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SUPPLEMENTARY MATER IAL

In this sectionwe discuss themultiple imputation (MI) procedure described in Section 3 and used to generate the results
displayed in Table 1. We first show that theMI procedure is in general proper in the sense of Rubin (1987). We also give
insights as to whyMI and the semiparametric maximum likelihood (SPMLE) estimators had different efficiency.

| MI procedure

LetY be the outcome,X be the covariate of interest,X ∗ its error-prone counterpart, and Z be the error-free covariate.
We have the following setup: X ∼ N

(
g (Z ),σ2

x

)
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and X |X ∗, Z ∼ N
(
λX ∗ + (1 − λ)g , λσ2

u

)
, where λ =

σ2x
σ2x+σ

2
u
. A critical step in multiple imputation (MI) is to sample X

from the conditional distribution p(X |X ∗, Z ,Y ), whose form is derived below:
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That is,

X |X ∗, Z ,Y ∼ N
(
λσ2

u β1
(
Y − β0 − β2Z − β3X

∗
)
+ σ2

{
λX ∗ + (1 − λ)g

}
λσ2

u β
2
1 + σ2

,
λσ2σ2

u

λσ2
u β

2
1 + σ2

)
Toestimate p(X |X ∗, Z ,Y ), onemayfit a linear regressionofX ∼ X ∗+Z +Y on the validation sample. This is proper if and
only if g (Z ) is a linear function of Z and σ2

u (Z ) is constant. Otherwise, themodel is misspecified and the corresponding
MI will be improper. Scenarios 1-3 from Section 5 are therefore proper, but improper in scenario 4. However, we show
below that our simulations led to unbiased estimates with coverage close to the nominal value, for all four settings.
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β1 SRS SSRS ODS RS WRS SFS SRS SSRS ODS RS WRS SFS
Scenario 1, σ2

U = (0.5, 0.5) Scenario 2, σ2
U = (1, 1)

0 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.001 0.001 0.001
0.5 0.499 0.499 0.500 0.500 0.500 0.501 0.499 0.499 0.500 0.501 0.501 0.501
1 1.000 1.000 1.001 1.001 1.001 1.001 0.999 0.999 1.000 0.999 0.999 1.000

Scenario 3, σ2
U = (3, 3) Scenario 4, σ2

U = (0.5, 1)

0 0.000 -0.001 0.002 0.001 0.001 0.000 -0.001 0.000 0.001 0.001 0.001 0.001
0.5 0.498 0.498 0.500 0.501 0.502 0.501 0.500 0.500 0.501 0.502 0.508 0.494
1 1.000 0.999 1.001 1.000 1.001 1.000 0.999 0.999 1.001 1.001 1.008 0.990

Abbreviations: SRS: Simple random sampling; SSRS: stratified simple random sampling; ODS: Outcome-dependent sampling; RS.
TABLE S . 1 Point estimates for β1 of theMI estimator under SRS, SSRS, and extreme-tail sampling of ODS, RS,WRS,
and SFS.

β1 SRS SSRS ODS RS WRS SFS SRS SSRS ODS RS WRS SFS
Scenario 1, σ2

U = (0.5, 0.5) Scenario 2, σ2
U = (1, 1)

0 0.962 0.962 0.960 0.958 0.958 0.956 0.946 0.946 0.946 0.960 0.961 0.954
0.5 0.960 0.961 0.962 0.968 0.968 0.960 0.942 0.936 0.962 0.958 0.959 0.962
1 0.952 0.946 0.960 0.960 0.959 0.948 0.956 0.952 0.932 0.938 0.940 0.938

Scenario 3, σ2
U = (3, 3) Scenario 4, σ2

U = (0.5, 1)

0 0.946 0.950 0.926 0.944 0.943 0.940 0.940 0.952 0.940 0.950 0.952 0.938
0.5 0.938 0.954 0.946 0.942 0.942 0.944 0.940 0.936 0.948 0.958 0.962 0.942
1 0.950 0.954 0.928 0.934 0.934 0.928 0.944 0.950 0.948 0.944 0.947 0.935

Abbreviations: SRS: Simple random sampling; SSRS: stratified simple random sampling; ODS: Outcome-dependent sampling; RS.
TABLE S . 2 Coverage for β1 of theMI estimator under SRS, SSRS, and extreme-tail sampling of ODS, RS,WRS, and
SFS.

| Efficiency ofMI and SPMLE
Now, suppose g (Z ) = a + bZ for some constants a and b , and σ2

u (Z ) is constant, we have
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Notice that β3 only affects the coefficient of X ∗. Thus, when f (Y |X , Z ,X ∗) = f (Y |X , Z ), i.e., β3 = 0 which is
the assumption made in this manuscript (see equation (1)), removingY from the imputation model is incorrect. The
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unconstrained MI approach encompasses a larger classes of models than the SPMLE, leading thus to less efficient
estimates. Now, if β1 = β3 = 0, we have that

E (
X |X ∗, Z ,Y

)
= (1 − λ)a + λX ∗ + (1 − λ)bZ .

Notice that there is no need to includeY in the imputationmodel. The unconstrainedMI will, therefore, result in higher
loss in efficiency compared to SPMLEwhen β1 = 0.

| Residual plots for case study

(a) (b)

F IGURE S . 1 Residual (a) and quantile-quantile (b) plots for the linear regression using the fully validated data.


