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Phenome risk classification enables
phenotypic imputation and gene discovery
in developmental stuttering
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Summary
Developmental stuttering is a speech disorder characterized by disruption in the forward movement of speech. This disruption includes

part-word and single-syllable repetitions, prolongations, and involuntary tension that blocks syllables and words, and the disorder has a

life-time prevalence of 6–12%.Within Vanderbilt’s electronic health record (EHR)-linked biorepository (BioVU), only 142 individuals out

of 92,762participants (0.15%) are identifiedwith diagnostic ICD9/10 codes, suggesting a large portionof peoplewho stutter donothave a

record of diagnosis within the EHR. To identify individuals affected by stuttering within our EHR, we built a PheCode-driven Gini impu-

rity-based classificationand regression treemodel, PheML,byusing comorbidities enriched in individuals affectedby stuttering as predict-

ing features and imputing stuttering status as the outcome variable. Applying PheML in BioVU identified 9,239 genotyped affected

individuals (a clinical prevalence of �10%) for downstream genetic analysis. Ancestry-stratified GWAS of PheML-imputed affected indi-

viduals andmatched control individuals identified rs12613255, a variantnearCYRIAon chromosome2 (B¼0.323; p value¼1.313 10�8)

in European-ancestry analysis and rs7837758 (B ¼ 0.518; p value ¼ 5.07 3 10�8), an intronic variant found within the ZMAT4 gene on

chromosome 8, in African-ancestry analysis. Polygenic-risk prediction and concordance analysis in an independent clinically ascertained

sample of developmental stuttering cases validate our GWAS findings in PheML-imputed affected and control individuals and demon-

strate the clinical relevance of our population-based analysis for stuttering risk.
Introduction

Developmental stuttering is a speech disorder character-

ized by disruption in the forward movement of speech.

This disruption includes part-word and single-syllable

word repetitions, sound prolongations, and involuntary

breaks in syllables and words.1 Previous population-based

studies estimate that 6–12% of children aged 2-4 will

develop a stutter and that 15–25% of these speech imped-

iments will persist to adulthood, resulting in approxi-

mately 1% prevalence in the adult population.2 Risk

factors for developmental stuttering include sex—males

demonstrate increased risk—and a family history of stut-

tering.3 Elevated risk in males increases with age; the

male-to-female ratio is approximately 2:1 (or lower) in chil-

dren under 44,5 but rises to 5:1 in adolescents and adults,4

suggesting a higher rate of recovery in females, by age.6

The impact of stuttering across the lifespan is significant

and well documented. Children who stutter, especially

those in whom stuttering persists, experience decreased

overall school performance, including social withdrawal

and reduced classroom participation.7 In addition to the

impact on their academic experiences, adolescents who

stutter often experience a higher incidence of bullying.7

Adults who continue to stutter can also experience

impaired career trajectories because stuttering can increase
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the risk of unemployment and reduce perceived job perfor-

mance, both of which contribute to reducing socioeco-

nomic status among people who stutter.8 Despite a clear

social and vocational impact, no direct causes of develop-

mental stuttering in populations have been previously

identified. Given the observed enrichment in families, ge-

netic studies offer a particularly promising approach to un-

derstanding underlying genetic causes and provide insight

into potential biological mechanisms contributing to this

phenotype.9

Heritability estimates of developmental stuttering have

varied greatly across studies; they have ranged from 0.42

to 0.84 in the two largest twin studies, each comprising a

sample size exceeding 20,000 individuals.10,11 Though her-

itability estimates vary, there is clear evidence that a ge-

netic component for developmental stuttering exists, and

consequently several linkage-based genetic analyses have

sought to identify loci within potentially causative genes.

These familial genetic studies identified significant hits

within GNPTAB (MIM: 607840), GNPTG (MIM: 607838),

NAGPA (MIM: 607985), and AP4E1 (MIM: 607244),

although there is little concordance in identified loci across

studies, indicating that results might be specific to the

tested family.9,12,13 Follow-up studies have demonstrated

that disruptions in GNPTAB resulted in deficits in astrocyte

pathology in the corpus callosum and disruptions in
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mouse vocalization.14 The roles of these astrocytes in the

onset of stuttering are not well characterized; however,

recent studies have contributed to a growing body of evi-

dence that dopamine receptor D2 blockers can impact stut-

tering behavior, perhaps because of increased astrocyte

metabolism in the striatum.15 These studies suggest that

dopamine projection from the basal ganglia might

contribute to disturbances in speech and vocalization,

and the findings potentially support pharmacological

means for treatment.16,17 Recent evidence also implicates

autoimmune reactions from group A beta-hemolytic strep-

tococcus (GAS [MIM: 607395]) infections that target spe-

cific cell types within the basal ganglia as a potential cause

of stuttering.18 Rheumatic fevers (MIM: 268240) and other

sequelae resulting from GAS have been more generally

linked with pediatric autoimmune neuropsychiatric disor-

ders and historically have correlated strongly with stutter-

ing in children.18

Still, to date, most genetic research has provided limited

biological insight into potential mechanisms of action that

contribute to the stuttering phenotype, and the lack of

replicability across the linkage studies suggests that these

genetic risk loci do not explain the genetic basis of stutter-

ing at a population level.9

Genome-wide association studies (GWASs), an alterna-

tive method to linkage analysis for disease gene discovery,

typically utilize genome-wide genetic data in large samples

drawn from populations to identify common genetic vari-

ants that are associated with increased risk of a disease or

trait. Prior to this study, no population-based genome-

wide association study (GWAS) has successfully identified

variants significantly associated with developmental stut-

tering. Stuttering has a high recovery rate and is frequently

diagnosed outside of a hospital or clinical setting; there-

fore, one reason for the lack of genetic discoveries that

explain the general prevalence of stuttering is the chal-

lenge of acquiring large numbers of developmental stutter-

ing cases for GWAS approaches to be well powered. To

address the issue of case acquisition, today, researchers

are frequently turning to large-scale biobanks linked to

electronic health records (EHRs) to efficiently and cost

effectively develop studies well powered for genetic discov-

ery.19 Cases for a particular phenotype are often identified

in EHRs through the use of phenotyping algorithms based

on ICD-9/10 billing codes, CPT procedural codes, and/or

notes from clinical records.20 However, the billing codes

traditionally used to assess patient status in the electronic

health record are heavily underreported for developmental

stuttering.21

In Vanderbilt University’s large HER-linked DNA data-

base (BioVU), only 142 of the 92,762 (0.15%) patient sam-

ples genotyped on the Illumina Multi-Ethnic Genotyping

Array (MEGAEX) had recorded billing codes denoting

developmental stuttering (see Table S1), a proportion

well below even the most stringent expected prevalence.

The nature of this condition might shed some light on

its underrepresentation in Vanderbilt’s EHR. In cases where
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patients do not have an overt stutter or in the event that

the patient exhibits early recovery, doctors might simply

overlook the condition and not record a diagnosis in the

EHR. Even if a patient were to seek evaluation and treat-

ment for developmental stuttering, speech evaluations

are typically performed by speech-language pathologists,

usually outside of a hospital context (e.g., schools or pri-

vate clinics).21 There are also currently no FDA-approved

medications or medical procedures to treat developmental

stuttering, making it significantly less likely to be noted in

a medical setting. Finally, although treatment exists for

stuttering in the form of therapy and even though this is

a chronic condition for many adults, this condition is

not considered a parity diagnosis, and as such most

government and private insurance plans do not cover

treatment costs for stuttering. An inability to bill for these

diagnoses makes it less likely for providers to include the

ICD code for this diagnosis during a patient visit.

In our previous research, we identified individuals

affected by stuttering by applying a phenotype-driven ma-

chine-learning algorithm (PheML) that uses commonly re-

ported phenotypes significantly associated with clinically

diagnosed developmental stuttering as predictor variables

to impute a developmental stuttering phenotype in BioVU

(individuals with this phenotype are predicted by PheML

to be affected by stuttering).21 Our model takes a series of

binary proxy parameters to impute developmental stutter-

ing in a patient population by using a Gini impurity-based

classification and regression tree classifier.22 The PheML

algorithmwas built and testedwith an initial pool ofmanu-

ally reviewed records from individuals affected by stutter-

ing in Vanderbilt University’s EHR (no subjects within

BioVU were used) across all ancestries (Figure 1). Model

validation testing in an independent dataset containing

manually reviewed records resulted in a positive prediction

rate of 83.3% (Table 1).21 Applying this model in BioVU re-

sulted in a higher proportion of individuals with imputed

developmental stuttering (�10%) than were observed by

diagnostic code (0.15%) or manual chart review.21

To execute a well-powered GWAS aimed at identifying

associated genetic loci for stuttering, we applied PheML

in BioVU to impute a stuttering phenotype in patients

with genetic data linked to their EHR. We then leveraged

the imputed stuttering phenotype as the dependent vari-

able in a GWAS to identify associated variants and generate

a polygenic-risk-prediction model. We validated these

results by comparing the concordance of our GWAS sum-

mary statistics to the GWAS results obtained from an inde-

pendent clinically ascertained stuttering sample set ac-

quired through the International Stuttering Project (ISP)

and the polygenic-risk-prediction scores in the clinically

ascertained cases versus matched population-based con-

trols.23 This approach allowed us to impute a stuttering

phenotype in a large patient set on the basis of the pres-

ence of a phenotypic profile that approximates a develop-

mental stuttering phenotype and to amass statistical

power from a large sample size to help accommodate the
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Figure 1. Outline of PheML development and application
Within a set of 3.1 million deidentified electronic health records (A), we first identified a small pool of subjects (B) with developmental
stuttering through expert manual review. We selected these patients and their demographically matched controls to identify comorbid-
ities as predictive features and develop and test a machine-learning model (C) that would impute stuttering in BioVU (D), an indepen-
dent EHR dataset linked to genetic data. We then performed a GWAS by using the imputed phenotype as the dependent variable in the
labeled genetic dataset (E) to identify genetic variants associated with imputed stuttering (F).
lack of clinical specificity. In doing so, we were able to

perform a GWAS that identified genome-wide-significant

variants associated with the clinical profile of develop-

mental stuttering.
Subjects and methods

Model development and application to BioVU
We developed a model that classified patients as having a high

probability of having developmental stuttering if they had one

of the phenotypes (denoted as phecodes) associated with develop-

mental stuttering; details are described in Pruett et al.21 Phecodes

were mapped from ICD-9 codes clustered on the basis of a

grouping system developed through the Phecode Map project.23

Features were selected on the basis of phecode enrichment in indi-

viduals with developmental stuttering as compared to matched

controls.21 Patients with one or more instance of a phecode in

their EHR were noted as positive for that feature, and they were

notedas negative if they had no mentions of the phecode; only

phecodes observed more often in the set of affected individuals

than in 10,000 simulations of matched controls were carried for-

ward into model building (corresponding to a p value of 0). A

Gini impurity-based classification-and-regression-tree machine-

learning model was developed from these features via scikit-learn

tree regression software,22 and the model was tested in an inde-

pendent set of 141 individuals with developmental stuttering

and 684 matched controls in Vanderbilt University’s HER; pheno-

typic status of these individuals was confirmed by expert manual

review.21 We then applied this model to a set of 92,762 individuals

genotyped on the MEGAEX array with available ICD-9 records and

resulting phecodes to impute developmental stuttering status for a

downstream GWAS.
Genotyping, imputation, and quality control
All BioVU participants as well as the participants in the indepen-

dent clinically ascertained developmental stuttering dataset were

genotyped on Illumina’s Infinium Expanded Multi-Ethnic Geno-

typing Array (MEGAEX). Duplicate variants and indels were

removed; for duplicate samples, the duplicate with a lower call

rate was removed.

BioVU

Quality control was performed primarily with PLINK v. 1.90.24

Initial filtering thresholds for the entire BioVU sample included
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excluding variants with a call rate less than 98% and samples

with a call rate less than 97%.25 Eigenvectors and eigenvalues

were calculated through principal-component analysis (PCA) run

in PLINKv1.90, and data were separated according to genetic prin-

cipal components (eigenvectors) into five broad ancestry groups—

European, African, South East Asian (EAS), EAS, and Hispanic

(AMR) —with the 1000 Genomes reference for ancestry classifica-

tion verification (Figure S1).26 Each ancestry subset was subse-

quently analyzed separately; a minor-allele filter of 1%, a

variant-missingness filter of 5%, and a sample-missingness filter

of 10% were applied, and checks for heterozygosity, sex, and var-

iants that did not align with Hardy-Weinberg expectations (vari-

ants with a Hardy-Weinberg [hwe] statistic <1 3 10�10 were

removed) were performed.25 Data were prepared for imputation

according to specifications outlined on the Michigan server web-

page; these included using a pre-imputation data-preparation tool-

kit (see McCarthy Group tools in the web resources).27 Imputation

was performed for each ancestry cohort on the Michigan Imputa-

tion server through the use of EAGLE2 phasing, Minimac4

imputation, and the Haplo-type Reference Consortium (HRC)

reference.27–29 Final post-imputation quality-control filtering

included selecting variants with a minor-allele frequency above

1% within each ancestry group, as well as removing all variants

with an R2 imputation info score of less than 0.4.

International Stuttering Project (ISP) dataset

As an independent reference dataset, we obtained 1,345 clinically

ascertained developmental stuttering patients (965 male and 380

female) collected from Curtin University Stuttering Center in

Perth, Australia, the SpeechMatters Clinic in Dublin, Ireland, the

Stuttering Research Laboratory at the University of Pittsburgh,

Dr. Shelly Jo Kraft’s research group at Wayne State University,

and the Attadale Stuttering Treatment Facility in Australia and

through a social-media outreach campaign led by Drs. Below

and Kraft on reddit.com. We paired these with 7,019 demograph-

ically matched controls from BioVU (4,951 males and 2,068 fe-

males; selected as described below and with no overlap with the

dataset used in our primary GWAS) (Table S2). A speech patholo-

gist evaluated each participant to confirm their phenotypic status.

We applied the methods described by Pluzhnikov et al. to identify

possible plate or batch effects prior to merging unique batches of

genotypes from affected individuals.30 No plate or batch effects

were observed. Initial filtering for stuttering excluded variants

and samples with a call rate less than 90%. Next, data for affected

individuals were separately assessed for quality control according

to broad ancestral groups (European, American/Hispanic, African
nal of Human Genetics 108, 2271–2283, December 2, 2021 2273
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Table 1. Performance of PheML classification model

Predicted status

Affected individuals Control individuals Total

Classified as stuttering by manual review 97 44 141

No indications of stuttering 19 665 684

Total 116 709
American, and Asian) as defined by PCA in which the HAPMAP3

reference was used for ancestry classification.31 Each ancestry

cohort was subsequently analyzed; analysis incorporated a mi-

nor-allele filter of 1%, a variant-missingness filter of 3%, and a

sample-missingness filter of 5%, as well as checks for heterozygos-

ity, sex, and variants that did not align with Hardy-Weinberg ex-

pectations (variants with a hwe statistic <1 3 10�15 were

removed). Then, approximately five ancestry and sex-matched

population-based controls per case were drawn from a quality-con-

trol filtered BioVU set (quality control for BioVU as described

above). To select ancestry-matched controls, we calculated eigen-

vectors and eigenvalues through PCA generated by PLINK

v.1.90. PCA was performed on the maximally unrelated set of

affected indivdiuals and potential control individuals (as identi-

fied by PRIMUS32–35) through use of a panel of SNPs in low linkage

disequilibrium (LD); additional related affected individuals and

potential control individuals were projected along each of the

calculated eigenvectors. Data from affected individuals were

merged with that from their selected matched controls (the con-

trol selectionmethod is described below) for imputation according

to standard protocols and specifications outlined for the TOPMed

server; these included using the same pre-imputation data-prepa-

ration toolkit as above (see McCarthy Group tools in web re-

sources).27 The autosomal region was imputed on the TOPMed

server with EAGLE_v. 2.4 phasing, Minimac4 imputation, and

the TOPMed reference.29,36,37 Post-imputation quality-control

filtering included selecting variants with a minor-allele frequency

above 1% and removing all variants with R2 imputation info score

less than 0.4.

Genome-wide association studies
BioVU

For the GWASs, developmental stuttering patients were stratified

by ancestry, with independent association analyses performed

for each ancestry group: European, African, South EAS, EAS, and

Hispanic. For each identified case, up to six controls were selected

from the cohort of patients identified as controls by the PheML

prediction model. Control individuals were matched by age

(within 5 years of their matched affected individual) and sex.

Additionally, control individuals were matched to the lowest

genetic Euclidean pairwise case-control distance that met the pre-

viously mentioned criteria. Euclidean pairwise distance was calcu-

lated as the sum of the square of the difference in the eigenvectors

scaled by their eigenvalue for each principal component calcu-

lated from our PCA.38 Any pairwise case-control distance not

within two standard deviations of the mean distribution of all

case-control pairwise distances were removed from the analysis.

A logistic-regressionmodel was used for the variant association an-

alyses in SUGEN ,39 and corrections were made for sex, age, and

ancestry (genetic ancestry captured by the first three principal

components). To correct for multiple testing, we considered vari-
2274 The American Journal of Human Genetics 108, 2271–2283, Dec
ants with an association p value below 5.03 10�8 to be significant.

Manhattan plots were generated with the qqman R package.40

Loci and LD structure visualization and qq-plots plots were gener-

ated with the LocusZoom browser tool.41

International Stuttering Project (ISP) GWAS

Control individuals were selected from a sample set of individuals

who were not identified as being affected by stuttering according

to ICD9 and ICD10 codes (Table S1) or by the PheML prediction

algorithm. These individuals were matched by sex, similarly to

those described for the BioVu individuals described above. Genetic

Euclicean pairwise distance was minimized, and any pairs of

affected and control individuals not within two standard devia-

tions of the mean distribution of all pairwise distances were

removed. Individuals under 18 were also excluded as potential

controls. Dates of birth for individuals in the ISP sample sets

were not available, so subjects were not matched by age. A

GWAS for the ISP stuttering sample set was performed with a fre-

quency-based additive logisticmodel via SAIGE (scalable and accu-

rate implementation of generalized mixed model), a method

developed for biobank data in order to control for unbalanced

case-control ratios and sample relatedness.42 The regressionmodel

accounted for population substructure by including the first six

principal components as covariates.
Calculations of genetic heritability
Genome-wide SNP-based liability-scale heritability within our Euro-

pean ancestry (EUR) sample set was calculated through a genomic-

relatedness-based restricted maximum-likelihood (GREML)

approach implemented throughGCTAsoftware.43,|,44Observedvari-

ance estimates from the observed scale were transformed to an

expected underlying scale, for which an expected population preva-

lence was set to 0.1 on the basis of the observed frequency of

predicted caseswithinBioVU.Heritability estimates included all var-

iants tested in theGWASs (seeGenotyping, imputation, and quality con-

trol in the methods section for exclusion criteria). We corrected for

sex, age, and the first three principal components (see Genotyping,

imputation, and quality control).
Variant-effect-size concordance analysis
For the concordance analysis, we compared summary statistics

from the EUR GWAS to summary statistics produced from the

ISP GWAS to determine whether the concordance rate between

the two summary statistics was higher than expected. The concor-

dance rate was calculated by the proportion of variants that had

the same direction of effect over the total variants present in

both GWAS analyses. 7,570,420 variants that passed previously

described QC metrics were present in both GWAS analyses,

aligned by strand and reference allele, and analyzed here. Addi-

tional concordance rates were calculated for variants with p values

below 0.5, 0.05, and 0.005 thresholds in both GWASs. We
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Table 2. Demographics of BioVU subjects classified by PheML algorithm

Predicted to exhibit stuttering Predicted not to stutter

Total 9,239 83,503

Male 3,507 (38.0%) 36,140 (43.3%)

Female 5,732 (62.0%) 47,363 (56.7%)

Demographics

Mean age in years (SD) 47.9 (24.9) 55.2 (22.7)

Ancestry

European 6,339 (68.6%) 63,471 (76.0%)

African 1,869 (20.2%) 13,728 (16.4%)

East Asian 124 (1.3%) 772 (0.9%)

South Asian 51 (0.6%) 363 (0.4%)

Hispanic 398 (4.3%) 2,068 (2.5%)

Unknown/other 158 (1.7%) 3,101 (3.7%)

Ancestry was determined through principal-component analysis. Testing set included 825 subjects (141 individuals confirmed to exhibit developmental stuttering
and 684 subjects with no indication of stuttering in their health records). The positive-prediction rate for the model is �83%.
performed a one-sample t test to determine whether each concor-

dance rate was significantly higher than an expected concordance

rate of 0.5.

Modeling of the polygenic risk score
We used the summary statistics resulting from our GWAS of

PheML-defined EUR-imputed stuttering to develop a polygenic

risk (PRS) model by using data from all 7,751,954 autosomal

SNPs meeting the quality-control criteria outlined above. The

PRS model was developed with PRScs python software, which cre-

ates a model that esimtaes genetic liability through a linear combi-

nation of the weight of SNP dosage on effect size and p values from

the provided GWAS summary data.45 Our global shrinkage param-

eter (phi) was set to 1. This model was applied to the genetic data

of the independent clinically ascertained developmental stutter-

ing cohort as well as their matched controls. This analysis was

restricted to only samples that were of EUR. Individual polygenic

scores were calculated through PLINK v. 1.9.25 To assess the signif-

icance of the difference in genetic liability for stuttering between

the individuals with clinically ascertained stuttering and the

matched control individuals, we ran a two-sample t test

comparing the overall score distribution between these two

groups.
Results

Efficacy of PheML prediction

To test the efficacy of our model predicting PheML stutter-

ing, we applied the model to a set of 825 patients (141 pa-

tients with developmental stuttering confirmed bymanual

review and 709 patients with no indications of stuttering in

theirhealth records).Of the116 subjects thatourprediction

model scored as having developmental stuttering, 97 were

among those manually reviewed as having developmental

stuttering, and 19 had no indications of stuttering in their

records, resulting in a positive prediction rate of �83% (Ta-

ble 1). Of the 141 manually reviewed individuals with
The American Jour
developmental stuttering in the testing set, 97 were pre-

dicted as having developmental stuttering by the PheML

model, whereas 44 were not, suggesting that despite our

high positive predictive values, 30% or more affected indi-

viduals might still be missed by our approach.21
PheML imputation of developmental stuttering

identifies a large case sample

Of a set of 92,742 BioVU subjects, PheML labeled 9,239 as

having a high likelihood for developmental stuttering

(9.96% prevalence). Of this set, 5,732 affected individuals

were female (62.0%; average age of 47.9 years). 6,639

(68.6%) were of EUR, 1,869 (20.2%) were of African

ancestry (AFR), 398 (4.3%) were of Hispanic ancestry, 124

were of EAS ancestry (1.3%), and 41 (0.6%) were of South

Asian ancestry (SAS) (Table 2). Broad ancestry groups were

stratified via principal-component analysis (Figure S1).
GWASs in the PheML prediction set identify genetic loci

associated with developmental stuttering

The PheML predicted-stuttering sample set was stratified

by PCA-based genetic ancestry (African, EAS, European,

Hispanic, and South Asian) for genome-wide association

studies (Table 3). We performed a separate GWAS for each

ancestry group. Across analyses in the five ancestry groups,

the European and AFR groups were the largest and best

powered. One locus reached genome-wide significance in

the EUR analysis and one locus reached near genome-

wide significance in the AFR sample set (Table 4).

In the EUR case set, the GWAS included 6,339 predicted

developmental stuttering cases and 33,172 ancestry and

sex-matched controls and 7,751,954 imputed variants

(Figure 2; seemethods section). One statistically significant

locus was identified, and the sentinel variant was deter-

mined to be at rs12613255 (beta ¼ 0.323; p ¼ 1.31 3 10�8
nal of Human Genetics 108, 2271–2283, December 2, 2021 2275



Table 3. Demographics of BioVU subjects used in GWAS

Individuals predicted to stutter Predicted control individuals

Total 9221 45,793

Male 3,491 (37.9%) 17,162 (37.5%)

Female 5,730 (62.1%) 28,631 (62.5%)

Demographics

Mean age in years (SD) 47.7 (24.8) 48.6 (24.2)

Ancestry

European 6,339 (68.7%) 33,172 (72.4%)

African 1,853 (20.1%) 8,372 (18.3%)

East Asian 124 (1.3%) 592 (1.3%)

South Asian 51 (0.6%) 228 (0.5%)

Hispanic 397 (4.3%) 1,395 (3.0%)

Ancestry was determined through principal-component analysis. GWASs were performed with stratifications by ancestry.
), 113 kb 3¢ ofCYFIP-related Rac1 interactor A (CYRIA) (MIM:

606322) (see Figure 3). The developmental-stuttering

GWAS in subjects of AFR included 1,853 affected individ-

uals, 8,402 ancestry- and sex-matched control individuals,

and 13,636,593 variants (Figure 4; see methods). The top

variant, rs7837758, reached near-genome-wide signifi-

cance (beta ¼ 0.518; p ¼ 5.07 3 10�8). rs7837758 is found

the third intron of ZMAT4, located on chromosome 8

(Figure 5). The GWAS performed on subjects of Hispanic

ancestry included 397 affected individuals, 1,457 ancestry-

and sex-matched control individuals, and 8,147,169 vari-

ants (Figure S2). For subjects of EAS ancestry, the GWAS

included 124 affected individuals, 716 ancestry- and sex-

matched controls, and 6,922,517 variants (Figure S3). For

subjects of South Asian ancestry, the GWAS included 51

affected individuals, 279 ancestry- and sex-matched con-

trols, and 7,058,354 variants (Figure S4). Most likely

because of the reduced power in smaller sample sizes, asso-

ciation analyses in the Hispanic, South Asian, and EAS co-

horts did not result in any significantly associated variants

with our PheML prediction set (see Figures S2–S4 and Table

S3). We also report several loci that exceeded a suggestive

significance threshold of p ¼ 5 3 10�6 (108 variants across

all ancestry GWASs) and were replicated (p < 0.05) in one

ormore independent developmental stutteringGWASs (Ta-

ble 4, Figures S5–S13). Our strongest replications across

these studies include rs6415726 (HIS GWAS; beta ¼ 0.730;

p¼9.61310�7), an intronicC9orf92variant that replicated

in the ISP GWAS (beta ¼ 0.197; p ¼ 6.29 3 10�4), and

rs10464899 (AFR GWAS; beta ¼ 0.216; p ¼ 1.51 3 10�7;

see Figure S13), a variant that is 178 kb 50 of TOX [MIM:

606863] and replicated in the ISP GWAS (beta ¼ 0.139; p

¼ 6.88 3 10�3; see Figure S6).

Genome-wide explained variance within the EUR PheML

sample set

Genome-wide SNP-based liability-scale heritability within

our EUR sample set was calculated through GCTA within
2276 The American Journal of Human Genetics 108, 2271–2283, Dec
the European-ancestry PheML sample set. The proportion

of phenotypic variance explained by genetic factors was re-

ported at 0.0232 (SE ¼ 0.0083).43 Through GCTA we also

transformed the explained variance estimates from the

observed scale to the underlying liability scale to account

for an expected prevalence of affected individuals of 0.1.

The proportion of phenotypic variance (liability-scale her-

itability) was 0.0453 (SE ¼ 0.016, p ¼ 2.29 3 10�3).

Concordance analysis reveals genetic similarity between

PheML-predicted stuttering individuals and those

clinically ascertained by the ISP as having

developmental stuttering

To ensure that the genetic profile of our PheML-predicted

stuttering individuals properly recapitulated effects associ-

ated with clinical developmental stuttering, we compared

the direction of effect estimated in a GWAS between our

GWAS of EUR PheML-predicted stuttering individuals

and a GWAS of an independent, largely European-ancestry,

and clinically ascertained set of individuals with develop-

mental stuttering (see Table S2); this latter set was also

genotyped by the genotyping core facility at Vanderbilt

University, VANTAGE, on theMEGAEX. 7,570,420 imputed

variants were present and tested in both analyses by an

approach similar to that described in the 2014 DIAGRAM

paper.46

For all variants present in both GWASs, 50.41% of the

variants were found to have the same direction of effect

(3,816,091 of 7,570,420 variants; p ¼ 6.86 3 10�112). For

all variants that had a p value threshold below 0.5 in

both GWASs, the concordance-of-effect rate was 50.86%

(982,614 of 1,931,927 variants; p ¼ 3.77 3 10�127).

Variants with a p value threshold below 0.05 in both

GWASs had a concordance rate of 53.47% (10,830 of

20,255 variants; p ¼ 2.84 3 10�23). Variants below a p

value threshold of 0.005 in both GWASs had a concor-

dance rate of 73.19% (121 of 171 variants; p ¼ 6.25 3

10�10) (Table 5).
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Stuttering polygenic-risk-score models developed

with results from the PheML stuttering GWAS show

increased genetic liability within the ISP stuttering set

We developed a PRS-score model by using the summary

statistics for 7,751,954 variants produced by the GWAS

of EUR PheML-predicted stuttering individuals. We

then applied this model to the genetic datasets of our

ISP developmental-stuttering subjects and their

matched control individuals (the same set used in the

variant concordance analysis, although he sample set

only included those of PCA-based European ancestry).

Our ISP stuttering set scored significantly higher on

the PRS model (mean ¼ 8.56 3 10�8, SD ¼ 1.13 3

10�6) than their matched control individuals (mean ¼
�3.59 3 10�7, SD ¼ 1.01 3 10�6; two-sample t test,

t(1131) ¼ 13.12, p ¼ 6.83 3 10�39), providing compel-

ling evidence that the genetic architecture identified

in the model-imputed phenotyping discriminates the

genetic liability for developmental stuttering in clini-

cally ascertained cases and population-based controls

(Figure S14).
Discussion

Stuttering classification model development and

application to BioVU

We set out to utilize a phenotype-based machine

learning algorithm, PheML, to identify unlabeled cases

of developmental stuttering, an underdiagnosed pheno-

type, in a large EHR. Our model shows a positive predic-

tion rate of 83.3%, though it’s important to note that

while testing, those who were classified as ‘‘controls’’

during manual reviewmay have had stuttering and sim-

ply did not have any mentions of it in their records. We

expect that roughly 16.7% of patients in BioVU that

were classified as a case are false positives, though this

is likely an overestimate.

Applying PheML to BioVU resulted in a large popula-

tion of patients that, even in the absence of a direct diag-

nosis of stuttering, exhibited a constellation of traits

associated with stuttering; an underlying phenotypic

signature that could be leveraged to predict develop-

mental stuttering in a manner akin to imputation.

Though 9.96% of the cohort was predicted to be a case

by our PheML model, the modest sensitivity of the

model (68.8%) suggests that this is likely an underesti-

mation of the actual proportion of the true cases in

our sample.

Interestingly, although males exhibit a higher preva-

lence of stuttering, more females were identified as ex-

hibiting stuttering by our PheML prediction model

(the female-to-male ratio was 1.6:1). Although there

are more females in BioVU than males (1.3:1; female:

male), this does not fully explain the discrepancy. There

are several possible explanations for this imbalance.

There might be sex imbalance in the rate or quality of
l of Human Genetics 108, 2271–2283, December 2, 2021 2277



Figure 2. Manhattan plot and qq-plot of results from GWAS of European-ancestry individuals predicted by PheML to exhibit devel-
opmental stuttering
Analysis included 7,751,954 variants across chromosomes 1–22. One locus in chromosome 2 reached genome-wide significance (p< 53
10�8); the sentinel variant, rs12613255 (BETA¼ 0.323; p ¼ 1.313 10�8), was 113 kb 3’ of CYRIA (FAM49A is an alias for CYRIA). The red
line indicates the threshold for genome-wide significance (5.0 3 10�8), and the blue line indicates the threshold for suggestive signif-
icance (1.0 3 10�5). Loci reported in Table 4 are labeled on the plot as well as the nearest gene.
diagnosis of selected predictive phenotypes; also, the abil-

ity to predict stuttering might be greater in women than in

men. The positive-prediction rate for ourmodel is>83.3%,

andmore womenmight bemisspecified as affected by stut-

tering. A third possibility is that the prevalence of stutter-

ing in women is higher than reported but less frequently

diagnosed or detected because of a faster or higher rate of

recovery. Prior evidence from Ambrose et al. supports

this last potential explanation by suggesting that the

male-to-female ratio for lifetime prevalence might be

more balanced when mild cases of developmental stutter-

ing and individuals who recover early are included.47

Future analyses of sex-stratified GWASs of developmental

stuttering and its associated clinical phenome are needed

if researchers are to further explore differential risk factors

that might contribute to differences in age and rate of re-

covery between men and women.

Genetic discovery in predicted-stuttering cohort

PheML-imputed affected individuals and well-matched

control individuals were stratified by ancestry for GWASs.
Figure 3. LocusZoom plot for rs12613255 locus in EUR PheML stu
The lead variant (marked as a diamond) was found in chromosome
genome-wide significance (5.0 3 10�8).

2278 The American Journal of Human Genetics 108, 2271–2283, Dec
Our estimated positive-prediction rate (83.3%, implying a

false-positive rateof16.7%)amongcases ismost likelymark-

edly lower than the positive-prediction rate of samples ac-

quired from affected individuals in treatment clinics, where

speech and language pathologists confirm patient status.

However, as with studies that leverage population-based

controls, our power reduction resulting from imprecision

in definitions of affected and control individuals is offset

by the size of the dataset identified by our PheML model.

Controls for GWASs were selected from patients our

model classified as having low likelihood for develop-

mental stuttering (i.e., these patients were not predicted

to stutter). Our sensitivity analysis indicates that themodel

is classifying 68.8% of manually reviewed developmental

stuttering cases as being at high risk for stuttering, whereas

31.2% were classified as control individuals. Therefore, we

expect somemodel-defined controls, roughly equal to one-

third of the biobank prevalence for stuttering, to exhibit

stuttering, potentially further reducing our power to

discriminate allele-frequency differences between affected

individuals and controls.
ttering GWAS
2, 113 kb 3’ of CYRIA. A dashed line indicates the threshold for
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Figure 4. Manhattan plot and qq plot of results from GWAS of African-ancestry individuals predicted by PheML to exhibit develop-
mental stuttering
Analysis included 13,643,593 variants across chromosomes 1–22. One variant, rs7837758, reached genome-wide significance (BETA ¼
0.518; p ¼ 5.07 3 10�8), on chromosome 8 within the third intron of ZMAT4. The red line indicates the threshold for genome-wide
significance (5.0 3 10�8), and the blue line indicates the threshold for suggestive significance (1.0 3 10�5). Loci reported in Table 4
are labeled on the plot as well as the nearest gene.
Despite the challenge of misclassification of affected and

control individuals in the sample size attained with our

phenotype-imputation approach in biobank-scale data,

our analyses in EUR participants not only identified a

genome-wide significant locus but also demonstrate that

a significant portion of the variance of the trait captured

by our model is heritable (h2 ¼ 0.045, SE ¼ 0.016, p ¼
2.293 10�3), indicating that there exists a common under-

lying genetic background among those who were classified

as exhibiting developmental stuttering in our model. This

heritability estimate is in line with other common com-

plex neurological and psychological traits, such as PTSD

in males and anxiety.48,49 We also demonstrate that this

common genetic background is consistent with the ge-

netic architecture identified in a clinically ascertained in-

dependent GWAS of stuttering.

Association analyses were separated by ancestry groups.

For the analyses conducted in AFR, HIS, SAS, and EAS

ancestry groups, no variants were observed to be signifi-

cantly associated with our developmental stuttering

cohort after genome-wide Bonferroni correction (p < 5 3

10�8) (Table S3), although two variants came close to

reaching significance in the EAS sample (rs10872381,
Figure 5. LocusZoom plot for the rs7837758 locus in the AFR PheM
The lead variant (marked as a diamond) was found on chromosome
threshold for genome-wide significance (5.0 3 10�8).

The American Jour
beta ¼ 0.803; p ¼ 6.43 10�8; see Figure S10) and AFR sam-

ple (rs7837758, beta¼ 0.518; p¼ 5.073 10�8, see Figure 5).

These studies were markedly smaller in size than our EUR

study (see Table 3) and were therefore likely insufficiently

powered to discover variants of modest effect size.

GWAS in theEuropean cohort revealed one significant lo-

cus; the top hit was at rs12613255 (beta¼ 0.323; p¼ 1.313

10�8); see Figure 3). The closest gene to this variant, which

resides on chromosome 2, is CYRIA, also referred to in the

literature asFAM49A. RNAexpressiondata showthatCYRIA

is highly expressed in the central nervous system (specif-

ically in the cerebral cortex, basal ganglia, and olfactory re-

gion) and is also highly expressed in the thyroid gland,

granulocytes, and monocytes.50 CYRIA has not previously

been implicated in developmental stuttering, although in

Asian and Brazilian populations it has been reproducibly

associated with cleft lip and palate,51–54 a trait that was

not used a predictor variable in our model.

In the AFR GWAS, variant rs7837758 nearly reached the

genome-wide significance threshold of 5.0 3 10�8 (beta ¼
0.518; p¼ 5.073 10�8) (see Figures 4 and 5). This variant is

located on chromosome 8 in the intron of ZMAT4 (Zinc

fingermatrin-type protein 4) (see Figure 5). Variants within
L Stuttering GWAS
8, within the third intron of ZMAT4. A dashed line indicates the

nal of Human Genetics 108, 2271–2283, December 2, 2021 2279



Table 5. Results of variant-concordance analysis

Concordant variants Concordance rate (%) Binomial p value

All variants 3,816,091/7,570,420 50.41 6.86 3 10�112

p < 0.5 982,614/1,931,927 50.86 3.77 3 10�127

p < 0.05 10,830/20,255 53.47 2.84 3 10�23

p < 0.005 121/171 73.10 6.25 3 10�10

Results from analyses comparing summary statistics of the European PheML stuttering GWAS to those of the ISP stuttering GWAS. Concordant variants include any
variants that were present in both analyses and had the same direction of effect.
this gene have previously been observed to be associated

with myopia and fasting blood glucose in African Ameri-

cans.55,56 Neither of these phenotypes have been previ-

ously associated with developmental stuttering, nor did

these phenotypes serve as proxy variables in our prediction

algorithm.21 ZMAT4 has been observed to be highly ex-

pressed in the central nervous system, especially in tissue

types present in the cerebral cortex, cerebellum, and hip-

pocampus and to be modestly expressed in the basal

ganglia.50

Little is knownabout theneuronal basis ofdevelopmental

stuttering, although imaging studies have demonstrated

that patients who stutter show abnormal function in the

form of overactivity in the cortical motor and pre-motor

areas associated with speech, as well as disruptions in the

basal ganglia and dopaminergic systems.57–59 Although

the previous linkage analyses have identified candidate

genes, including DRD2 (MIM: 126450), AP4E1, CYP17A1

(MIM: 609300), GNPTAB, GNPTG, and NAGPA, 13,60–62 the

mechanisms of action remain uncertain, although both

GNPTAB andGNPTG are active in lysosomal enzyme-target-

ing pathways and energy metabolism.63 We checked for

replication within these genes but failed to demonstrate

any significant findings (see Table S4). Although the mech-

anisms of action of our top associated variants on the clin-

ical profile of developmental stuttering are not yet known,

our approach enabled variant discovery, and future work

will be needed to reproduce these findings and establish

their functional role in the clinical profile of susceptibility

to developmental stuttering.

Validation of GWAS results: concordance analysis

Using the summary statistics resulting from our GWAS of

EUR individuals predicted by PheML to exhibit stuttering,

we ran a variant concordance analysis that assessed how

many variants had the same direction of effect as the var-

iants tested in a GWAS run on a clinically ascertained

developmental-stuttering sample set via the approach out-

lined in the 2014 DIAGRAM paper, in which concordance

measures were used for assessing T2D risk alleles across

various ancestry groups.46 Variants that were not well

imputed (r2 > 0.4) in either GWAS were removed from

the concordance analysis, and datasets were verified to

have the same strand and reference-allele orientation.

This was repeated with only variants that surpassed thresh-

olds of p ¼ 0.5, 0.05, and 0.005 in both association ana-
2280 The American Journal of Human Genetics 108, 2271–2283, Dec
lyses. For example, for the group ‘‘p < 0.05,’’ only variants

with a p value that was below 0.05 in both the PheML

GWAS results and the ISP GWAS results were included in

the analysis. Together, the four concordance analyses

demonstrated that the proportion of variants with the

same direction of effect was significantly greater than

random. Additionally, as the significance threshold for var-

iants included in the concordant analysis became more

stringent, the proportion of variants with the same direc-

tion of effect increased, and 73.1% of all variants that sur-

passed a threshold of p ¼ 0.005 in both GWAS have the

same direction of effect (see Table 5). The clinically ascer-

tained stuttering sample set was from a multi-ethnic anal-

ysis, although it was predominantly comprised of EUR

participants (84.2%; see Figure S1 and Table S2). This

remarkable finding provides compelling evidence that

the GWAS using our PheML-imputed stuttering phenotype

is capturing a portion of the genetic architecture of clinical

developmental stuttering.

Validation of GWAS results: stuttering PRS model

development

To further explore our genetic findings, we developed a PRS

model built with summary statistics from the GWAS con-

ducted in our EUR PheML stuttering sample. PRS models

are used for summarizing variant effects and assessing ge-

netic liability for a trait. We applied this model to the ge-

netic dataset of our ISP developmental-stuttering EUR

cohort, as well as their matched controls. The ISP stuttering

set scored significantly higher than their matched controls

(two-sample t test, t(1131) ¼ 13.12, p ¼ 6.83 3 10�39; see

Figure S14), indicating that the PRS model developed

from our imputed stuttering GWAS is significantly predic-

tive of stuttering liability. This additional evidence strongly

supports our conclusion that thePheMLclassifier captures a

phenotype sufficiently similar to that of the ISP stuttering

sample set to identify genetic risk factors relevant for stut-

tering. Although statistically significant, the difference

observed in the score distributions for stuttering and con-

trol individuals suggests that this PRS model has limited

clinical value for predicting developmental-stuttering sta-

tus (receiver operating characteristic AUC ¼ 0.601; see

Figure S15). Ge et al.45 simulate the predictive performance

of PRS across various sample sizes and genetic architectures.

In these simulations they demonstrate that predictive per-

formances for more polygenic traits benefitting from
ember 2, 2021



greater sample sizes, showing that PRS models developed

from 50 to 100K sample sets have drastically better perfor-

mance metrics than models with smaller sample size.45

Our PRS model was developed from a sample set of

39,511, which may be underpowered for developing a

model that would be useful for predictive purposes.

We note that the developmental-stuttering comorbidities

that formed the basis of our PheMLmodel were determined

in a dataset largely comprising European and African Amer-

ican individuals. As such, the underrepresentation of other

racial and ethnicminority groups in our comorbidity detec-

tion and model building is a limitation. The effect of this

population structure in our EHR might lead to our model’s

missing some population-specific comorbidities, conse-

quentially reducingmodel performance in these subgroups.

Future research exploring comorbidities of stuttering and

genetic architecture within and across populations is

warranted.

Through our stuttering-prediction algorithm, we de-

signed and conducted the largest GWAS for the clinical

profile of developmental stuttering. Despite a lack of clin-

ical evaluation and diagnosis of stuttering in our affected

individuals and controls, our approach allowed use of an

existing EHR-linked DNA databank of sufficient size and

power to identify genome-wide significant loci through a

population based genetic analysis of this important trait.

These data provide insights into the genetic contributions

to developmental stuttering in patients of African and Eu-

ropean descent, demonstrating that genetic risk of this

clinical profile is dominated by modest to low genetic ef-

fects, as well as providing a framework for studying under-

reported diseases in large-scale EHRs.
Data and code availability

All code used for developing the PheML model described in the

methods section is available for download on github (see web re-

sources). Genotyping data from BioVU are only available upon

submission of a study proposal and approval through the BioVU

Review Committee.
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Supplemental Figures 
 
 

 
 
Figure S1. Principal component analysis of BioVU patients results. Top three principal 
components for all subjects in BioVU projected onto 1KG reference data. Broad ancestry groups 
were stratified into either African (AFR), European (EUR), Hispanic (HIS), South East Asian (SAS), 
East Asian (EAS) ancestry, or admixed Americans (AMR) based on PCs 1-3 (see methods). EUR 
ancestry was stratified  
  
 
 

 
Figure S2. Manhattan and qq-plot of Hispanic ancestry PheML predicted developmental 
stuttering GWAS results. Analysis included 8,147,169 autosomal variants. No variants reached 
genome-wide significance (P<5*10-8). Red line indicates genome-wide significance threshold 
(5.0*10-8), blue line indicates suggestive significance threshold (1.0*10-5). Loci reported on table 
2 are labeled on plot. 
 
 



 
Figure S3. Manhattan and qq-plot of East Asian ancestry PheML predicted developmental 
stuttering GWAS results. Analysis included 6,922,517 autosomal variants. No variants reached 
genome-wide significance (P<5*10-8). Red line indicates genome-wide significance threshold 
(5.0*10-8), blue line indicates suggestive significance threshold (1.0*10-5). Loci reported on table 
2 are labeled on plot. 
 
 
 
 

 
Figure S4. Manhattan and qq-plot of South Asian PheML predicted developmental stuttering 
GWAS results. Analysis included 7,058,354 autosomal variants. No variants reached genome-
wide significance (P<5*10-8). Red line indicates genome-wide significance threshold (5.0*10-8), 
blue line indicates suggestive significance threshold (1.0*10-5). Only 51 subjects of SAS ancestry 
were predicted by the PheML model to have developmental stuttering. 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure S5. LocusZoom Plot for rs2997903 in AFR PheML Stuttering GWAS. Lead variant found 
within the first intron of KYAT1 (beta=0.308; P=5.32*10-7). Dashed line indicates genome-wide 
significance threshold (5.0*10-8). 
 
 
 
 
 
 



 
Figure S6. LocusZoom Plot for rs10464899 in AFR PheML Stuttering GWAS. Lead variant found 
178kb 5’ of TOX (beta=0.216; P=1.51*10-7). We also reported rs6981922 (beta=0.197; 
P=9.35*10-7) which replicated in our East Asian population as well (P=3.27*10-2). Dashed line 
indicates genome-wide significance threshold (5.0*10-8). 
 
 
 
 
 

rs6981922 



 
 
Figure S7. LocusZoom Plot for rs34456770 in AFR PheML Stuttering GWAS. Lead variant found 
797bp 5’ of MPG (beta=0.256; P=1.87*10-6). Dashed line indicates genome-wide significance 
threshold (5.0*10-8). 
 
 
 

 
Figure S8. LocusZoom Plot for rs78072807 in AFR PheML Stuttering GWAS. Lead variant found 
within the 21st intron of RYR2 (beta=0.371; P=8.73*10-8). Dashed line indicates genome-wide 
significance threshold (5.0*10-8). 



 
 

 
Figure S9. LocusZoom Plot for rs115024493 in AFR PheML Stuttering GWAS. Lead variant 
found 397kb 5’ of DCN (beta=0.376; P=6.58*10-8).  Dashed line indicates genome-wide 
significance threshold (5.0*10-8). 
 
 
 

 



Figure S10. LocusZoom Plot for rs10872381 in EAS PheML Stuttering GWAS. Lead variant 
found 102kb 3’ of AKAP7 (beta=0.803; P=6.38*10-8). Dashed line indicates genome-wide 
significance threshold (5.0*10-8). 
 
 
 
 

 
Figure S11. LocusZoom Plot for rs10036373 in EUR PheML Stuttering GWAS. Lead variant 
found 42kb 5’ of C5orf17 (beta=0.701; P=3.68*10-6). Dashed line indicates genome-wide 
significance threshold (5.0*10-8). 
 
 
 



 
Figure S12. LocusZoom Plot for rs8013614 in EUR PheML Stuttering GWAS. Lead variant found 
84kb 5’ of BRMS1L (beta=-.120; P=1.59*10-6). Dashed line indicates genome-wide significance 
threshold (5.0*10-8). 
 
 
 
 
 
 



 
Figure S13. LocusZoom Plot for rs6415726 in HIS PheML Stuttering GWAS. Lead variant found 
within the second intron of C9orf92 (beta=0.730; P=9.61*10-6). Dashed line indicates genome-
wide significance threshold (5.0*10-8). 
 
 
 
 



 
Figure S14. Polygenic risk score violin plots. PRS model was developed using the summary 
statistics from the EUR ancestry PheML stuttering GWAS. The International Stuttering Project 
stuttering case set (blue) scored significantly higher on the PRS model (mean=8.56*10-8, 
SD=1.13*10-6) than their matched controls (orange), (mean=-3.59*10-7, SD = 1.01*10-6; 
t(1131)=13.12, P = 6.83*10-39). 
 
 



 
Figure S15. Polygenic risk score receiver operating characteristic (ROC) curve. PRS model was 
developed using the summary statistics from the EUR ancestry PheML stuttering GWAS. ROC 
curve plotted to demonstrate the model performance in predicting stuttering liability in the 
International Stuttering Project stuttering set. Area under the curve (AUC) = 0.60. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Tables 
 
 

Supplementary table S1. ICD codes used to identify developmental stuttering patients 

ICD-9 Code ICD-10 Code Definition 

307.0 F98.5 Adult-Onset Fluency Disorder 
315.35 F80.81 Childhood Onset Fluency Disorder 

784.5 R47.82 Fluency Disorder in Conditions Classified Elsewhere 

 
 
Table S1. ICD codes used to identify developmental stuttering.  
 
 
 

Supplementary table S2. Demographics of clinically validated stuttering case and control set 

                Stuttering Cases                 Population Controls 
Total 1345 7019 
Male 965 (71.7%) 4951 (70.5%) 
Female 380 (28.3%) 2068 (29.5%) 
Ancestry n (%) 
European 1132 (84.2%) 6111 (87.1%) 
African 68 (5.1%) 400 (5.7%) 
East Asian 42 (3.1%) 116 (1.7%) 
South Asian 44 (3.3%) 148 (2.1%) 
Hispanic 38 (2.8%) 132 (1.9%) 
Mixed/Other 21 (1.5%) 112 (1.6%) 

 
 
 
Table S2. Demographic distribution for subjects used in genome-wide association analysis for 
the International Stuttering Project (ISP) stuttering sample set. 
 
 
 
See attached table 
 
 
Table S3. Suggestive hits from PheML predicted developmental stuttering GWAS run in each 
ancestry. Table includes all variants where P<5.0*10-6. We also report association results for 
each variant in alternative ancestries. GWAS results for European, African, Hispanic, South 
Asian, and East Asian ancestry cohorts denoted as EUR, AFR, HIS, SAS, and EAS respectively. 
GWAS results from clinically validated set denoted as CV. 
 



 
 
See attached table 
 
 
Table S4. Replication results of previously identified genes associated with stuttering.  
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