The American Journal of Human Genetics, Volume 108

Supplemental information

Bayesian model comparison for

rare-variant association studies

Guhan Ram Venkataraman, Christopher DeBoever, Yosuke Tanigawa, Matthew Aguirre, Alexander G. Ioannidis, Hakhamanesh Mostafavi, Chris C.A. Spencer, Timothy Poterba, Carlos D. Bustamante, Mark J. Daly, Matti Pirinen, and Manuel A. Rivas

Supplemental Figures

Figure S1. **From array to exome.** Scatterplot showing the increase in number of protein-altering variants in genes used in the analysis when comparing array (*x*-axis) to exome (*y*-axis) data. Data is taken from MRP calculations across 35 biomarker traits within the UK Biobank. Color shows density of points as according to colorbar (right).

Figure S2. *ALPL* **gene plot.** Gene plot showing variants for which MPC pathogenicity information was incorporated, resulting in a power gain for *ALPL* gene that encodes alkaline phosphatase; for the Alkaline phosphatase phenotype, the incorporation of this information resulted in a log₁₀BF gain of 34 (**Table S2**).

Figure S4. Comparisons of $-\log_{10} p$ -values: MRP with similar effects model across variants, burden test. Correlation coefficient is 0.93. Line shown is y = x.

Figure S5. From single-variant and single-phenotype to multiple-variant and multiple-phenotype gene discovery: when only a single variant has true effect. ROC curves for detecting simulated gene association to any of the phenotypes using single variant/single phenotype association (turquoise) to multiple-variant and multiple-phenotype association (pink). If only a single variant has true effect, adding data from multiple variants demonstrates no improvement (and sometimes detriment).

Bone and Joint

Diabetes

log₁₀ Bayes Factor

log₁₀ Bayes Factor

 log_{10} Bayes Factor

Figures S7-11. Manhattan plots showing \log_{10} BF under an independent effects variant model amongst protein-altering variants for 5 categories across 35 biomarkers. These include: Bone and Joint, Diabetes, Hormone, Liver, and Renal traits. Scale is logarithmic after \log_{10} BF \geq 10. Genes found in Sinnott-Armstrong, et.al.¹ are annotated in grey, whereas the other genes are annotated in black. Colors indicate different traits as indicated at the bottom of the plots.

Figure S12. LD-score regression-based genetic correlation plots of all 35 biomarkers included in the multi-trait analyses. The traits are ordered by hierarchical clustering. Blue implies positive and red implies negative correlation coefficients as indicated by the colorbar (right).

Supplemental Tables

		Number of	log₁₀BF,	Number of	log₁₀BF,	log₁₀BF
Trait	gene	PAVs, array	array	PAVs, exome	exome	Difference
Total bilirubin	UGT1A7	5	1.2	247	213	211.8
Direct bilirubin	UGT1A7	5	0.6	228	133	132.4
Lipoprotein A	PLG	57	38.9	583	165	126.1
SHBG	SHBG	7	2.7	284	114	111.3
LDL cholesterol	PCSK9	94	4.0	759	99	95.0
Total bilirubin	MROH2A	33	4.6	1649	85.8	81.2
Apolipoprotein B	PCSK9	94	3.1	756	80.7	77.6
Cholesterol	PCSK9	94	4.0	760	80.9	76.9
IGF-1	GH1	5	2.1	301	55.1	53.0
Direct bilirubin	MROH2A	33	2.9	1497	55.7	52.8
Gamma						
glutamyltransferase	GGT1	5	0.008	545	52.1	52.1
Triglycerides	ANGPTL3	7	-0.02	337	39.9	39.9
Cholesterol	ANGPTL3	7	-0.6	337	34.3	34.9
Cholesterol	APC	1409	-34.7	1882	-0.5	34.2
LDL cholesterol	APC	1410	-33.7	1882	-0.5	33.2
Apolipoprotein B	APC	1405	-32.7	1876	-0.7	32.0
Total bilirubin	UGT1A5	12	2.0	225	33	31.0

Albumin	APC	1366	-31.6	1807	-1.2	30.4
Vitamin D	APC	1379	-29.8	1828	0.2	30.0
Creatinine	APC	1411	-31.4	1883	-1.9	29.5

Table S1. Genes with considerable power gain in exome data as compared to array data.

			log ₁₀ BF	Number of	Number of	log₁₀BF	
		Number	without	MPC-augmented	pLI-augmented	with	log₁₀BF
Trait	Gene	of PAVs	МРС	PAVs	PAVs	МРС	Difference
Alkaline							
phosphatase	ALPL	198	126	93	0	160	34
Lipoprotein A	LPA	512	109	20	0	114	5
Apolipoprotein A	APOA1	102	11.7	30	0	15.7	4
HDL cholesterol	APOA1	103	9.36	30	0	13.2	3.84
Aspartate							
aminotransferase	SLC30A10	112	3.76	50	6	7.2	3.44
Phosphate	ALPL	192	10.9	91	0	14.3	3.4
Lipoprotein A	IGF2R	763	29.8	153	27	33.1	3.3
HDL cholesterol	SCARB1	220	5.45	66	0	8.29	2.84
Apolipoprotein B	APOE	142	5.48	60	0	8.27	2.79
Alanine							
aminotransferase	SLC30A10	112	2.94	50	6	5.56	2.62

Table S2. Power comparison between variant annotation-based MRP and MPC/pLI-augmented

MRP analyses across 35 biomarkers. We see considerable gains in power in several gene/trait combinations.

# Studies	# Phenotypes	Phenotype Specification	Genetic Datatype	Average Runtime (DD:HH:MM)
Single	Single	Binary	Array	00:00:02
Single	Single	Quantitative	Array	00:00:08
Multiple	Single	Binary	Array	00:00:20
Multiple	Single	Quantitative	Array	00:00:40
Single	Single	Binary	Exome	00:02:00
Single	Single	Quantitative	Exome	00:08:00
Multiple	Single	Binary	Exome	00:05:00
Multiple	Single	Quantitative	Exome	01:00:00
Single	Multiple	Binary	Array	00:02:00
Single	Multiple	Quantitative	Array	00:05:00
Single	Multiple	Binary	Exome	02:00:00
Single	Multiple	Quantitative	Exome	05:00:00

 Table S3. Computation times for various MRP analyses. One node with 16 cores and 200 GB RAM was used.

Supplemental References

1. Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., Mars, N., Benner, C., Aguirre, M., Venkataraman, G.R., Wainberg, M., Ollila, H.M., Kiiskinen, T., et al. (2021). Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. *53*, 185–194.