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Supplemental Figures

Figure S1. From array to exome. Scatterplot showing the increase in number of protein-altering variants

in genes used in the analysis when comparing array (x-axis) to exome (y-axis) data. Data is taken from

MRP calculations across 35 biomarker traits within the UK Biobank. Color shows density of points as

according to colorbar (right).



Figure S2. ALPL gene plot. Gene plot showing variants for which MPC pathogenicity information was

incorporated, resulting in a power gain for ALPL gene that encodes alkaline phosphatase; for the Alkaline

phosphatase phenotype, the incorporation of this information resulted in a log10BF gain of 34 (Table S2).



Figure S3. Comparisons of -log10 p-values: MRP with independent effects model across variants,

SKAT. Correlation coefficient is 0.99. Line shown is y = x.



Figure S4. Comparisons of -log10 p-values: MRP with similar effects model across variants, burden

test. Correlation coefficient is 0.93. Line shown is y = x.



Figure S5. From single-variant and single-phenotype to multiple-variant and multiple-phenotype

gene discovery: when only a single variant has true effect. ROC curves for detecting simulated gene

association to any of the phenotypes using single variant/single phenotype association (turquoise) to

multiple-variant and multiple-phenotype association (pink). If only a single variant has true effect, adding

data from multiple variants demonstrates no improvement (and sometimes detriment).



Figure S6. From single-variant and single-phenotype to multiple-variant and multiple-phenotype

gene discovery: when phenotypes are independent. ROC curves for detecting simulated gene

association to any of the phenotypes using single variant/single phenotype association (turquoise) to

multiple-variant and multiple-phenotype association (pink). If phenotypes are truly independent, there may

still be information across the genotypes that allows for improvement of performance, but not as drastic of

an improvement as found when there is a clear correlation structure across phenotypes.













Figures S7-11. Manhattan plots showing log10 BF under an independent effects variant model

amongst protein-altering variants for 5 categories across 35 biomarkers. These include: Bone and

Joint, Diabetes, Hormone, Liver, and Renal traits. Scale is logarithmic after log10 BF ≥ 10. Genes found in

Sinnott-Armstrong, et.al.1 are annotated in grey, whereas the other genes are annotated in black. Colors

indicate different traits as indicated at the bottom of the plots.

Figure S12. LD-score regression-based genetic correlation plots of all 35 biomarkers included in

the multi-trait analyses. The traits are ordered by hierarchical clustering. Blue implies positive and red

implies negative correlation coefficients as indicated by the colorbar (right).



Supplemental Tables

Trait gene

Number of

PAVs, array

log10BF,

array

Number of

PAVs, exome

log10BF,

exome

log10BF

Difference

Total bilirubin UGT1A7 5 1.2 247 213 211.8

Direct bilirubin UGT1A7 5 0.6 228 133 132.4

Lipoprotein A PLG 57 38.9 583 165 126.1

SHBG SHBG 7 2.7 284 114 111.3

LDL cholesterol PCSK9 94 4.0 759 99 95.0

Total bilirubin MROH2A 33 4.6 1649 85.8 81.2

Apolipoprotein B PCSK9 94 3.1 756 80.7 77.6

Cholesterol PCSK9 94 4.0 760 80.9 76.9

IGF-1 GH1 5 2.1 301 55.1 53.0

Direct bilirubin MROH2A 33 2.9 1497 55.7 52.8

Gamma

glutamyltransferase GGT1 5 0.008 545 52.1 52.1

Triglycerides ANGPTL3 7 -0.02 337 39.9 39.9

Cholesterol ANGPTL3 7 -0.6 337 34.3 34.9

Cholesterol APC 1409 -34.7 1882 -0.5 34.2

LDL cholesterol APC 1410 -33.7 1882 -0.5 33.2

Apolipoprotein B APC 1405 -32.7 1876 -0.7 32.0

Total bilirubin UGT1A5 12 2.0 225 33 31.0



Albumin APC 1366 -31.6 1807 -1.2 30.4

Vitamin D APC 1379 -29.8 1828 0.2 30.0

Creatinine APC 1411 -31.4 1883 -1.9 29.5

Table S1. Genes with considerable power gain in exome data as compared to array data.

Trait Gene

Number

of PAVs

log10BF

without

MPC

Number of

MPC-augmented

PAVs

Number of

pLI-augmented

PAVs

log10BF

with

MPC

log10BF

Difference

Alkaline

phosphatase ALPL 198 126 93 0 160 34

Lipoprotein A LPA 512 109 20 0 114 5

Apolipoprotein A APOA1 102 11.7 30 0 15.7 4

HDL cholesterol APOA1 103 9.36 30 0 13.2 3.84

Aspartate

aminotransferase SLC30A10 112 3.76 50 6 7.2 3.44

Phosphate ALPL 192 10.9 91 0 14.3 3.4

Lipoprotein A IGF2R 763 29.8 153 27 33.1 3.3

HDL cholesterol SCARB1 220 5.45 66 0 8.29 2.84

Apolipoprotein B APOE 142 5.48 60 0 8.27 2.79

Alanine

aminotransferase SLC30A10 112 2.94 50 6 5.56 2.62



Table S2. Power comparison between variant annotation-based MRP and MPC/pLI-augmented

MRP analyses across 35 biomarkers. We see considerable gains in power in several gene/trait

combinations.

# Studies # Phenotypes Phenotype
Specification

Genetic
Datatype

Average
Runtime
(DD:HH:MM)

Single Single Binary Array 00:00:02

Single Single Quantitative Array 00:00:08

Multiple Single Binary Array 00:00:20

Multiple Single Quantitative Array 00:00:40

Single Single Binary Exome 00:02:00

Single Single Quantitative Exome 00:08:00

Multiple Single Binary Exome 00:05:00

Multiple Single Quantitative Exome 01:00:00

Single Multiple Binary Array 00:02:00

Single Multiple Quantitative Array 00:05:00

Single Multiple Binary Exome 02:00:00

Single Multiple Quantitative Exome 05:00:00

Table S3. Computation times for various MRP analyses. One node with 16 cores and 200 GB RAM

was used.
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