L1 norm of a vector y = (y1,y2, ...,yN). Subsequently, the

optimal solution to (26) is used to return propensity values for the SSA-FBA reactions in the

model at time t. Although lexicographic optimisation is in principle compatible with the op-

timal basis algorithm, the implementation of parsimonious FBA in https://gitlab.com/

davidtourigny/single-cell-fba is provided for the direct method only.
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