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Summary
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges.

The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes

with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype asso-

ciation study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-

variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, pheno-

types, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n ¼ 184,698) across

2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations be-

tween PCSK9 and LDL cholesterol levels.We additionally findMRP effective in conductingmeta-analyses in exome data. Non-biomarker

findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean

platelet volume. Finally, we apply MRP in amulti-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic cor-

relation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in

TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison

approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes

protective modifiers of disease risk.
Introduction

Sequencing technologies are quickly transforming human

genetic studies of complex traits. It is increasingly possible

to obtain whole-genome sequence data on thousands of

samples at manageable costs. As a result, the genome-

wide study of rare variants (minor allele frequency [MAF]

< 1%) and their contribution to disease susceptibility

and phenotype variation is now feasible.1–4

In genetic studies of diseases or continuous pheno-

types, rare variants are hard to assess individually because

of the limited number of observations of each rare

variant. Hence, to boost the power to detect a signal, ev-

idence is usually aggregated across variants in blocks.

When designing an aggregation method, there are three

questions that are usually considered. First, across which

biological units should variants be combined (e.g.,

genes); second, which variants within those units should

be included;5 and third, which statistical model should

be used?6 Given the widespread observations of shared

genetic risk factors across distinct diseases, there is also

considerable motivation to use gene discovery ap-

proaches that leverage the information from multiple

phenotypes jointly. In other words, rather than only
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aggregating variants that may have effects on a single

phenotype, we can also bring together sets of phenotypes

for which a single variant or set of variants might have

effects.

In this paper, we present a Bayesian multiple rare vari-

ants and phenotypes (MRP) model comparison approach

for identifying rare-variant associations as an alternative

to current, widely used univariate statistical tests. The

MRP framework exploits correlation, scale, and/or direc-

tion of genetic effects in a broad range of rare-variant asso-

ciation study designs including case-control, multiple dis-

eases and shared controls, a single continuous phenotype,

multiple continuous phenotypes, or a mixture of case-con-

trol and multiple continuous phenotypes (Figure 1). MRP

makes use of Bayesian model comparison whereby we

compute a Bayes factor (BF) defined as the ratio of the mar-

ginal likelihoods under twomodels: (1) a null model where

all genetic effects are zero and (2) an alternative model

where factors such as correlation, scale, and direction of ge-

netic effects are considered. For MRP, the BF represents the

statistical evidence for a non-zero effect for a particular

group of rare variants on the phenotype(s) of interest

and can be used as an alternative to p values from tradi-

tional significance testing.
305, USA; 2Genomics plc, Oxford, OX11JD, UK; 3Broad Institute of MIT and

ersity, Stanford, CA 94305, USA; 5Analytic and Translational Genetics Unit,

ecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland;
8Department of Mathematics and Statistics, University of Helsinki, Helsinki

.R.)

ember 2, 2021

mailto:matti.pirinen@helsinki.fi
mailto:mrivas@stanford.edu
https://doi.org/10.1016/j.ajhg.2021.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2021.11.005&domain=pdf


Figure 1. MRP study overview
(A) MRP is suitable for a broad range of rare variant association study designs, including, from left to right, (i) case-control, (ii) multiple
diseases with shared controls, (iii) single quantitative phenotype, and (iv) mixtures of case-control and quantitative phenotypes.
(B) Diagram of factors considered in rare variant association analysis including the correlation matrices: Rstudy (expected correlation of
genetic effects among a group of studies), Svar (expected covariance of genetic effects among a group of variants, potentially accounting
for annotation of variants), andRphen (expected correlation of genetic effects among a group of phenotypes). MRP can take into account
both scale and direction of effects.
(C) We focused on 184,698 individuals across six ancestry groups in the UK Biobank and analyzed 5,850,789 rare coding variants
(492,151 PTVs and 5,358,638 PAVs) in the whole-exome sequencing data via single-trait and multi-trait meta-analyses with a specific
focus on 35 biomarker traits.
While many large genetic consortia collect both raw ge-

notype and phenotype data, in practice, sharing of individ-

ual genotype and phenotype data across groups is difficult

to achieve. To address this, MRP can use summary statis-

tics, such as estimates of effect size and corresponding

standard errors from typical single-variant/single-pheno-

type linear or logistic regressions, as input. Furthermore,
The American Jour
we use insights from Liu et al.7 and Cichonska et al.,8

which suggest the use of additional summary statistics

such as covariance estimates across variants and studies,

respectively, for the lossless ability to detect gene-based as-

sociation signals with summary statistics alone.

Prior work has explored the use of model comparison

and BFs in multi-trait settings. The model comparison in
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Stephens, 20139 is slightly different in usage. Whereas

MRP can be used for meta-analysis and the combining of

signal across multiple variants within a block, the method

explored in Stephens is used for identifying a distinction

between direct and indirect associations. Both have

strengths relative to the other.

The multi-trait model comparison approach that is refer-

enced in Pickrell et al., 201610 focuses on the two-pheno-

type case. In other words, a null (where the SNP is associ-

ated to neither trait) is compared to the alternatives of

the SNP being associated to one, the other, or both traits.

MRP can generalize beyond the two-phenotype case and

assumes a more holistic prior across phenotypes by using

correlation coefficients.

Aggregation techniques rely on variant annotations to

assign variants to groups for analysis. MRP allows for the

inclusion of priors on the scale of effect sizes that can be

adjusted depending on what type of variants are included

in the analysis. For instance, protein-truncating variants

(PTVs)11,12 are highly likely to be functional because they

often disrupt the normal function of a gene. Additional

deleteriousness metrics, such as MPC (a metric that

combines subgenic constraints with variant-level data for

deleteriousness prediction)13 and pLI (a metric derived

from a comparison of the observed number of PTVs in a

sample to the number expected in the absence of fitness ef-

fects, i.e., under neutrality, given an estimated mutation

rate for the gene),14 can further attenuate or accentuate

these granular signals. Furthermore, because PTVs typi-

cally abolish or severely alter gene function, there is partic-

ular interest in identifying protective PTV modifiers of hu-

man disease risk that may serve as targets for future

therapeutics.15–17 We therefore demonstrate how the

MRP model comparison approach can improve discovery

of such protective signals by modeling the direction of ge-

netic effects; this prioritizes variants or genes that are

consistent with protecting against disease.

To evaluate the performance of MRP, we use simulations

and compare it to other commonly used approaches. Some

simple alternatives to MRP include univariate approaches

for rare-variant association studies, including the sequence

kernel association test (SKAT)18 and the burden test,6

which are special cases of the MRP model comparison

when we assign the prior correlation of genetic effects

across different variants to be zero or one, respectively.

We apply MRP to summary statistics computed on a

tranche of n ¼ 184,698 exomes for thousands of traits in

the UK Biobank for which we have exome data for n R

1,000 white British individuals, focusing on a meta-anal-

ysis context across six UK Biobank subpopulations as

defined previously (material and methods).19 We addition-

ally apply multi-phenotype MRP on clusters of biomarker

traits within a single-population context (white British in-

dividuals). These analyses show that MRP recovers results

from single-variant-single-phenotype association analyses

while increasing the power to detect new rare-variant asso-

ciations, including protective modifiers of disease risk.
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Material and methods

Description of MRP
In this section, we provide an overview of theMRPmodel compar-

ison approach. MRP models genome-wide association study

(GWAS) summary statistics as being distributed according to one

of two models: the null model, where the effect sizes across all

studies for a group of variants and a group of phenotypes is zero,

and the alternative model, where effect sizes are distributed ac-

cording to a multivariate normal distribution with a non-zero

mean and/or covariance matrix. MRP compares the evidence be-

tween the alternative model and the null model with a BF, which

is the ratio of themarginal likelihoods under the twomodels given

the observed data.

To define the alternative model, we must specify the prior corre-

lation structure, scale, and direction of the effect sizes. LetN be the

number of individuals and K the number of phenotype measure-

ments on each individual. Let M be the number of variants in a

testing unit G, where G can be, for example, a gene, a pathway,

or a network. Let S be the number of studies fromwhich data is ob-

tained—this data may be in the form of (1) raw genotypes and

phenotypes or (2) summary statistics including linkage-disequilib-

rium (LD) coefficients, effect sizes, and corresponding standard

errors. When considering multiple studies (S > 1), multiple rare

variants (M > 1), and multiple phenotypes (K > 1), we define

the prior correlation structure of the effect sizes as an SMK 3

SMK matrix, U. In practice, we define U as a Kronecker product

of three sub-matrices:
d an S 3 S matrix Rstudy containing the correlations of genetic

effects among studies that can model the level of hetero-

geneity in effect sizes between populations;20

d anM3MmatrixSvar containing the covariances of genetic ef-

fects among genetic variants, which may reflect, e.g., the

assumption that all the PTVs in a genemayhave the samebio-

logical consequence11,12,21 or prior information on scale of

the effects obtained through integration of additional func-

tional data;5,22 by assumingzero correlationof genetic effects,

MRP becomes a dispersion test similar to C-alpha23,24 and

SKAT;18 and

d a K 3 K Rphen matrix containing the correlations of genetic

effects among phenotypes, which may be estimated from

common variant data.25–27

The variance-covariance matrix of the effect size estimates may

be obtained from readily available summary statistics such as in-

study LD matrices, effect size estimates (or log odds ratios), and

the standard errors of the effect size estimates.

MRP allows users to specify priors that reflect knowledge of the

variants and phenotypes under study. For instance, we can define

an independent effects model (IEM) where the effect sizes of

different variants are not correlated at all. In this case, Svar is the

identity matrix, and MRP behaves similarly to dispersion tests

such as C-alpha23,24 and SKAT.18 We can also define a similar ef-

fects model (SEM) by setting every value of Rvar to � 1, where

Rvar is the correlation matrix corresponding to covariance matrix

Svar . This model assumes that all variants under consideration

have similar effect sizes (with, possibly, differences in scale, such

as in the burden test). Such a model may be appropriate for

PTVs, where each variant completely disrupts the function of

the gene, leading to a gene knockout. The prior on the scale of
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effect sizes can be used to denote which variants may have larger

effect sizes. For instance, emerging empirical genetic studies have

shown that within a gene, PTVs may have stronger effects than

missense variants.28 This can be reflected by adjusting the prior

variances of effect sizes (s) for different categories of variants.

Finally, we can utilize a prior on the expected location/direction

of effects to specify alternative models where we seek to identify

variants with protective effects against disease. By default, we

have assumed that the prior mean of genetic effects is zero, which

makes it possible to analyze a large number of phenotypes without

enumerating the prior mean across all phenotypes. To proactively

identify genetic variants that are consistent with a protective pro-

file for a disease, we can include a non-zero vector as a prior mean

of genetic effects. For this, we can exploit information from Men-

delian randomization studies of common variants, such as recent

findings where rare protein-truncating loss-of-function variants in

PCSK9 were found to decrease low-density lipoprotein (LDL) and

triglyceride levels and decrease coronary artery disease risk,15,29,

30 to identify situations where such a prior is warranted.

Applying MRP to variants from a testing unit G yields a BF for

that testing unit that describes the evidence that rare variants in

that testing unit have a non-zero effect on the traits used in the

model. We can turn this evidence into probability via Bayes’

rule. Namely, a multiplication of prior-odds of association by BF

transforms the prior-odds to posterior-odds. For example, if our

prior probability for one particular gene to be associated with a

phenotype is 10�4, then an observed BF of 105 means that our pos-

terior probability of association between the gene and the pheno-

type is over 90%. Although we see advantages in adopting a

Bayesian interpretation for MRP, our approach could also be

used in a frequentist context by using BF as a test statistic to

compute p values.
MRP details
MRP model comparison for association testing

We consider the multivariate linear regression model

Y
ðN3KÞ

¼ J
ðN3KÞ

þ X
ðN3MÞ

B
ðM3KÞ

þ E
ðN3KÞ

;

where the matrices Y ¼ ½yik�, X ¼ ½xim�, B ¼ ½bmk�, and E ¼ ½eik�
describe the phenotype values ðyikÞ, copies of minor allele ðximÞ,
variant-phenotype effects ðbmkÞ, and residual errors ðeikÞ, for indi-
vidual i, phenotype k, and variant m.

We assume that each phenotype has been transformed to a stan-

dard normal distribution and that the columns of X have been

centered, which means that the estimate for the intercept term

J is 0 and independent of the estimate of B. We use vectorized

notation where the rows of B form vector b ¼ ðb1;.;bMÞu of

length MK.

Wedefine theMRPmodel comparisonas aBFbetween thealterna-

tivemodel,where at least one variant affects at least one phenotype,

and the null model, where all variant-phenotype effects are zero. BF

is the ratio of the marginal likelihoods for these two models:

BF¼
R
b
pðDatajbÞpðbjALTÞdbR

b
pðDatajbÞpðbjNULLÞdb;

where Data can correspond either to the effect size estimates bb and

the estimated variance-covariance matrix of bb, bVb, or to the orig-

inal phenotypes and genotypes, Y
ðN3KÞ

and X
ðN3MÞ

, and any other co-

variates that we want to regress out from the phenotypes.
The American Jour
The prior distribution for the null model, pðbjNULLÞ, is simply

the point mass at b ¼ 0.

Likelihood function

A maximum likelihood estimator of B is given by the ordinary

least-squares method

bB¼ �
XuX

��1
XuY;

which in vectorized form is denoted bb ¼ ðbb1;.; bbMÞu: An esti-

mator of the variance-covariance of bb is given by

bVb ¼
�
XuX

��1
5bVY;

where bVY is the estimated residual variance-covariancematrix of Y

given X.

Following Band et al.,20 we approximate the likelihood function

of b by a multivariate normal distribution with mean bb and vari-

ance-covariance matrix bVb. Note that by approximating bVY via

the trait correlation matrix, this likelihood approximation does

not require access to the individual-level data X and Y but only

to the summary data of effect sizes bb, LD-matrix XuX, and a trait

correlation estimate.

Prior of b in the alternative model

We construct the prior distribution pðbjALTÞ for the alternative

model in three steps, allowing the user to specify correlations be-

tween effects of different variants on different traits across

different studies.

In a single study, the prior density for b incorporates the ex-

pected correlation of genetic effects among a group of variants

ðRvarÞ and among a group of phenotypes ðRphenÞ. In addition,

we incorporate an expected spread of the effect size of each variant

by scaling Rvar as

Svar ¼DðsmÞRvarDðsmÞ;

where DðsmÞ is a diagonal matrix with entries sm determining the

spread of the effect size distribution for each variant m%M. Thus,

we can model settings where, e.g., PTVs have larger effect sizes

ðs¼ 0:5Þ than missense variants ðs ¼ 0:2Þ. Note that when

sm ¼ 1 for all m, then Svar ¼ Rvar. All in all, our prior density for

b under alternative model is

b
��ALT�N ð0;UÞ; where U¼Svar5Rphen:

When we have data from multiple studies, we allow for possible

differences in genetic effects across ethnicities or populations, ex-

tending the approximate BFs of Band et al.20 and the summary sta-

tistics approach of RAREMETAL7 from univariate to multivariate

phenotypes. Let

bb¼
�bbs;m;k

�
¼

�bb1;1;1; bb1;1;2;.; bb1;1;K; bb1;2;1;.;

3 bb1;2;K;.; bb1;M;K ; bb2;1;1;.; bbS;M;K

�
;

where S is the number of studies, M is the number of variants,

and K is the number of phenotypes. As with a single study, we

incorporate the expected correlation of genetic effects between

a pair of variants and a single phenotype by using the matrix

Svar, between a variant and a pair of phenotypes by using the ma-

trix Rphen, and we introduce the matrix Rstudy to specify a prior

on the similarity in effect sizes across the studies. Thus, the

prior is

b�N ð0;UÞ; where U ¼ Rstudy5
�
Svar 5Rphen

�
:
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It is also straightforward to include a non-zero vector m as a prior

mean of genetic effects, in which case the prior is b � N ðm;UÞ:
We use this, for example, when screening for protective rare vari-

ants that have a pre-specified beneficial profile on a set of risk

factors.

BFMRP

The BF is the ratio of themarginal likelihoods between the alterna-

tive and the null model. The marginal likelihood for the alterna-

tive model isZ
b

pðDatajbÞpðbjALTÞdb¼ c3N
�bb;m; bVb þU

�

and the marginal likelihood for the null model isZ
b

pðDatajbÞpðbjNULLÞdb¼ c3N
�bb;0; bVb

�
:

The BF is given by

BFMRP ¼
det

�bVb þU
��1

2
exp

�
� 1

2

�bb � m
�u�bVb þU

��1�bb � m
��

det
�bVb

��1
2
exp

�
� 1

2
bbu bV�1

b
bb�

:

When m ¼ 0, BFMRP is an increasing function of the following

quadratic form:

Q
�bb; bVb;U

�
¼ bbu

�bV�1

b �
�bVb þU

��1�bb:
Furthermore, this quadratic form is the only part of the BFMRP that

depends on bb. Thus, by deriving a distribution of Qðbb; bVb;UÞ un-
der the null model, we can compute a p value (by using the Imhof,

Davies, or Farebrother methods) when BFMRP is used as a test statis-

tic. We include support for computing these p values in the soft-

ware package for MRP. According to basic properties of quadratic

forms of Gaussian variables, Qðbb; bVb;UÞ � Pn
i¼1dic

2
i , where c2

i is

an independent sample from a c2
1 distribution (chi-square

with one degree of freedom) and di are the eigenvalues of matrix

I � ðbVb þUÞ�1 bVb. The distribution function for a mixture of

chi-squares can be numerically evaluated by the R package

‘‘CompQuadForm,’’31 incorporated in the MRP software directly.

To compute the BF

BFMRP ¼
det

�bVb þU
��1

2
exp

�
� 1

2

�bb � m
�u�bVb þU

��1�bb � m
��

det
�bVb

��1
2
exp

�
� 1

2
bbu bV�1

b
bb�

;

we first consider the term inside the exponential function:

E
�bb;m; bVb;U

�
¼1

2
bbu bV�1

b
bb � 1

2

�bb � m
�u�bVb þU

��1�bb�m
�
:

Because bVb and U are typically defined through Kronecker prod-

ucts of smaller matrices, their inverses are easier to compute

than the inverse of their sum. Hence, we use theWoodburymatrix

identity to write

E
�bb;m; bVb;U

�
¼1

2
bbu bV�1

b
bb

� 1

2

�bb � m
�u�bV�1

b � bV�1

b

�
U�1 þ bV�1

b

��1 bV�1

b

��bb�m
�
:

To simplify the determinant calculation, we write
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det
�bVb þU

�
¼det

�bVb

�
det

�
Iþ bV�1

b U
�
:

The logarithm of the BF is then

logðBFMRPÞ¼ � 1

2
log

�
det

�
Iþ bV�1

b U
��

þ E
�bb;m; bVb;U

�
:

If studies do not share individuals, bVb is a block-diagonal matrix

bVb ¼

2
6666664

bV1

b 0 / 0

0 bV2

b / 0

« 1 «

0 0 / bVS

b

3
7777775:

If studies share individuals, e.g., controls, we can take the

approach of Cichonska et al.8 to use summary-level data to esti-

mate the correlation structure of the non-diagonal blocks caused

by overlapping individuals.
UK Biobank data
Population definitions

We used a combination of self-reported ancestry (UK Biobank field

ID 21000) and principal-component analysis to identify six sub-

populations in the study: white British, African, South Asian,

non-British white, semi-related, and an admixed population

(Table 1). To determine the first four populations, which contain

samples not related closer than the third degree, we first used

the principal components of the genotyped variants from the

UK Biobank, defined thresholds on principal component 1 and

principal component 2, and further refined the population defini-

tion.19 Semi-related individuals were grouped as individuals

whose genetic data (after passing UK Biobank quality control

[QC] filters; sufficiently low missingness rates; and genetically in-

ferred sex matching reported sex), via a KING relationship table,

were between conditional third and conditional second degrees

of relatedness to samples in the first four groups. Admixed individ-

uals were grouped as unrelated individuals who were flagged as

‘‘used_in_pca_calculation’’ by the UK Biobank and were not

assigned to any of the other populations.

GWAS summary statistics

We performed genome-wide association analysis on 2,019 UK

Biobank traits in the six population subgroups as defined above

byusingPLINKv2.00a (20October 2020).Weused the ‘‘–glm’’ Firth

fallbackoption inPLINKtoapplyanadditive-effectmodel across all

sites. Quantitative trait values were rank normalized with the

‘‘–pheno-quantile-normalize’’ flag. We used the following covari-

ates in our analysis: age, sex, array type, and the first ten genetic

principal components, where array type is a binary variable that

represents whether an individual was genotyped with UK Biobank

AxiomArray orUKBiLEVEAxiomArray. For variants thatwere spe-

cific toonearrayandexomedata,wedidnotuse arrayas a covariate.

For the admixed population, we conducted a local ancestry-cor-

rected GWAS. We first assembled a reference panel from 1,380 sin-

gle-ancestry samples in the 1000 Genomes Project,32 the Human

Genome Diversity Project,33 and the Simons Genome Diversity

Project,34 choosing appropriate ancestry clusters by running

ADMIXTURE35 with the unsupervised setting. Using cross-valida-

tion, we identified eight well-supported ancestral population clus-

ters: African, African hunter-gatherer, East Asian, European,

Native American, Oceanian, South Asian, and West Asian. We

then used RFMix v2.0336 to assign each of the 20,727 windows
ember 2, 2021



Table 1. Number of individuals per population per genotyping
platform (exome/array)

Population nexome narray

White British 137,920 337,138

Non-British white 10,432 24,905

African 2,716 6,497

South Asian 3,569 7,885

Semi-related 18,100 44,632

Admixed 11,961 28,551

Total 184,698 449,608

Figure 2. From single-variant and single-phenotype tomultiple-
variant and multiple-phenotype gene discovery
Receiver operating characteristic (ROC) curves for detecting simu-
lated gene association to any of the phenotypes via single-variant
and single-phenotype association (blue) to multiple-variant and
multiple-phenotype association (red).
across the phased genomes to one of these eight ancestry clusters

(for all individuals in the UK Biobank). These local ancestry assign-

ments were subsequently used with PLINK2 as local covariates in

the GWAS for the admixed individuals for SNPs within those

respective windows. PLINK2 allows for the direct input of the

RFMix output (the MSP file, which contains the most likely sub-

population assignment per conditional random field [CRF] point)

as local covariates with the ‘‘–local-cov,’’ ‘‘–local-psam,’’ and

‘‘–local-haps’’ flags, the ‘‘–local-cats0¼n’’ flag (where n is the num-

ber of assignments), and the ‘‘–local-pos-cols¼2,1,2,7’’ flag (for a

typical RFMix MSP output file, see ‘‘Association Analysis’’ page

on PLINK website [web resources]).

Variant quality control and metadata generation

For quality control (QC), we ensured that variant-level missing-

ness was less than 10%, that the p value for the Hardy-Weinberg

equilibrium test (computed within unrelated individuals of white

British ancestry) was greater than 10�15, and that the variant was

uniquely represented (the ‘‘CHROM:POS:REF:ALT’’ variant string

was uniquely identified) in the PLINK dataset file. In total, we

removed 195,920 variants that failed to meet all of these criteria,

except for 134 variants on the Y chromosome.

For the remainder, we used Variant Effect Predictor (VEP)37 to

annotate the most severe consequence, the gene symbol, and

HGVSp (the Human Genome Variation Society protein sequence

name) of each variant in the UK Biobank exome and array data.

We calculated MAFs by using PLINK. MPC13 values (variant-level)

and pLI gene memberships14 were annotated from source. To

determine LD independence criteria, we used PLINK’s ‘‘–indep-

pairwise’’ function with a window size of 1,000 kb, a step size of

1, and an r2 threshold of 0.1 on those variants that pass QC. As

our analyses focused on PTVs and protein-altering variants

(PAVs), we then performed this same LD independence analysis

on only these, overriding assignments in the first analysis if neces-

sary. We provide these essential metadata, which are necessary for

MRP, in exome and array tables, available for direct download via

the Global Biobank Engine (web resources).38

Prior matrix selection

For exome applications, we chose variants that had MAF % 1%

and that were LD independent according to the criteriamentioned

above. For quantitative traits, we removed variants whose regres-

sion effect size had standard error greater than 100, and for binary

traits, we removed variants whose regression effect size had stan-

dard error greater than 0.2. For array applications, we chose vari-

ants with MAF % 1% and removed variants whose regression

effect size had standard error greater than 0.2. While MRP is

capable of handling all variant types (e.g., proximal coding and in-

tronic variants), we included only PAVs and PTVs in both exome
The American Jour
and array analyses (exome data feature many more PAVs and

thus potential for power gain; Table S1; Figure S1). These sets

respectively contain the following consequence annotations:

d PAVs: protein_altering_variant, inframe_deletion, infra-

me_insertion, splice_region_variant, start_retained_variant,

stop_retained_variant, missense_variant

d PTVs: frameshift_variant, splice_acceptor_variant, splice_do-

nor_variant, stop_gained, start_lost, stop_lost

For the exome meta-analysis, we assumed a SEM across studies

ðRstudyÞ and an IEM across variants ðRvarÞ. For example, if we

have three studies, e.g., white British, African, and South Asian,

assuming a SEM would mean that

Rstudy ¼

2
664
1 0:99 0:99
0:99 1 0:99
0:99 0:99 1

3
775:

The off-diagonals are slightly lower than 1 so as to maintain that

the matrix is positive definite and invertible. Likewise, an IEM

would imply

Rstudy ¼

2
664
1 0 0
0 1 0
0 0 1

3
775:

The same principle would apply when constructingRvar for a gene

with an arbitrary number of variants. We additionally incorpo-

rated information about the variant in order to formulate the ma-

trix that is used in the calculation ofU ðSvarÞ. For both quantitative

and binary traits, PTVs were assigned a s (standard deviation of
nal of Human Genetics 108, 2354–2367, December 2, 2021 2359



Figure 3. From single to multiple popula-
tions
Scatterplot showing number of genes with
log10 BF R 5 for white British population
only (x axis) versus meta-analysis (y axis)
across 35 biomarkers. Assuming that BFs
are correctly calibrated in both analyses
and that meta-analysis is not inflated
compared to white British-only MRP, this
figure suggests a 26% increase in power
when incorporating summary statistics
across multiple populations.
prior on effect size) of 0.2, whereas PAVs were assigned a s value of

0.05. We also incorporated MPC and pLI deleteriousness metrics

into our exome analyses. For those PTVs with a pLI of > 0.8, we

increased s to 0.5, and for those PAVs with an MPC R 1, we set

s¼ 0.053MPC. TheRvar matrix was then dotted with a diagonal-

ized version of the s vector (see MRP details above). These adjust-

ments serve to further granularize and weight MRP results in

biologically meaningful ways (Table S2; Figure S2).

We also studied how the application of MRP to multiple pheno-

types together would potentially boost power to detect rare-

variant associations. We calculated pairwise genetic correlations

between 35 biomarker phenotypes19 by using LD score regres-

sion27 and then used the ‘‘hclust’’ algorithm in the R stats pack-

age39 to generate phenotype clusters. For each of these clusters, us-

ing the array data, we performed MRP in the multi-phenotype

setting. For this application, we calculatedRphen empirically by us-

ing correlation coefficients computed with summary statistics

from significant (p %1 3 10�5), LD-independent, common

(MAF R 0.01) variants.
Results

Simulations

To study the behavior of MRP going from a single pheno-

type to multiple phenotypes, we conducted a simulation

study where we assumed an allelic architecture consistent

to that discovered for APOC3 in relation to triglycerides,

low-density lipoprotein cholesterol (LDL-C), and high-

density lipoprotein cholesterol (HDL-C).30,40,41 We simu-

lated three continuous phenotypes with a total correlation

consistent with that observed for triglycerides, LDL-C, and

HDL-C. Furthermore, we introduced effects to four vari-

ants consistent with the effects observed in four PTVs
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(approximately 0.35 standard devia-

tions away from the population

mean) and to another four variants

consistent with the effects observed

for missense variants (approximately

0.2 standard deviations away from the

population mean), all with MAF of

0.05%. The PTV group of variants had

the same effects, whereas out of the

missense variants, half had positive

and the other half had negative effect

sizes. The correlation of effects between
the group of phenotypes was set to be directionally consis-

tent with the direction of genetic effects observed for lipid

phenotypes and PTVs in APOC3, i.e., proportional effects

for triglycerides and LDL-C, and inversely proportional

for LDL-C and HDL-C and triglycerides and HDL-C. We

simulated 1,000 genes where 50 of the genes contained

non-zero effects on the multivariate phenotype. Given

we know which of the 1,000 genes contained non-zero ef-

fects, we could compute the true positive rates and false

positive rates for a given BF threshold. We find MRP with

an IEM across variants to be comparable to SKAT and

MRP with a SEM across variants to be comparable to the

burden test (Figures S3 and S4). We analyze the data as fol-

lows: (1) single-variant and single-phenotype, (2) multiple

variants and single-phenotype, (3) single-variant and mul-

tiple phenotypes, and (4) multiple variants and multiple

phenotypes (Figure 2). We find that in some scenarios,

analyzing multiple variants and multiple phenotypes

jointly improved the ability to detect signals; however,

this improvement is only specific to situations in which

multiple variants have a true effect and/or the variants

have effects on the multiple phenotypes in question (Fig-

ures S5 and S6).

Exome single-phenotype meta-analyses

We used MRP to perform exome meta-analysis on 2,019

traits across six UK Biobank populations as described in

material and methods. Among the best-powered and -rep-

resented traits were a set of 35 biomarkers, the focus of a

previous publication.19 We see the number of log10 BFR

5 genes increasing from a single-population to ameta-anal-

ysis setting. Because we expect that the meta-analysis over



Figure 4. Manhattan plot showing log10 BF under an independent effects variant model among protein-altering variants for cardio-
vascular phenotypes
Scale is logarithmic after log10 BF R 10. Genes found in Sinnott-Armstrong et al.19 are annotated in gray, whereas the other genes are
annotated in black.
different ancestries cannot be more confounded than the

analysis of a single ancestry, we interpret the increase in

the number of genes as an increase in the statistical power

to detect rare-variant associations (Figure 3).

We categorize these biomarkers into six categories as in

Sinnott-Armstrong et al.19 (cardiovascular, bone and joint,

diabetes, hormone, liver, and renal; Figure 4 and S7–S11),

and we recover several known gene-trait associations and

discover several others.

Among the ‘‘bone and joint’’ biomarkers (alkaline phos-

phatase, calcium, and vitamin D), we recover associations

between CASR and calcium42 andHAL and vitamin D.43 As

compared to results from array data as found in Sinnott-

Armstrong et al.,19 we also recover exome-specific associa-

tions between ALDH5A1 and alkaline phosphatase44 and

PDE3B and vitamin D.43

For the ‘‘cardiovascular’’ phenotypes (apolipoprotein A,

apolipoprotein B, C-reactive protein, total cholesterol,

HDL-C, LDL-C, lipoprotein A, and triglycerides), MRP re-

covers array associations between the following: PLG, LPA,

and lipoprotein A;45 APOC3 and triglycerides;46 ANGPTL3

and triglycerides;47 APOB and apolipoprotein B48 and

LDL-C;49 ABCA1 and apolipoprotein A46 and HDL-C;49

PCSK9 and total cholesterol;50 and CRP and C-reactive pro-

tein.51 Exome-only signals recover associations such as be-

tween ZPR150 and SIK344 and triglycerides.

In the two diabetes-related phenotypes (glucose and

HbA1c), we recover associations between G6PC2 and
The American Jour
glucose50 as well as PIEZO1 and HbA1c52 and an additional

exome association betweenG6PD and HbA1c.52 Hormonal

recoveries include those between SHBG and SHBG and

testosterone levels and GH1 and IGF-1 levels.

MRP applied to liver-related phenotypes recover known

associations between the following: UGT genes and biliru-

bins;53 GOT1 and aspartate aminotransferase;54 FCGRT

and albumin;44 and GPT and AST-ALT ratio.51 In the exome

sequencing, we additionally recover associations between

GGT1 and gamma glutamyltransferase,55 TMEM236

and aspartate aminotransferase,44 and SLCO1B3 and

bilirubin.56

The renal traits similarly feature a mix of array recov-

eries and exome discoveries. We recover signal between

the following: SLC22A2 and creatinine;57 CST3 and cysta-

tin C;48 COL4A4 and microalbumin;58 TNFRSF13B and

non-albumin protein;44 FCGRT and total protein;

WDR1, RASGRP2, DRD5, and urate;59,60 and LRP2 and

eGFR levels.61 We additionally discover novel gene-trait

associations (not found in the NHGRI-EBI catalog or

Open Targets Genetics) across these biomarker categories,

including the following: GLPD1 and alkaline phospha-

tase; NKPD1 and apolipoprotein B; RENBP/MAP3K15

and Hba1c; PARPBP and IGF-1; NLGN2 and SHBG; ALB

and albumin; ALPL and phosphate; RBM47 and urea;

ALDH16A1 and urate; THBD and cystatin C; ITPR3 and

phosphate; SLC22A7 and creatinine; and FCGR2B and

non-albumin protein.
nal of Human Genetics 108, 2354–2367, December 2, 2021 2361



Figure 5. Hierarchical clustering dendrogram and derived clusters from dynamic tree cutting algorithm
Based on genetic correlation derived from an LD-score-regression-based distance matrix between 35 biomarker traits.
For the 2,019 traits for which MRP was performed, there

were also a considerable number of associations found

among non-biomarker traits. We found associations be-

tween TUBB1 and platelet distribution width and mean

platelet volume;62 IL17RA and monocyte count and per-

centage;62 OCA2/MC1R and skin color/hair color;63–66

IQGAP2 and mean platelet volume;62 SLC24A5, HERC2,

TCF25, and TYR and skin color;67 SH2B3 and JAK2 and

platelet crit68 and count;69 KALRN and mean platelet vol-

ume;62 HBB and mean corpuscular volume,70 mean

corpuscular hemoglobin,71 and red blood cell count;72

and CXCR2 and neutrophil count.62

The average runtime for these analyses was around 1 day

for quantitative traits and 5 h for binary traits with a

machine with 16 cores and 200 GB RAM (Table S3).
Array single-population multi-phenotype analyses

In order to demonstrate the effectiveness of MRP to boost

signal in a multi-phenotype context, we used LD-score

regression27 to determine genetic correlations between the

35 biomarker traits (Figure S12) that were a focus of a previ-

ous paper.19 This correlation matrix was then used for hier-

archical clustering followed by dynamic tree cutting, which

formed four clusters of between seven and ten traits each

(Figure 5). We generated the correlation plots as shown in

Figure 6.

Multi-phenotype MRP results in several substantial po-

wer gains throughout the four clusters; one of these clus-

ters is highlighted in Figure 7. As compared to the

maximum log10 BF from the constituent phenotypes, the

multi-phenotype analysis generally fares comparably while

also highlighting clear targets. We found evidence for asso-
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ciation between rare coding variants in several genes and

the clusters above; TNFRSF13B (log10 BFmulti�trait ¼ 204.5,

max log10 BFsingle�trait

	 
 ¼ 141.0), APOB (log10 BFmulti�trait ¼
197.9, max log10 BFsingle�trait

	 
 ¼ 128.0), and SNX8

(log10 BFmulti�trait ¼ 96.0, max log10 BFsingle�trait

	 
 ¼ 43.8)

receive a boost in log10 BF of over 50 units for cluster 1

(alanine aminotransferase, aspartate aminotransferase,

gamma glutamyltransferase, glucose, HbA1c, total protein,

apolipoprotein B, cholesterol, LDL-C, and non-albumin

protein). Several other genes that are clearly below 5 (in

log10 BF) in the single-trait settings become above 5 in

the joint setting (e.g., G6PC; log10 BFmulti�trait ¼ 5.3,

max log10 BFsingle�trait

	 
 ¼ 1.3). The G6PC gene provides in-

structions for making the glucose 6-phosphatase enzyme,

found on the membrane of the endoplasmic reticulum.

The enzyme is expressed in active form in the liver, kid-

neys, and intestines and is the main regulator of glucose

production in the liver; given the traits included in cluster

1, the increase in power may be biologically relevant.73

These results demonstrate that MRP can identify biologi-

cally meaningful targets that may be missed by standard

GWAS approaches.

The average runtime for these analyses was around 5 h

with a machine with 16 cores and 200 GB RAM (Table S3).
Discussion

In this study, we developedMRP, a Bayesian model compar-

ison approach that shares information across variants, phe-

notypes, and studies to identify rare-variant associations.

We used simulations to verify that jointly considering

both variants and phenotypes can improve the ability to
ember 2, 2021



Figure 6. LD-score-regression-based genetic correlation plots of candidate clusters
Derived from the dendrogram in Figure 5 via a dynamic tree cutting algorithm.
detect associations. We also applied the MRP model com-

parison framework in a meta-analysis setting to exome

summary statistics across the UK Biobank, identifying

strong evidence for the previously described associations

between, for example, HAL and vitamin D,43 and discov-

ering several novel associations, such as between GLPD1

and alkaline phosphatase.Wemade the full results set avail-

able on the Global Biobank Engine (web resources).38 We

also leveraged MRP to boost signal in a multi-phenotype

setting by using the array data (which has many more sam-

ples than the exome data), finding genes such as G6PC that

do not come up in the single-trait context but show strong

evidence in the joint analysis. These results demonstrate

the ability of the MRP model comparison approach to

leverage information across multiple phenotypes and vari-

ants to discover rare-variant associations.

MRP enjoys distinct advantages over prior techniques

such as (trans-ancestry) meta-analysis and MultiSKAT in

that it allows for both multiple studies as well as multiple

phenotypes simultaneously, whereas (trans-ancestry) meta-
The American Jour
analysis only allows for multiple studies and not multiple

phenotypes andMultiSKATonly allows for multiple pheno-

types and not multiple studies. MRP’s closest relative, Meta-

MultiSKAT,74 allows for these two simultaneously as well. In

comparison to MetaMultiSKAT, the novelty in MRP is the

flexibility in the models/choices one can make in the priors

and the inferential framework. Inparticular, one candirectly

compare any two MRP models against each other by

comparing their BFs against each other. For example, one

can assess the heterogeneity of effects across studies by

comparing similar and IEMs for Rstudy; if done on a per-

variant basis, this can be a useful QC statistic. We can also

assess the degree to which variants within a block (genes,

annotation categories, etc.) have similar or disparate effects

with a proper choice of Rvar. Such inferences are not easily

available when p values are used as a basis for inference.

Analogous to the work presented in Rivas et al.,11 we see

MRP as a natural extension for the analysis of rare variants

in gene-based settings. The same advantages we see in using

BFs over p values exist here as well. To briefly summarize,
nal of Human Genetics 108, 2354–2367, December 2, 2021 2363



Figure 7. Cluster versus single-trait power analysis
Power comparison of genes with log10 BF R 5 in either (i) any of
the single-trait analyses of the traits within the cluster or (ii) the
multi-trait analysis for a cluster of biomarkers (alanine amino-
transferase, aspartate aminotransferase, gamma glutamyltransfer-
ase, glucose, HbA1c, total protein, apolipoprotein B, cholesterol,
LDL-C, and non-albumin protein). x axis depicts the maximum
log10 BF of the gene among any of the constituent single-trait an-
alyses, and y axis depicts the multi-trait result. Multi-trait analyses
roughly equal the highest-powered single-trait analyses while also
substantially boosting signal in some genes.
studies that follow both discovery and replication phases

seek to rank genes for follow-up according to departure

from a null. Power in frequentist studies will change with

the number of samples and the number of variants included

in the analysis,whereas BFs can easily be comparednaturally

agnostic of the number of variants included as well as the

sample size.

We acknowledge some limitations in this study. First, we

are pruning variants that are LD dependent. Ancestry mis-

specification could have a dramatic effect on the computa-

tion of LD, especially in the setting of rare variants, whose

MAFs could very well be population specific; one could

obtain LD estimates that are inaccurate and inapplicable to

the study at hand. We propose that if variants in LD are to

be used, then LD independence should be computed within

the studies that are being meta-analyzed. Many of the rare

variants will not be present in external reference panels. Ex-

tensions to incorporate in-study LDmatrices, as in the work

by Feng et al. in RAREMETAL and RAREMETALWORKER,75

are a logical extension to MRP. Second, in the ultra-rare

variant setting and/orwhen case-control numbers are partic-

ularly imbalanced, the assumption that effect sizes follow a

Gaussian may be invalid.76 Third, removing related individ-

uals as in this study results in a loss of power. BecauseMRP is

agnostic of summary statistic type, though, one can explore

models such as SAIGE,76 REGENIE,77 or BOLT-LMM78 that

better account for related individuals so as to improve power.

As genetic data linked to high-dimensional phenotype

data are increasingly being made available through bio-
2364 The American Journal of Human Genetics 108, 2354–2367, Dec
banks, health systems, and research programs, there is a

large need for statistical approaches that can leverage infor-

mation across different genetic variants, phenotypes, and

studies to make strong inferences about disease-associated

genes. The approach presented here relies only on summary

statistics from marginal association analyses, which can be

shared with less privacy concerns compared to raw geno-

type and phenotype data. Combining joint analysis of var-

iants and phenotypes with meta-analysis across studies of-

fers new opportunities to identify gene-disease associations.
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Supplemental Figures

Figure S1. From array to exome. Scatterplot showing the increase in number of protein-altering variants

in genes used in the analysis when comparing array (x-axis) to exome (y-axis) data. Data is taken from

MRP calculations across 35 biomarker traits within the UK Biobank. Color shows density of points as

according to colorbar (right).



Figure S2. ALPL gene plot. Gene plot showing variants for which MPC pathogenicity information was

incorporated, resulting in a power gain for ALPL gene that encodes alkaline phosphatase; for the Alkaline

phosphatase phenotype, the incorporation of this information resulted in a log10BF gain of 34 (Table S2).



Figure S3. Comparisons of -log10 p-values: MRP with independent effects model across variants,

SKAT. Correlation coefficient is 0.99. Line shown is y = x.



Figure S4. Comparisons of -log10 p-values: MRP with similar effects model across variants, burden

test. Correlation coefficient is 0.93. Line shown is y = x.



Figure S5. From single-variant and single-phenotype to multiple-variant and multiple-phenotype

gene discovery: when only a single variant has true effect. ROC curves for detecting simulated gene

association to any of the phenotypes using single variant/single phenotype association (turquoise) to

multiple-variant and multiple-phenotype association (pink). If only a single variant has true effect, adding

data from multiple variants demonstrates no improvement (and sometimes detriment).



Figure S6. From single-variant and single-phenotype to multiple-variant and multiple-phenotype

gene discovery: when phenotypes are independent. ROC curves for detecting simulated gene

association to any of the phenotypes using single variant/single phenotype association (turquoise) to

multiple-variant and multiple-phenotype association (pink). If phenotypes are truly independent, there may

still be information across the genotypes that allows for improvement of performance, but not as drastic of

an improvement as found when there is a clear correlation structure across phenotypes.













Figures S7-11. Manhattan plots showing log10 BF under an independent effects variant model

amongst protein-altering variants for 5 categories across 35 biomarkers. These include: Bone and

Joint, Diabetes, Hormone, Liver, and Renal traits. Scale is logarithmic after log10 BF ≥ 10. Genes found in

Sinnott-Armstrong, et.al.1 are annotated in grey, whereas the other genes are annotated in black. Colors

indicate different traits as indicated at the bottom of the plots.

Figure S12. LD-score regression-based genetic correlation plots of all 35 biomarkers included in

the multi-trait analyses. The traits are ordered by hierarchical clustering. Blue implies positive and red

implies negative correlation coefficients as indicated by the colorbar (right).



Supplemental Tables

Trait gene

Number of

PAVs, array

log10BF,

array

Number of

PAVs, exome

log10BF,

exome

log10BF

Difference

Total bilirubin UGT1A7 5 1.2 247 213 211.8

Direct bilirubin UGT1A7 5 0.6 228 133 132.4

Lipoprotein A PLG 57 38.9 583 165 126.1

SHBG SHBG 7 2.7 284 114 111.3

LDL cholesterol PCSK9 94 4.0 759 99 95.0

Total bilirubin MROH2A 33 4.6 1649 85.8 81.2

Apolipoprotein B PCSK9 94 3.1 756 80.7 77.6

Cholesterol PCSK9 94 4.0 760 80.9 76.9

IGF-1 GH1 5 2.1 301 55.1 53.0

Direct bilirubin MROH2A 33 2.9 1497 55.7 52.8

Gamma

glutamyltransferase GGT1 5 0.008 545 52.1 52.1

Triglycerides ANGPTL3 7 -0.02 337 39.9 39.9

Cholesterol ANGPTL3 7 -0.6 337 34.3 34.9

Cholesterol APC 1409 -34.7 1882 -0.5 34.2

LDL cholesterol APC 1410 -33.7 1882 -0.5 33.2

Apolipoprotein B APC 1405 -32.7 1876 -0.7 32.0

Total bilirubin UGT1A5 12 2.0 225 33 31.0



Albumin APC 1366 -31.6 1807 -1.2 30.4

Vitamin D APC 1379 -29.8 1828 0.2 30.0

Creatinine APC 1411 -31.4 1883 -1.9 29.5

Table S1. Genes with considerable power gain in exome data as compared to array data.

Trait Gene

Number

of PAVs

log10BF

without

MPC

Number of

MPC-augmented

PAVs

Number of

pLI-augmented

PAVs

log10BF

with

MPC

log10BF

Difference

Alkaline

phosphatase ALPL 198 126 93 0 160 34

Lipoprotein A LPA 512 109 20 0 114 5

Apolipoprotein A APOA1 102 11.7 30 0 15.7 4

HDL cholesterol APOA1 103 9.36 30 0 13.2 3.84

Aspartate

aminotransferase SLC30A10 112 3.76 50 6 7.2 3.44

Phosphate ALPL 192 10.9 91 0 14.3 3.4

Lipoprotein A IGF2R 763 29.8 153 27 33.1 3.3

HDL cholesterol SCARB1 220 5.45 66 0 8.29 2.84

Apolipoprotein B APOE 142 5.48 60 0 8.27 2.79

Alanine

aminotransferase SLC30A10 112 2.94 50 6 5.56 2.62



Table S2. Power comparison between variant annotation-based MRP and MPC/pLI-augmented

MRP analyses across 35 biomarkers. We see considerable gains in power in several gene/trait

combinations.

# Studies # Phenotypes Phenotype
Specification

Genetic
Datatype

Average
Runtime
(DD:HH:MM)

Single Single Binary Array 00:00:02

Single Single Quantitative Array 00:00:08

Multiple Single Binary Array 00:00:20

Multiple Single Quantitative Array 00:00:40

Single Single Binary Exome 00:02:00

Single Single Quantitative Exome 00:08:00

Multiple Single Binary Exome 00:05:00

Multiple Single Quantitative Exome 01:00:00

Single Multiple Binary Array 00:02:00

Single Multiple Quantitative Array 00:05:00

Single Multiple Binary Exome 02:00:00

Single Multiple Quantitative Exome 05:00:00

Table S3. Computation times for various MRP analyses. One node with 16 cores and 200 GB RAM

was used.
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